Robotis DX-117 User Manual

DX-113, DX-116, DX-117
User’s Manual 2005-11-16 (2ndEdition)
Closer to Real,
Dynamixel
Contents
DX-Series
1. Summary
1-1. Overview and Characteristics of DX-113, 116, and 117 Page 2
1-2. Main Specifications Page 3
2. Dynamixel Operation
2-1. Mechanical Assembly Page 4
2-2. Connector Assembly Page 4
2-3. Dynamixel Wiring Page 5
3. Communication Protocol
3-1. Communication Overview Page 8
3-2. Instruction Packet Page 9
3-3. Status Packet Page 9
3-4. Control Table Page 11
4. Instruction Set and Examples
4-1. WRITE DATA Page 18
4-2. READ DATA Page 19
4-3. REG WRITE and ACTION Page 19
4-4. PING Page 20
4-5. RESET Page 21
5. Examples Page 22
Appendix Page 28
1
DX-Series
1. Dynamixel DX-Series
1-1. Overview and Characteristics of the DX-Series
Dynamixel DX-Series The Dynamixel robot actuator is a smart, modular actuator that incorporates a gear
reducer and a control circuitry with networking functionality, all in a single package.
Despite its compact size, it can produce large torque and is made with special
materials to provide the necessary strength and structural resilience to withstand
large external forces. It also has the ability to detect and act upon internal
conditions such as changes in internal temperature or supply voltage. There are
three models (DX-113, DX-116, and DX-117) in the DX series of the Dynamixel
robot actuator family and they have many advantages over similar products.
Precision Control Position and speed can be controlled with a resolution of 1024 steps.
Compliance Driving The degree of compliance can be adjusted and specified in controlling position.
Feedback Feedback for angular position, angular velocity, and load torque are available.
Alarm System The Dynamixel series robot actuator can alert the user when parameters deviate
from user defined ranges (e.g. internal temperature, torque, voltage, etc) and can
also appropriately handle the problems by itself.
Communication Wiring is easy with daisy chain connection, and it support communication speeds
up to 1M BPS.
High-performance Motors Models DX-116 and DX-117 use the RE-MAX Series Coreless DC Motors, which
are the top of the line Swiss Maxon motors, allowing them to produce large output
torques and high accelerations.
Distributed Control The actuation schedule can be set with a single command packet, thus enabling
the main processor to control many Dynamixel units even with very few resources.
Engineering Plastic The main body of the unit is made with high quality engineering plastic which
enables it to handle high torque loads.
2
Metal Gear All gears are made with metal to ensure durability.
Axis Bearing A bearing is used at the final axis to ensure no efficiency degradation with high
Status LED The LED can indicate the error status to the user.
DX-Series
external loads on the output shaft.
1-2. Main Specifications
DX-116 DX-117 DX-113
Weight(g) 66 66 58
Gear Reduction Ratio 142.5 192.6 192.6
Input Voltage 12 16 12 16 12
Final Max Holding Torque(kgf.cm) 21.38 28.50 28.89 38.52 10.20
Sec/60degree 0.127 0.095 0.172 0.129 0.150
Resolution 0.35°
Operating Angle 300°
Voltage DX116,117 : 12V~16V(Recommended voltage: 14.4V)
DX113 : 12V
Max. Current 1200mA
Operating Temp. -5 ~ +85℃℃
Command Signal Digital Packet
Protocol Type Half duplex Asynchronous Serial Communication (8bit,1stop,No Parity)
Link (Physical) RS 485 Multi Drop(daisy chain type Connector)
ID 254 ID (0~253)
Communication Speed 7343bps ~ 1 Mbps
Feedback Position, Temperature, Load, Input Voltage, etc.
Material Full Metal Gear, Engineering Plastic Body
Motor Swiss MAXON Motor (DX-116, DX-117). DX-113 uses a cored motor
3
DX-Series
2. Dynamixel Operation
2-1. Mechanical Assembly
Follow the figure below for the mechanical assembly of the Dynamixel actuator.
Nut(8EA)
The 8 sets of screws and nuts are only used for attaching the Dynamixel actuator to
other parts.
Horn
Screw for Horn
Screw for mount(8EA)
2-2. Connector Assembly
Assemble the connectors as shown below. Attach the wires to the terminals using the
correct crimping tool. If you do not have access to a crimping tool, solder the terminals
to the wires to ensure that they do not become loose during operation.
4
DX-Series
2-3. Dynamixel Wiring
Pin Assignment
Pin 1 : GND
Pin 2 : +12V~18V
Pin 3 : D+ (RS485 Signal)
Pin 4 : D- (RS485 Signal)
Wire Link
Main Controller To operate the Dynamixel actuators, the main controller must support RS485. You can
PC LINK A PC can be used to control the Dynamixel actuator via the CM-2 controller.
The connector pin assignments are as the following. The two connectors
on the Dynamixel actuator are internally connected to each other.
Pin 1
2 3 4
Pin 4
3 4 1
Connect the pins to pins that have the same number as shown below.
Main
1 2 3 4
Controller
design and build your own controller, but the use of the CM-2 Dynamixel controller board is
recommended.
RS485
Level
Dynamixels
PC
RS232
Level
CM-2
5
Stand Alone The CM-2 board can be directly mounted on a robot that is built with Dynamixel
DX-Series
actuators.
For usage details, please refer to the CM-2 manual.
Connection to UART To control the Dynamixel actuators, the main controller needs to convert its UART
signals from TTL level to RS485 level. The recommended circuit diagram for this is
shown below.
전원은 Main Controller의 Molex4P Connector의 Pin1,Pin2를 통하여 Dynamixel로
공급되어진다.
CM-2 Board on Robot
6
RS485 The communication protocol used by the Dynamixel actuator, RS485 (IEEE485), uses
DX-Series
The direction of data signals on the TTL level TxD and RxD depends on the
DIRECTION485 level as the following.
• When the DIRECTION485 level is High: the TxD signal is outputted as D+, D-
• When the DIRECTION485 level is Low: the D+, D- signal is inputted to RxD
the multi-drop method of connecting multiple terminals on a single node. Thus a protocol
that does not allow multiple transmissions at the same time should be maintained on a
RS485 network.
Note Please ensure that the pin assignments are correct when connecting the Dynamixel
actuators. Check the current consumption after the wiring is completed. The current
consumption of a single Dynamixel actuator unit in standby mode should be no larger
than 50mA.
Connection Status Verification
When power is applied to the Dynamixel actuator, the LED blinks twice to confirm its
connection.
Inspection If the above operation was not successful, check the connector pin assignment and the
voltage/current limit of the power supply.
Main
Controller
[RS485 Multi Drop Link]
7
r
r
DX-Series
3. Communication Protocol
3-1. Communication Overview
Packet The Main Controller communicates with the Dynamixel by sending and receiving data
packets. There are two types of packets, the Instruction Packet (Main Controller to
Dynamixel) and the Status Packet. (Dynamixel to Main Controller)
Communication For the system connection below, if the main controller sends an instruction packet with
the ID set to N, only the Dynamixel with this ID value will return its respective status
packet and perform the required instruction.
Unique ID Communication problems will arise if multiple Dynamixel's have the same ID value. This
will cause multiple packets to be sent simultaneously resulting in packet collisions. It is
imperative that ID values are unique within each data network.
Protocol The Asynchronous Serial Communication word consists of 8 bits, 1 Stop bit and
no parity.
Instruction Packet(ID=N)
Main
Controlle
Main
Controlle
Instruction Packet
Status Packet
ID=0 ID=1 ID=N
Status Packet(ID=N)
8
DX-Series
3-2. Instruction Packet
The structure of the Instruction Packet is as follows:
Instruction Packet OXFF 0XFF ID LENGTH INSTRUCTION PARAMETER1 …PARAMETER N CHECK
SUM
The packet byte definitions are as follows.
0XFF 0XFF Two 0XFF bytes indicate the start of an incoming packet.
ID Unique ID of a Dynamixel. The ID can range from 0X00 to 0XFD (254 IDs are available)
Broadcasting ID ID ID 0XFE is the Broadcast ID which is assigned to all of the connected Dynamixel’s.
Status packets will not be returned with a broadcasting ID.
LENGTH The length of the Status Packet. The value is “Parameter number (N) + 2”
INSTRUCTION The instruction for the Dynamixel to perform.
PARAME T ER0…N Used if there is additional information to be sent other than the Instruction.
CHECK SUM The calculation method for the ‘Check Sum’ is as follows:
Check Sum = ~( ID + Length + Instruction + Parameter1 + … Parameter N )
If the calculated value is bigger than 255, the lower byte becomes the checksum.
~ represents the Not or complement operation
3-3. Status Packet
The Status Packet is the response packet from the Dynamixel to the Main Controller
after receiving an instruction packet. The structure of Status Packet is as follows :
OXFF 0XFF ID LENGTH ERROR PARAMETER1 PARAMETER2… PARAMETER N
CHECK SUM
The meaning of each byte within the packet is as follows :
9
0XFF 0XFF Two 0XFF bytes indicate the start of a packet.
ID ID of the Dynamixel which is returning the packet.
LENGTH The length of the Status Packet. The value is “Parameter number (N) + 2”.
ERROR Dynamixel communication error flags. The meaning of each bit is as follows:
PARAME T ER0…N Used when additional information is required.
CHECK SUM SUM Calculation method of ‘Check Sum’is as follows:
DX-Series
Bit Name Details
Bit 7 0 -
Bit 6 Instruction Error
Bit 5 Overload Error Set to 1 if the specified torque can't control the load.
Bit 4 Checksum Error
Bit 3 Range Error Set to 1 if the instruction is out of the usage range.
Bit 2
Bit 1 Angle Limit Error
Bit 0
Check Sum = ~( ID + Length + Instruction + Parameter1 + … Parameter N )
If the calculated value is bigger than 255, the lower byte becomes the checksum.
~ represents the Not or complement operation
Overheating
Error
Input Voltage
Error
Set to 1 if an undefined instruction is given without the reg_write instruction.
Set to 1 if the checksum of the intruction packet is incorrect
Set as 1 if the internal temperature of Dynamixel is out of the operative range as set in the control table.
Set as 1 if the goal position is set outside of the range between CW Angle Limit and CCW Angle Limit
Set to 1 if the voltage is out of the operative range set in the control table.
10
3-4. Control
Table
EEPROM Area
RAM Area
DX-Series
Address Item Access Initial Value
0(0X00) Model Number(L) RD 1(0X01) Model Number(H) RD 2(0X02) Version of Firmware RD 3(0X03) ID RD,W R 4(0X04) Baud Rate RD,W R 5(0X05) Return Delay Time RD,W R 6(0X06) CW Angle Limit(L) RD,W R 7(0X07) CW Angle Limit(H) RD,W R 8(0X08) CCW Angle Limit(L) RD,WR
9(0X09) CCW Angle Limit(H) RD,W R 10(0x0A) (Reserved) ­11(0X0B) the Highest Limit Temperature RD,W R
12(0X0C) the Lowest Limit Voltage RD,W R 13(0X0D) the Highest Limit Voltage RD,W R 14(0X0E) Max Torque(L) RD,W R 15(0X0F) Max Torque(H) RD,W R
16(0X10) Status Return Level RD,W R 17(0X11) Alarm LED RD,W R 18(0X12) Alarm Shutdown RD,W R 19(0X13) (Reserved) RD,W R 20(0X14) Down Calibration(L) RD 21(0X15) Down Calibration(H) RD 22(0X16) Up Calibration(L) RD 23(0X17) Up Calibration(H) RD 24(0X18) Torque Enable RD,WR 25(0X19) LED RD,W R
26(0X1A) CW Compliance Margin RD,W R 27(0X1B) CCW Compliance Margin RD,W R 28(0X1C) CW Compliance Slope RD,W R 29(0X1D) CCW Com pliance Slope RD,W R 30(0X1E) Goal Position(L) RD,W R 31(0X1F) Goal Position(H) RD,WR
32(0X20) Moving Speed(L) RD,W R 33(0X21) Moving Speed(H) RD,W R 34(0X22) Torque Limit(L) RD,W R 35(0X23) Torque Limit(H) RD,W R 36(0X24) Present Position(L) RD 37(0X25) Present Position(H) RD 38(0X26) Present Speed(L) RD 39(0X27) Present Speed(H) RD 40(0X28) Present Load(L) RD 41(0X29) Present Load(H) RD
42(0X2A) Present Voltage RD 43(0X2B) Present Temperature RD 44(0X2C) Registered Instruction RD,W R 45(0X2D) (Reserved) -
46[0x2E) Moving RD 47[0x2F) Lock RD,WR
48[0x30) Punch(L) RD,W R 49[0x31) Punch(H) RD,W R
116(0x74)
0(0x00)
?
1(0x01)
34(0x22)
250(0xFA)
0(0x00) 0(0x00)
255(0xFF)
3(0x03) 0(0x00)
85(0x55)
60(0X3C) 190(0xBE) 255(0XFF)
3(0x03) 2(0x02) 4(0x04) 4(0x04) 0(0x00)
? ? ?
? 0(0x00) 0(0x00) 0(0x00) 0(0x00)
32(0x20)
32(0x20) [Addr36]value [Addr37]value
0
0 [Addr14] value [Addr15] value
?
?
?
?
?
?
?
?
0(0x00) 0(0x00) 0(0x00) 0(0x00)
32(0x20)
0(0x00)
11
Control Table
RAM and EEPROM The data values for the RAM Area will be set to the default initial values on power on.
Initial Value The Initial Value column of the control table shows the Factory Default Values for the
Address 0x00,0x01 Model Number. In the case of the DX-116, the value is 0X0074(116).
Address 0x02 Firmware Version.
Address 0x03 ID. Unique ID number to identify the Dynamixel. Different ID’s are required to be
Address 0x04 Baud Rate. Determines the Communication Speed. The Calculation method is:
Note A maximum Baud Rate error of 3% is within the UART communication tolerance.
The Control Table consists of data for conditions and movement of the Dynamixel. By
DX-Series
writing the values in the control table, you can move the Dynamixel and detect the
condition of the Dynamixel.
The data values for the EEPROM Area are non-volatile and will be available next power
on.
case of EEPROM Area Data. For the RAM Area Data, the initial value column gives the
power on data values.
Please note the following meanings for data assigned to each address in the control
table.
assigned to “linked” Dynamixels.
Speed(BPS) = 2000000/(Address4+1)
Data Value as per Major Baud Rate
Adress4 BPS Set Target BPS Error
1 1000000.0 1000000.0 0.000% 3 500000.0 500000.0 0.000% 4 400000.0 400000.0 0.000% 7 250000.0 250000.0 0.000%
9 200000.0 200000.0 0.000% 16 117647.1 115200.0 -2.124% 34 57142.9 57600.0 0.794%
103 19230.8 19200.0 -0.160% 207 9615.4 9600.0 -0.160%
12
Address 0x05
Address 0x06,0x07,0x08,0x09
Operating Angle Limit
Address 0x0B
Address 0x0C,0x0D the Lowest (Highest) Limit Voltage. Setting the operative upper and lower limits of the
Address 0x0E,0x0F, 0x22,0x23
Max Torque
Address 0X10 Status Return Level. To determine whether the Dynamixel will return the Status Packet
Return Delay Time. The time taken after sending the Instruction Packet, to receive the
the Highest Limit Temperature. The upper limit of the Dynamixel’s operative
DX-Series
requested Status Packet. The delay time is given by 2uSec *Address5 value.
. Set the operating angle to restrict the Dynamixel’s angular
range. The Goal Position needs to be within the range of:-
CW Angle Limit <= Goal Position <= CCW Angle Limit
An Angle Limit Error will occur if this relationship is not satisfied.
temperature. If the Dynamixel’s internal temperature is higher than this value, an Over
Heating Error Bit (Bit 2 of the Status Packet) will be set. An alarm will be set in Address
17,18. The values are in Degrees Celsius.
Dynamixel’s voltages.
If the present voltage (Address42) is out of the specified range, a Voltage Range Error
bit will be set in the Status Packet and an alarm executed will be set in Address’s 17,18.
The values are 10 times the actual voltages. For example, if the Address 12 value is 80,
then the lower voltage limit is set to 8V.
. The max torque output for the Dynamixel. When it is set to ‘0’, the
Dynamixel enters a Torque Free Run condition. The Max Torque (Torque Limit) is
assigned to EEPROM (Address 0X0E,0x0F) and RAM (Address 0x22,0x23) and a power
on condition will copy EEPROM values to RAM. The torque of a Dynamixel is limited by
(Address0x22,0x23) of RAM.
after the transmission of an Instruction Packet.
Address16 Return of Status Packet
0 Do net respond to any instruction
1 Respond only to READ_DATA instruction
2 Respond to all instructions
13
Address 0X11 Alarm LED
Address 0X12 Alarm Shutdown
Address 0x14~0x17 Calibration
DX-Series
In the case of an instruction which uses the Broadcast ID (0XFE), regardless of
the Address 0x10 value, the Status Packet will not be returned.
. When an Error occurs, if the corresponding Bit is set to 1, then the LED
blinks.
Bit Function Bit 7 0 Bit 6
If set to 1, LED blinks when Ins truction Error occurs
Bit 5
If set to 1, LED blinks when Overload Error occurs
Bit 4
If set to 1, LED blinks when Checksum Error occurs
Bit 3
If set to 1, LED blinks when Range Error occurs
Bit 2
If set to 1, LED blinks when Overheating Error occurs
Bit 1
If set to 1, LED blinks when Angle Limit Error occurs
Bit 0
If set to 1, LED blinks when Input Voltage Error occurs
This function operates as the logical “OR”ing of all set bits. For example, when the
register is set to 0X05, the LED will blink when a Voltage Error occurs or when an
Overheating Error occurs. Upon returning to a normal condition from an error state, the
LED stops blinking after 2 seconds.
Dynamixel will shut down (Torque off).
Bit Function Bit 7 0 Bit 6
If set to 1, torque off when Ins truction Error occurs
Bit 5
If set to 1, torque off when Overload Error occurs
Bit 4
If set to 1, torque off when Checksum Error occurs
Bit 3
If set to 1, torque off when Range Error occurs
Bit 2
If set to 1, torque off when Overheating Error occurs
Bit 1
If set to 1, torque off when Angle Limit Error occurs
Bit 0
If set to 1, torque off when Input Voltage Error occurs
This function operates as the logical “OR”ing of all set bits. However, unlike the Alarm
LED, after returning to a normal condition, it maintains a torque off status. To remove this
restriction, Torque Enable (Address0X18) is required to be set to 1.
. Data used for compensating for the differences between Robotis products.
Users cannot change this area.
. When an Error occurs, if the corresponding Bit is set to a 1, then the
14
DX-Series
From Address 0x18 in the RAM area.
Address 0x18 Torque Enable. When power is first applied the Dynamixel enters the Torque Free Run
condition. To allow torque to be applied Address 0x18 must be set to 1. (Torque Enabled
Condition)
Address 0x19 LED. LED is on when set to 1 and LED is off if set to 0.
Address 0x1A~0x1D Compliance Margin and Slope. The Dynamixel controls Compliance by setting the
Margin and Slope. If used well Compliance will absorb the shocks. The following graph
demonstrates the use of Compliance values (length of A,B,C & D) relative to Position
Error and applied torque.
CW
Goal Position
CCW
CCW
Y axis:Output Torque
A : CCW Compliance Slope(Address0x1D) B : CCW Compliance Margin(Address0x1B) C : CW Compliance Margin(Address0x1A) D : CW Compliance Slope (Address0x1C) E : Punch(Address0x30,31)
BA CD
E
E
X axis:Position Error
CW
Address 0X1E,0x1F Goal Position
. Requested Angular Position for the Dynamixel to move to. If this is
set to 0x3ff, then the goal position will be 300°.
(Goal Position = 0x1ff)
150°
(Goal Position = 0x3ff)
300°
300~360°
Invalid Angle
0° (Goal Position = 0)
15
Address 0x20,0x21 Moving Speed. The angular speed to move to the Goal Position. If set to the maximum
Address 0x24,0x25 Present Position
Address 0x26,0x27 Present Speed
Address 0x28,0x29 Present Load
Address 0x2A Present Voltage. The voltage applied to the Dynamixel. The value is 10 times the actual
Address 0x2B Present Temperature. Current internal Dynamixel temperature (Degrees Celsius).
Address 0x2C Registered Instruction. Set to 1 when a REG_WRITE instruction is made. After an
Address 0x2E Moving. Set to 1 when the Dynamixel moves by its own power.
Address 0x2F Lock. If set to 1, only Address 0x18 ~ Address 0x23 can be written to. Other areas are
Address 0x30,0x31 Punch. Minimum current being supplied to the motor during an action. The minimum
DX-Series
values of 0x3ff, it moves at 70RPM.
. Current position of the Dynamixel.
. Current Speed of the Dynamixel
. Load size on the Dynamixel in action. Bit 10 is the direction of the load.
BIT 15~11 10 9876543210
Value 0 Load Direction Load Value
Load Direction = 0 : CCW Load, Load Direction = 1: CW Load
voltage. For example, 10V is read as 100(0x64).
Action instruction and an action it is reset to 0.
not permitted. Once locked, it can only be unlocked by powering down.
value is 0x20 and the maximum value as 0x3ff.
16
Range Each Register has an operative range. Write instructions made outside of these ranges
DX-Series
will return an error. The following table summarises the data range for each register. 16
bit data registers are indicated as (L) and (H), two bytes. Each byte of a two byte register
can be written to independently.
Write
Address
3(0X03) ID 1 0
4(0X04) Baud Rate 1 0
5(0X05) Return Delay Time 1 0
6(0X06) CW Angle Limit 2 0
8(0X08) CCW Angle Limit 2 0
11(0X0B) the Highest Limit Temperature 1 0
12(0X0C) the Lowest Limit Voltage 1 50(0x32)
13(0X0D) the Highest Limit Voltage 1 50(0x32)
14(0X0E) Max Torque 2 0
16(0X10) Status Return Level 1 0
17(0X11) Alarm LED 1 0
18(0X12) Alarm Shutdown 1 0
19(0X13) (Reserved) 1 0
24(0X18) Torque Enable 1 0
25(0X19) LED 1 0
26(0X1A) CW Compliance Margin 1 0
27(0X1B) CCW Compliance Margin 1 0
28(0X1C) CW Compliance Slope 1 1
29(0X1D) CCW Compliance Slope 1 1
30(0X1E) Goal Position 2 0
32(0X20) Moving Speed 2 0
34(0X22) Torque Limit 2 0
44(0X2C) Registered Instruction 1 0
47(0X2F) Lock 1 1
48(0X30) Punch 2 0
Writing Item
Length (bytes)
Min Max
253(0xfd)
254(0xfe)
254(0xfe)
1023(0x3ff)
1023(0x3ff)
150(0x96)
250(0xfa)
250(0xfa)
1023(0x3ff)
2
127(0x7f)
127(0x7f)
1
1
1
254(0xfe)
254(0xfe)
254(0xfe)
254(0xfe)
1023(0x3ff)
1023(0x3ff)
1023(0x3ff)
1
1
1023(0x3ff)
[Control Table Data Range and Length for Writing]
17
DX-Series
4. Instruction Set and Examples
The following Instructions are available.
Instruction Function Value
PING
READ DATA Read the values in the Control table. 0x02 2
WRITE DATA Write the values to the Control Table. 0x03 2 ~
REG WRITE
ACTION Start the action registered by REG W RITE. 0x05 0
RESET
No action. Used to obtain a Dynamixel Status Packet.
Similar to WRITE DATA, but stay in standby mode until write upon the action instruction.
Change the values of the Dynamixel in the control table back to the Factory Default Values
0x01 0
0x04 2 ~
0x06 0
Number of Parameter
4-1. WRITE_DATA
Function Write data into the control table of the Dynamixel
Length
Instruction 0X03
Parameter1
Parameter2 1st Data to write
Parameter3
Parameter N+1 Nth Data to write
Example 1 Set ID of connected Dynamixel as 1
Start Address of the Area to write Data
N+3 (Writing Data is N)
2nd Data to write
Write 1 into the Address 3 of the Control Table. The ID is transmitted using Broadcasting
ID (0xFE).
18
Instruction Packet : 0XFF 0XFF 0XFE 0X04 0X03 0X03 0X01 0XF6
ID LENGTH INSTRUCTION PARAMETERS CHECKSUM
DX-Series
Because it was transmitted by Broadcast ID(0XFE), no return status packet.
4-2. READ_DATA
Function Read data from the Control Table of Dynamixel
Length 0X04
Instruction 0X02
Parameter1
Parameter2 length of Data to Read
Example 2 Read the internal temperature of the Dynamixel with ID=1
Read 1 byte from the Address 0x2B values of the Control Table
Instruction Packet : 0XFF 0XFF 0X01 0X04 0X02 0X2B 0X01 0XCC`
ID LENGTH INSTRUCTION PARAMETERS .. CHECKSUM
The returned Status Packet will be as follows
Status Packet : 0XFF 0XFF 0X01 0X03 0X00 0X20 0XDB
ID LENGTH ERROR PARAMETER1 CHECKSUM
The value read is 0x20.The current Dynamixel’s internal temperature is approximately 32 (0X20).
Starting Address of Data to Read
4-3. REG_WRITE and ACTION
4-3-1. REG_WRITE
19
Function REG_WRITE instruction is similar to the WRITE_DATA instruction, but the
Length N+3 (The number of Write Data bytes is N)
Instruction 0X04
Parameter1
Parameter2 1st Data to Write
Parameter3 2nd Data to Write
Parameter N+1 N+1 Nth Data to Write
Start Address for Write Data
DX-Series
execution timing is different. When the Instruction Packet is received the values
are saved into the Buffer and the Write instruction is under a standby status.
The Registered Instruction register (Address 0x2C) is set to 1. After an Action
Instruction Packet is received the registered Write instruction is executed.
4-3-2. ACTION
Function
Length 0X02
Instruction 0X05
Parameter
Broadcasting When sending ACTION instructions to move more than two Dynamixel units, the
Execute the WRITE instruction written by REG_WRITE
NONE
The ACTION instruction is useful when multiple Dynamixels needs to move
simultaneously. When controlling multiple units, slight time delays occur between the 1st
unit to receive an instruction and the last one. The Dynamixel approach fixes this problem
through the use of the ACTION instruction.
Broadcast ID (0XFE) should be utilised.
4-4. PING
Function
Length 0X02
Instruction 0X01
Parameter
Used to request a specific Dynamixel status packet or to check the existence of a
Dynamixel with a particular ID
NONE
20
Example 3 To obtain the status packet of a Dynamixel with ID=1
Instruction Packet : 0XFF 0XFF 0X01 0X02 0X01 0XFB`
ID LENGTH INSTRUCTION CHECKSUM
The returned Status Packet is as follow;
Status Packet : 0XFF 0XFF 0X01 0X02 0X00 0XFC
ID LENGTH ERROR CHECKSUM
DX-Series
4-5. RESET
Function Restore the condition of the Control Table of the Dynamixel back to the Factory Default
values.
Length 0X02
Instruction 0X06
Parameter
Example 4
Instruction Packet : 0XFF 0XFF 0X00 0X02 0X06 0XF7`
ID LENGTH INSTRUCTION CHECKSUM
The returned Status Packet is as follows;
Status Packet : 0XFF 0XFF 0X00 0X02 0X00 0XFD
ID LENGTH ERROR CHECKSUM
Please note that after a RESET instruction, the ID of the Dynamixel is changed to 1.
NONE
Reset Dynamixe with ID=0
21
DX-Series
5. Example
Used to explain through example with the assumption that the Dynamixel has been
Reset (ID = 1, Baudrate = 57142BPS)
Example 6 Read the Model Number and Firmware Version of a Dynamixel with ID=1
Instruction Packet Instruction = READ_DATA, Address = 0x00, Length = 0x03
Communication ->[Dynamixel]:FF FF 01 04 02 00 03 F5 (LEN:008)
<-[Dynamixel]:FF FF 01 05 00 74 00
Status Packet Result
Example 7
Instruction Packet Instruction = WRITE_DATA, Address = 0x03, DATA = 0x00
Communication ->[Dynamixel]:FF FF 01 04 03 03 00 F4 (LEN:008)
<-[Dynamixel]:FF FF 01 02 00 FC (LEN:006)
Status Packet Result NO ERROR
Example 8
Instruction Packet Instruction = WRITE_DATA, Address = 0x04, DATA = 0x01
Communication ->[Dynamixel]:FF FF 00 04 03 04 01 F3 (LEN:008)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result
Example 9
Instruction Packet Instruction = WRITE_DATA, Address = 0x05, DATA = 0x02
Change ID number of Dynamixel from 1 to 0.
Change Baud Rate of Dynamixel to 1M bps.
Reset Return Delay Time of Dynamixel with ID=0 to 4us.
Model Number = 116(0x74), Firmware Version = 0x08
NO ERROR
A Return Delay Time Value of 1 corresponds to 2us.
08 7D (LEN:009)
22
Communication ->[Dynamixel]:FF FF 00 04 03 05 02 F1 (LEN:008)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result
The best approach is to set the Return Delay Time to the minimum value the Main
Example 10
If CCW Angle Limit is 0x3ff, it is 300°, therefore the values for 150°is 0x1ff.
Instruction Packet Instruction = WRITE_DATA, Address = 0x08, DATA = 0xff, 0x01
Communication ->[Dynamixel]:FF FF 00 05 03 08 FF 01 EF (LEN:009)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result
Example 11
Instruction Packet Instruction = WRITE_DATA, Address = 0x0B, DATA = 0x50
Communication ->[Dynamixel]:FF FF 00 04 03 0B 50 9D (LEN:008)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result NO ERROR
Example 12
10V is expressed as 100(0x64) and 17V as 170(0xAA).
Instruction Packet
Communication ->[Dynamixel]:FF FF 00 05 03 0C 64 AA DD (LEN:009)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result NO ERROR
Limit the the operative angles of a Dynamixel with ID=0 to 0~150°.
Reset the upper limit temperature of the Dynamixel with ID=1 to 80°.
Set the operative voltage of a Dynamixel with ID=0 to 10V ~ 17V.
DX-Series
NO ERROR
Controller will allow.
NO ERROR
Instruction = WRITE_DATA, Address = 0x0C, DATA = 0x64, 0xAA
23
Example 13 Make the Dynamixel with ID=0 perform only 50% of the maximum torque.
Set the max torque values within the EEPROM area to 50% (0x1ff) of the maximum
Instruction Packet
Communication ->[Dynamixel]:FF FF 00 05 03 0E FF 01 E9 (LEN:009)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result NO ERROR
After a power off and on, you can check the effect of the changes in max torque.
Example 14 Stop the Dynamixel with ID=0 from returning a Status Packet.
Instruction Packet
Communication ->[Dynamixel]:FF FF 00 04 03 10 00 E8 (LEN:008)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result NO ERROR
The Status Packet will not be returned for the next instruction.
Example 15 If temperature values are higher than those defined operative temperatures, set the
Instruction Packet
Communication ->[Dynamixel]:FF FF 00 05 03 11 04 04 DE (LEN:009)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result NO ERROR
DX-Series
value (0x3ff)
Instruction = WRITE_DATA, Address = 0x0E, DATA = 0xff, 0x01
Instruction = WRITE_DATA, Address = 0x10, DATA = 0x00
alarm to make the Dynamixel blink and then shut down the Dynamixel (Torque off).
Overheating Error is Bit 2, therefore set the alarm value to 0x04.
Instruction = WRITE_DATA, Address = 0x11, DATA = 0x04, 0x04
24
DX-Series
Example 16 Turn on the LED of the Dynamixel with ID=0 and enable the torque.
Instruction Packet
Instruction = WRITE_DATA, Address = 0x18, DATA = 0x01, 0x01
Communication ->[Dynamixel]:FF FF 00 05 03 18 01 01 DD (LEN:009)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result
NO ERROR
Physical confirmation of an enabled torque can be obtained by attempting to rotate the
motor with your hand.
Example 17
Compliance The following graph shows the Angle Error and Torque Output.
A : CCW Compliance Slope(Address0x1D) = 0x40(Approximately 18.8°)
B : CCW Compliance Margin(Address0x1B) = 0x01 (Approximately 0.29°)
Set the Dynamixel with ID=0 to have a Compliance Margin = 1 and Compliance
Slope=0x40
CW
CCW
Goal Position
CW
X:Angle Error
CCW
If the position is slightly deviated from the goal position, the motor will generate a high
torque to try to adjust its position to that of the goal position. The true control method is
different due to the inertia. The condition provided in the above example can be shown in
the graph below:-
CW
CCW
Output Torque
CCW
Goal Position
CW
Angle(Position)
B A C D
25
C : CW Compliance Margin(Address0x01A) = 0x01(Approximately 0.29°)
D : CW Compliance Slope(Address0x1C) = 0x40 (Approximately 18.8°)
Instruction Packet Instruction = WRITE_DATA, Address = 0x1A, DATA = 0x01, 0x01, 0x40, 0x40
Communication ->[Dynamixel]:FF FF 00 07 03 1A 01 01 40 40 59 (LEN:011)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result NO ERROR
The effect of a Compliance Slope changes at the boundary of 2n (n is positive number),
Example 18 Position Dynamixel with ID=0 at Position 180°after moving it at the speed of 35RPM.
Set Address 0x1E(Goal Position) = 0x200, Address 0x20(Moving Speed) = 0x200
Instruction Packet
Communication ->[Dynamixel]:FF FF 00 07 03 1E 00 02 00 02 D3 (LEN:011)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result NO ERROR
Example 19 Set the position of a Dynamixel (ID=0) to an angular Position of 0°and another
Instruction Packet ID=0, Instruction = REG_WRITE, Address = 0x1E, DATA = 0x00, 0x00
ID=1, Instruction = REG_WRITE, Address = 0x1E, DATA = 0xff, 0x03 ID=0xfe(Broadcasting ID), Instruction = ACTION,
Communication ->[Dynamixel]:FF FF 00 05 04 1E 00 00 D8 (LEN:009)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
->[Dynamixel]:FF FF 01 05 04 1E FF 03 D5 (LEN:009)
<-[Dynamixel]:FF FF 01 02 00 FC (LEN:006)
->[Dynamixel]:FF FF FE 02 05 FA (LEN:006)
<-[Dynamixel]: //No return packet against broadcasting ID
Status Packet Result
DX-Series
that is, the effect of the values of Compliance between 0x11 and 0x20 are the same.
Instruction = WRITE_DATA, Address = 0x1E, DATA = 0x00, 0x02, 0x00, 0x02
Dynamixel (ID=1) to an angular Position of 300°. Make sure both Dynamixels start at the
same time.
If you use WRITE_DATA instruction, two Dynamixel can not start at the same time,
therefore use REG_WRITE and ACTION.
NO ERROR
26
Example 20 Prevent the Dynamixel with ID=0 from changing values other than within the range
Instruction Packet
Communication ->[Dynamixel]:FF FF 00 04 03 2F 01 C8 (LEN:008)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result NO ERROR
If Locked, it can only be unlocked by removing power.
->[Dynamixel]:FF FF 00 05 03 30 40 00 87 (LEN:009)
<-[Dynamixel]:FF FF 00 02 08 F5 (LEN:006)
Example 21 Set the minimum punch (output) in the Dynamixel with ID=0 to 0x40.
Instruction Packet
Communication ->[Dynamixel]:FF FF 00 05 03 30 40 00 87 (LEN:009)
<-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)
Status Packet Result NO ERROR
DX-Series
between Address 0x18 and Address 0x23.
Set Address 0x2F(Lock) to 1.
Instruction = WRITE_DATA, Address = 0x2F, DATA = 0x01
If trying to access other data areas whilst locked, an error will be returned.
Range Error
Instruction = WRITE_DATA, Address = 0x30, DATA = 0x40, 0x00
27
DX-Series
Appendix
RS-485
Return Delay Time The time it takes for the Dynamixel actuator to return the Status Packet after receiving
485 Direction
SerialTxDBuffer = bData; //data load to TxD buffer
For RS-485, the timing to change the direction to receiving mode right after the ending
RS-485 is a protocol used for serial communication which operates by forming a bus
with multiple clients connected to a single line. Thus, transmission and reception cannot
occur at the same time, and while one client is transmitting, all the other clients need to
be in input mode. The Main Controller that controllers the Dynamixel actuators sets the
RS485 communication direction to be input mode, and only when it is transmitting an
Instruction Packet, it changes the direction to be output mode.
RS485 Direction Output Duration
Instruction Packet Status Packet
Return Delay Time
an Instruction Packet. The Default Value is 160 uSec and can be changed via the
Control Table at Address 5. The Main Controller needs to change the RS485
communication direction during the Return Delay Tim after sending an instruction packet.
of the transmission is important. The bit definitions within the register that indicates
UART_STATUS are as the following.
TXD_BUFFER_READY_BIT: Indicates that the transmission DATA can be loaded into
the Buffer. Note that this only means that the SERIAL TX BUFFER is empty, and does
not necessarily mean that the all the data transmitted before has left the CPU.
TXD_SHIFT_REGISTER_EMPTY_BIT: Set when all the Transmission Data has
completed its transmission and left the CPU.
The TXD_BUFFER_READY_BIT is used when one byte is to be transmitted via the
serial communication channel, and an example is shown below.
TxDByte(byte bData)
{
while(!TXD_BUFFER_READY_BIT); //wait until data can be loaded.
}
28
LINE 1 PORT_485_DIRECTION = TX_DIRECTION; LINE 2 TxDByte(0xff); LINE 3 TxDByte(0xff); LINE 4 TxDByte(bID); LINE 5 TxDByte(bLength); LINE 6 TxDByte(bInstruction); LINE 7 TxDByte(Parameter0); TxDByte(Parameter1); … LINE 8 DisableInterrupt(); // interrupt should be disable LINE 9 TxDByte(Checksum); //last TxD LINE 10 while(!TXD_SHIFT_REGISTER_EMPTY_BIT); //Wait till last data bit has been sent LINE 11 PORT_485_DIRECTION = RX_DIRECTION; //485 direction change to RXD LINE 12 EnableInterrupt(); // enable interrupt again
Please note the important lines between LINE 8 and LINE 12. Line 8 is necessary since
Byte to Byte Time The delay time between bytes when sending an instruction packet. If the delay time is
DX-Series
When changing the direction of RS-485, the TXD_SHIFT_REGISTER_EMPTY_BIT
must be checked.
The following is an example program that sends an Instruction Packet.
an interrupt here may cause a delay longer than the return delay time and corruption to
the front of the status packet may occur.
over 100ms, then the Dynamixel actuator recognizes this as a communication problem
and waits for the next header (0xff 0xff) of a packet again.
Byte To Byte Time
The following is the source code of a program (Example.c) that accesses the Dynamixel
actuator using the Atmega 128.
29
DX-Series
C Language Example : Dinamixel access with Atmega128
/* * The Example of Dynamixel Evaluation with Atmega128 * Date : 2004.7.20 */
#define ENABLE_BIT_DEFINITIONS //#include <io.h> #include <inttypes.h> #include <avr/io.h> #include <avr/interrupt.h> #include <avr/signal.h>
typedef unsigned char byte; typedef unsigned int word; #define ON 1 #define OFF 0 #define _ON 0 #define _OFF 1
//--- Control Table Address --­//EEPROM AREA #define P_MODEL_NUMBER_L 0 #define P_MODOEL_NUMBER_H 1 #define P_VERSION 2 #define P_ID 3 #define P_BAUD_RATE 4 #define P_RETURN_DELAY_TIME 5 #define P_CW_ANGLE_LIMIT_L 6 #define P_CW_ANGLE_LIMIT_H 7 #define P_CCW_ANGLE_LIMIT_L 8 #define P_CCW_ANGLE_LIMIT_H 9 #define P_SYSTEM_DATA2 10 #define P_LIMIT_TEMPERATURE 11 #define P_DOWN_LIMIT_VOLTAGE 12 #define P_UP_LIMIT_VOLTAGE 13 #define P_MAX_TORQUE_L 14 #define P_MAX_TORQUE_H 15 #define P_RETURN_LEVEL 16 #define P_ALARM_LED 17 #define P_ALARM_SHUTDOWN 18 #define P_OPERATING_MODE 19 #define P_DOWN_CALIBRATION_L 20 #define P_DOWN_CALIBRATION_H 21 #define P_UP_CALIBRATION_L 22 #define P_UP_CALIBRATION_H 23
#define P_TORQUE_ENABLE (24) #define P_LED (25) #define P_CW_COMPLIANCE_MARGIN (26) #define P_CCW_COMPLIANCE_MARGIN (27) #define P_CW_COMPLIANCE_SLOPE (28) #define P_CCW_COMPLIANCE_SLOPE (29) #define P_GOAL_POSITION_L (30) #define P_GOAL_POSITION_H (31) #define P_GOAL_SPEED_L (32) #define P_GOAL_SPEED_H (33) #define P_TORQUE_LIMIT_L (34) #define P_TORQUE_LIMIT_H (35) #define P_PRESENT_POSITION_L (36) #define P_PRESENT_POSITION_H (37) #define P_PRESENT_SPEED_L (38) #define P_PRESENT_SPEED_H (39) #define P_PRESENT_LOAD_L (40) #define P_PRESENT_LOAD_H (41) #define P_PRESENT_VOLTAGE (42) #define P_PRESENT_TEMPERATURE (43) #define P_REGISTERED_INSTRUCTION (44) #define P_PAUSE_TIME (45) #define P_MOVING (46) #define P_LOCK (47) #define P_PUNCH_L (48) #define P_PUNCH_H (49)
//--- Instruction --­#define INST_PING 0x01
#define INST_READ 0x02 #define INST_WRITE 0x03 #define INST_REG_WRITE 0x04 #define INST_ACTION 0x05 #define INST_RESET 0x06 #define INST_DIGITAL_RESET 0x07 #define INST_SYSTEM_READ 0x0C #define INST_SYSTEM_WRITE 0x0D #define INST_SYNC_WRITE 0x83 #define INST_SYNC_REG_WRITE 0x84
#define CLEAR_BUFFER gbRxBufferReadPointer = gbRxBufferWritePointer #define DEFAULT_RETURN_PACKET_SIZE 6 #define BROADCASTING_ID 0xfe
#define TxD8 TxD81 #define RxD8 RxD81
//Hardware Dependent Item #define DEFAULT_BAUD_RATE 34 //57600bps at 16MHz #define RS485_TXD PORTE |= _BV(PE2); //_485_DIRECTION = 1 #define RS485_RXD PORTE &= ~_BV(PE2);//PORT_485_DIRECTION = 0
//#define PORT_485_DIRECTION PORTE.P2 //Bit2 of PortE is linked to
//#define TXD0_FINISH UCSR0A,6 //This bit is for checking TxD Buffer
//#define TXD1_FINISH UCSR1A,6
#define SET_TxD0_FINISH sbi(UCSR0A,6) #define RESET_TXD0_FINISH cbi(UCSR0A,6) #define CHECK_TXD0_FINISH bit_is_set(UCSR0A,6) #define SET_TxD1_FINISH sbi(UCSR1A,6) #define RESET_TXD1_FINISH cbi(UCSR1A,6) #define CHECK_TXD1_FINISH bit_is_set(UCSR1A,6)
#define RX_INTERRUPT 0x01 #define TX_INTERRUPT 0x02 #define OVERFLOW_INTERRUPT 0x01 #define SERIAL_PORT0 0 #define SERIAL_PORT1 1
#define LED_M0_ON cbi(PORTE,3) //PORTE_Bit3 #define LED_M1_ON cbi(PORTE,4) //PORTE_Bit4 #define LED_M2_ON cbi(PORTE,6) //PORTE_Bit6 #define LED_E0_ON cbi(PORTE,7) //PORTE_Bit7 #define LED_E1_ON cbi(PORTB,0) //PORTB_Bit0
#define LED_M0_OFF sbi(PORTE,3) //PORTE_Bit3 #define LED_M1_OFF sbi(PORTE,4) //PORTE_Bit4 #define LED_M2_OFF sbi(PORTE,6) //PORTE_Bit6 #define LED_E0_OFF sbi(PORTE,7) //PORTE_Bit7 #define LED_E1_OFF sbi(PORTB,0) //PORTB_Bit0
#define BIT_LED_M0 0x08 //Port E #define BIT_LED_M1 0x10 //Port E #define BIT_LED_M2 0x40 //Port E #define BIT_LED_E0 0x80 //Port E #define BIT_LED_E1 0x01 //Port B
#define BIT_RS485_DIRECTION 0x04 //Port E void TxD81(byte bTxdData); void TxD80(byte bTxdData); void TxDString(byte *bData); void TxD8Hex(byte bSentData); void TxD32Dec(long lLong); byte RxD81(void); void MiliSec(word wDelayTime); void PortInitialize(void); void SerialInitialize(byte bPort, byte bBaudrate, byte bInterrupt); byte TxPacket(byte bID, byte bInstruction, byte bParameterLength); byte RxPacket(byte bRxLength); void PrintBuffer(byte *bpPrintBuffer, byte bLength);
// --- Gloval Variable Number ---
MAX485 direction pin.
in CPU is empty or not.
30
volatile byte gbpRxInterruptBuffer[256]; byte gbpParameter[128]; byte gbRxBufferReadPointer; byte gbpRxBuffer[128]; byte gbpTxBuffer[128]; volatile byte gbRxBufferWritePointer;
int main(void) { byte bCount,bID, bTxPacketLength,bRxPacketLength;
PortInitialize(); //Port In/Out Direction Definition RS485_RXD; //Set RS485 Direction to Input State.
//RS485 Initializing(RxInterrupt) SerialInitialize(SERIAL_PORT0,DEFAULT_BAUD_RATE,RX_INTERRUPT);
//RS232 Initializing(None Interrupt) SerialInitialize(SERIAL_PORT1,DEFAULT_BAUD_RATE,0);
//RS485 RxBuffer Clearing. gbRxBufferReadPointer = gbRxBufferWritePointer = 0;
sei(); //Enable Interrupt -- Compiler Function TxDString("\r\n [The Example of Dynamixel Evaluation with
ATmega128,GCC-AVR]");
//Dynamixel Communication Function Execution Step. // Step 1. Parameter Setting (gbpParameter[]). In case of no parameter
instruction(Ex. INST_PING), this step is not needed.
// Step 2. TxPacket(ID,INSTRUCTION,LengthOfParameter); --Total
TxPacket Length is returned
// Step 3. RxPacket(ExpectedReturnPacketLength); -- Real RxPacket
Length is returned
// Step 4 PrintBuffer(BufferStartPointer,LengthForPrinting);
bID = 1; TxDString("\r\n\n Example 1. Scanning Dynamixels(0~9). -- Any Key to
Continue."); RxD8(); for(bCount = 0; bCount < 0x0A; bCount++) { bTxPacketLength = TxPacket(bCount,INST_PING,0); bRxPacketLength = RxPacket(255); TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength); TxDString(", RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength); if(bRxPacketLength == DEFAULT_RETURN_PACKET_SIZE) { TxDString(" Found!! ID:");TxD8Hex(bCount); bID = bCount; } }
TxDString("\r\n\n Example 2. Read Firmware Version. -- Any Key to
Continue."); RxD8(); gbpParameter[0] = P_VERSION; //Address of Firmware Version gbpParameter[1] = 1; //Read Length bTxPacketLength = TxPacket(bID,INST_READ,2); RxPacketLength=RxPacket(DEFAULT_RETURN_PACKET_SIZE+gbpParameter[1]); TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength); TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength); if(bRxPacketLength == DEFAULT_RETURN_PACKET_SIZE+gbpParameter[1]) { TxDString("\r\n Return Error : ");TxD8Hex(gbpRxBuffer[4]); TxDString("\r\n Firmware Version : ");TxD8Hex(gbpRxBuffer[5]); }
TxDString("\r\n\n Example 3. LED ON -- Any Key to Continue.");
RxD8(); gbpParameter[0] = P_LED; //Address of LED gbpParameter[1] = 1; //Writing Data bTxPacketLength = TxPacket(bID,INST_WRITE,2); bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE); TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength); TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);
DX-Series
TxDString("\r\n\n Example 4. LED OFF -- Any Key to Continue.");
RxD8(); gbpParameter[0] = P_LED; //Address of LED gbpParameter[1] = 0; //Writing Data bTxPacketLength = TxPacket(bID,INST_WRITE,2); bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE); TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength); TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);
TxDString("\r\n\n Example 5. Read Control Table. -- Any Key to
Continue."); RxD8(); gbpParameter[0] = 0; //Reading Address gbpParameter[1] = 49; //Read Length bTxPacketLength = TxPacket(bID,INST_READ,2); bRxPacketLength =
RxPacket(DEFAULT_RETURN_PACKET_SIZE+gbpParameter[1]);
TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength); TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength); if(bRxPacketLength == DEFAULT_RETURN_PACKET_SIZE+gbpParameter[1]) { TxDString("\r\n"); for(bCount = 0; bCount < 49; bCount++) { TxD8('[');TxD8Hex(bCount);TxDString("]:");
TxD8Hex(gbpRxBuffer[bCount+5]);TxD8(' '); } }
TxDString("\r\n\n Example 6. Go 0x200 with Speed 0x100 -- Any Key
to Continue."); RxD8(); gbpParameter[0] = P_GOAL_POSITION_L; //Address of Firmware Version gbpParameter[1] = 0x00; //Writing Data P_GOAL_POSITION_L gbpParameter[2] = 0x02; //Writing Data P_GOAL_POSITION_H gbpParameter[3] = 0x00; //Writing Data P_GOAL_SPEED_L gbpParameter[4] = 0x01; //Writing Data P_GOAL_SPEED_H bTxPacketLength = TxPacket(bID,INST_WRITE,5); bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE); TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength); TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);
TxDString("\r\n\n Example 7. Go 0x00 with Speed 0x40 -- Any Key to
Continue."); RxD8(); gbpParameter[0] = P_GOAL_POSITION_L; //Address of Firmware Version gbpParameter[1] = 0x00; //Writing Data P_GOAL_POSITION_L gbpParameter[2] = 0x00; //Writing Data P_GOAL_POSITION_H gbpParameter[3] = 0x40; //Writing Data P_GOAL_SPEED_L gbpParameter[4] = 0x00; //Writing Data P_GOAL_SPEED_H bTxPacketLength = TxPacket(bID,INST_WRITE,5); bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE); TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength); TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);
TxDString("\r\n\n Example 8. Go 0x3ff with Speed 0x3ff -- Any Key to
Continue."); RxD8(); gbpParameter[0] = P_GOAL_POSITION_L; //Address of Firmware Version gbpParameter[1] = 0xff; //Writing Data P_GOAL_POSITION_L gbpParameter[2] = 0x03; //Writing Data P_GOAL_POSITION_H gbpParameter[3] = 0xff; //Writing Data P_GOAL_SPEED_L gbpParameter[4] = 0x03; //Writing Data P_GOAL_SPEED_H bTxPacketLength = TxPacket(bID,INST_WRITE,5); bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE); TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength); TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);
TxDString("\r\n\n Example 9. Torque Off -- Any Key to Continue.");
RxD8(); gbpParameter[0] = P_TORQUE_ENABLE; //Address of LED gbpParameter[1] = 0; //Writing Data bTxPacketLength = TxPacket(bID,INST_WRITE,2); bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE); TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength); TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);
TxDString("\r\n\n End. Push reset button for repeat"); while(1); }
31
/* About Register and value of bits, vide Mega128 Data Sheet. */ void PortInitialize(void) { DDRA = DDRB = DDRC = DDRD = DDRE = DDRF = 0; //Set all port to
input direction first.
PORTB = PORTC = PORTD = PORTE = PORTF = PORTG = 0x00; //PortData
initialize to 0
cbi(SFIOR,2); //All Port Pull Up ready
//Set 5 LED port and RS485Direction port to output DDRB |= (BIT_LED_E1); DDRE |=
(BIT_RS485_DIRECTION|BIT_LED_M0|BIT_LED_M1|BIT_LED_M2|BIT_LED_E0);
//TurnOff LED LED_M0_OFF; LED_M1_OFF;LED_M2_OFF;LED_E0_OFF;LED_E1_OFF; } /* TxPacket() send data to RS485. TxPacket() needs 3 parameter; ID of Dynamixel, Instruction byte,
Length of parameters.
TxPacket() return length of Return packet from Dynamixel.
*/ byte TxPacket(byte bID, byte bInstruction, byte bParameterLength) { byte bCount,bCheckSum,bPacketLength;
gbpTxBuffer[0] = 0xff; gbpTxBuffer[1] = 0xff; gbpTxBuffer[2] = bID; gbpTxBuffer[3] = bParameterLength+2;
//Length(Paramter,Instruction,Checksum) gbpTxBuffer[4] = bInstruction; for(bCount = 0; bCount < bParameterLength; bCount++) { gbpTxBuffer[bCount+5] = gbpParameter[bCount]; } bCheckSum = 0; bPacketLength = bParameterLength+4+2; for(bCount = 2; bCount < bPacketLength-1; bCount++) //except
0xff,checksum { bCheckSum += gbpTxBuffer[bCount]; } gbpTxBuffer[bCount] = ~bCheckSum; //Writing Checksum with Bit
Inversion
RS485_TXD; for(bCount = 0; bCount < bPacketLength; bCount++) { sbi(UCSR0A,6);//SET_TXD0_FINISH; TxD80(gbpTxBuffer[bCount]); } while(!CHECK_TXD0_FINISH); //Wait until TXD Shift register empty RS485_RXD; return(bPacketLength); }
#define RX_WAIT_TIMEOUT 0xf000 #define RX_TIMEOUT_COUNT2 3000L #define RX_TIMEOUT_COUNT1 (RX_TIMEOUT_COUNT2*10L)
/* RxPacket() read data from buffer. RxPacket() need a Parameter; Total length of Return Packet. RxPacket() return Length of Return Packet. */
byte RxPacket(byte bRxPacketLength) { unsigned long ulCounter; byte bCount, bLength, bChecksum; byte bTimeout;
DX-Series
bTimeout = 0; for(bCount = 0; bCount < bRxPacketLength; bCount++) { ulCounter = 0; while(gbRxBufferReadPointer == gbRxBufferWritePointer) { if(ulCounter++ > RX_TIMEOUT_COUNT1) { bTimeout = 1; break; } } if(bTimeout) break; gbpRxBuffer[bCount] =
gbpRxInterruptBuffer[gbRxBufferReadPointer++]; } bLength = bCount; bChecksum = 0;
if(gbpTxBuffer[2] != BROADCASTING_ID) { if(bTimeout && bRxPacketLength != 255) { TxDString("\r\n [Error:RxD Timeout]"); CLEAR_BUFFER; }
if(bLength > 3) //checking is available. { if(gbpRxBuffer[0] != 0xff || gbpRxBuffer[1] != 0xff ) { TxDString("\r\n [Error:Wrong Header]"); CLEAR_BUFFER; return 0; } if(gbpRxBuffer[2] != gbpTxBuffer[2] ) { TxDString("\r\n [Error:TxID != RxID]"); CLEAR_BUFFER; return 0; } if(gbpRxBuffer[3] != bLength-4) { TxDString("\r\n [Error:Wrong Length]"); CLEAR_BUFFER; return 0; } for(bCount = 2; bCount < bLength; bCount++) bChecksum +=
gbpRxBuffer[bCount]; if(bChecksum != 0xff) { TxDString("\r\n [Error:Wrong CheckSum]"); CLEAR_BUFFER; return 0; } } } return bLength; }
/* PrintBuffer() print data in Hex code. PrintBuffer() needs two parameter; name of Pointer(gbpTxBuffer,
gbpRxBuffer) */ void PrintBuffer(byte *bpPrintBuffer, byte bLength) { byte bCount; for(bCount = 0; bCount < bLength; bCount++) { TxD8Hex(bpPrintBuffer[bCount]); TxD8(' '); } TxDString("(LEN:");TxD8Hex(bLength);TxD8(')'); }
/*
32
Print value of Baud Rate. */ void PrintBaudrate(void) { TxDString("\r\n
RS232:");TxD32Dec((16000000L/8L)/((long)UBRR1L+1L) ); TxDString(" BPS,");
TxDString(" RS485:");TxD32Dec((16000000L/8L)/((long)UBRR0L+1L) );
TxDString(" BPS");
}
/*Hardware Dependent Item*/ #define TXD1_READY bit_is_set(UCSR1A,5) //(UCSR1A_Bit5) #define TXD1_RESET #define TXD1_DATA (UDR1) #define RXD1_READY bit_is_set(UCSR1A,7) #define RXD1_RESET #define RXD1_DATA (UDR1)
#define TXD0_READY bit_is_set(UCSR0A,5) #define TXD0_RESET #define TXD0_DATA (UDR0) #define RXD0_READY bit_is_set(UCSR0A,7) #define RXD0_RESET #define RXD0_DATA (UDR0)
/* SerialInitialize() set Serial Port to initial state. Vide Mega128 Data sheet about Setting bit of register. SerialInitialize() needs port, Baud rate, Interrupt value.
*/ void SerialInitialize(byte bPort, byte bBaudrate, byte bInterrupt) { if(bPort == SERIAL_PORT0) { UBRR0H = 0; UBRR0L = bBaudrate; UCSR0A = 0x02; UCSR0B = 0x18; if(bInterrupt&RX_INTERRUPT) sbi(UCSR0B,7); // RxD interrupt enable UCSR0C = 0x06; UDR0 = 0xFF; sbi(UCSR0A,6);//SET_TXD0_FINISH; // Note. set 1, then 0 is read } else if(bPort == SERIAL_PORT1) { UBRR1H = 0; UBRR1L = bBaudrate; UCSR1A = 0x02; UCSR1B = 0x18; if(bInterrupt&RX_INTERRUPT) sbi(UCSR1B,7); // RxD interrupt enable UCSR1C = 0x06; UDR1 = 0xFF; sbi(UCSR1A,6);//SET_TXD1_FINISH; // Note. set 1, then 0 is read } }
/* TxD8Hex() print data seperatly. ex> 0x1a -> '1' 'a'. */ void TxD8Hex(byte bSentData) { byte bTmp;
bTmp =((byte)(bSentData>>4)&0x0f) + (byte)'0'; if(bTmp > '9') bTmp += 7; TxD8(bTmp); bTmp =(byte)(bSentData & 0x0f) + (byte)'0'; if(bTmp > '9') bTmp += 7; TxD8(bTmp); }
/* TxD80() send data to USART 0. */ void TxD80(byte bTxdData) { while(!TXD0_READY);
DX-Series
TXD0_DATA = bTxdData; }
/* TXD81() send data to USART 1. */ void TxD81(byte bTxdData) { while(!TXD1_READY); TXD1_DATA = bTxdData; }
/* TXD32Dex() change data to decimal number system */ void TxD32Dec(long lLong) { byte bCount, bPrinted; long lTmp,lDigit; bPrinted = 0; if(lLong < 0) { lLong = -lLong; TxD8('-'); } lDigit = 1000000000L; for(bCount = 0; bCount < 9; bCount++) { lTmp = (byte)(lLong/lDigit); if(lTmp) { TxD8(((byte)lTmp)+'0'); bPrinted = 1; } else if(bPrinted) TxD8(((byte)lTmp)+'0'); lLong -= ((long)lTmp)*lDigit; lDigit = lDigit/10; } lTmp = (byte)(lLong/lDigit); /*if(lTmp)*/ TxD8(((byte)lTmp)+'0'); }
/* TxDString() prints data in ACSII code.
*/ void TxDString(byte *bData) { while(*bData) { TxD8(*bData++); } } /* RxD81() read data from Port 1. RxD81() return Read data.
*/ byte RxD81(void) { while(!RXD1_READY); RXD1_RESET; return(RXD1_DATA); }
/* SIGNAL() UART0 Rx Interrupt - write data to buffer
*/ SIGNAL (SIG_UART0_RECV) { gbpRxInterruptBuffer[(gbRxBufferWritePointer++)] = RXD0_DATA; }
33
DX-Series
C Language Example : Dinamixel access with Am188ER CPU
#include <stdio.h> #include <stdlib.h> #include <conio.h> #include <dos.h> #include <mem.h>
#define MCS80 #include "..\..\base.h" #include "..\lib188es.c"
#define RS485_DIRECTION_BIT 0x2000 #define RS485_TXD (SET_PORT1(RS485_DIRECTION_BIT)) #define RS485_RXD (RESET_PORT1(RS485_DIRECTION_BIT))
#define BROADCASTING_ID 0xfe #define MEMORY_SPARE 10
#define ADDRESS_TORQUE_ENABLE 20 #define ADDRESS_OPERATING_MODE 19 #define ADDRESS_ID 3 #define ADDRESS_GOAL_POSITION 26
#define INST_PING 0x01 #define INST_READ 0x02 #define INST_WRITE 0x03 #define INST_SET_SCHEDULE 0x04 #define INST_DO_SCHEDULE 0x05 #define INST_RESET 0x06
#define DIGITAL_MODE 0
//Gloval variable number byte gbpInterruptRxBuffer[256+MEMORY_SPARE]; //485 RxD Data Buffer byte gbRxBufferReadPointer,gbRxBufferWritePointer; //Pointers for access the gbpInterruptRxBuffer
void static interrupt far Serial0Interrupt(void); void PrintBuffer(byte *bpPrintBuffer, byte bLength); byte TxPacket(byte *bpTxBuffer, byte bID, byte bInstruction, byte *bpParameter, byte bParameterLength); byte RxPacket(byte *bpRxBuffer);
void main(void)
{ byte bID,bPacketLength; byte bpTxBuffer[20+MEMORY_SPARE]; byte bpRxBuffer[256+MEMORY_SPARE]; byte bpParameter[256+MEMORY_SPARE];
CLI; //Disable Interrupt //PortInitialize(); InitPort(OUT, PDATA1, 0xe000); //Set Out(Port30,31:LED,Port29:485Direction) InitPort(IN, PDATA1, 0x0004); //Set In(Port2:Push SW) InitPort(NORMAL_USE, PDATA1, 0x00c0); // RS485_RXD; //Set 485 Direction Select Port to 0
//UartInitialize(); outpw(SP0BAUD,5); //.2MBPS = 16MHz/16/5 outpw(SP1BAUD,17); //57600 outpw(SP0STS,0); outpw(SP1STS,0);
//InterruptInitialize();
Definition area
CPU dependent Initialize
Major
Function
34
SetInterrupt(INUM_SERIAL0,Serial0Interrupt,INT_ENABLE|INT_RX, 7/*Priority*/);
//Memory Initialize gbRxBufferReadPointer = gbRxBufferWritePointer = 0; STI; //Interrupt Enable
/* * * Example For Driving Dynamixel DX-116 * */
TxDString("\r\n\n Dynamixel Driving Sample Program");
//Set ID to 3 bpParameter[0] = ADDRESS_ID; bpParameter[1] = 3; bPacketLength = TxPacket(bpTxBuffer, BROADCASTING_ID, INST_WRITE, bpParameter, 2/*Length of Parameter*/); bID = 3; TxDString("\r\n ->[Dynamixel]: "); PrintBuffer(bpTxBuffer,bPacketLength); bPacketLength = RxPacket(bpRxBuffer); TxDString("\r\n <-[Dynamixel]: "); PrintBuffer(bpRxBuffer,bPacketLength);
//Set Motor Torque Enable bpParameter[0] = ADDRESS_TORQUE_ENABLE; bpParameter[1] = 1; bPacketLength = TxPacket(bpTxBuffer, bID, INST_WRITE, bpParameter, 2/*Length of Parameter*/); TxDString("\r\n ->[Dynamixel]: "); PrintBuffer(bpTxBuffer,bPacketLength); bPacketLength = RxPacket(bpRxBuffer); TxDString("\r\n <-[Dynamixel]: "); PrintBuffer(bpRxBuffer,bPacketLength);
//Move to Position 0x0100 <-> 0x300
while(1) { bpParameter[0] = ADDRESS_GOAL_POSITION; bpParameter[1] = 0x00; bpParameter[2] = 0x01; bPacketLength = TxPacket(bpTxBuffer, bID, INST_WRITE, bpParameter, 3/*Length of Parameter*/); TxDString("\r\n ->[Dynamixel]: "); PrintBuffer(bpTxBuffer,bPacketLength); bPacketLength = RxPacket(bpRxBuffer); TxDString("\r\n <-[Dynamixel]: "); PrintBuffer(bpRxBuffer,bPacketLength); MiliSec(1000);
bpParameter[0] = ADDRESS_GOAL_POSITION; bpParameter[1] = 0x00; bpParameter[2] = 0x03; bPacketLength = TxPacket(bpTxBuffer, bID, INST_WRITE, bpParameter, 3/*Length of Parameter*/); TxDString("\r\n ->[Dynamixel]: "); PrintBuffer(bpTxBuffer,bPacketLength); bPacketLength = RxPacket(bpRxBuffer); TxDString("\r\n <-[Dynamixel]: "); PrintBuffer(bpRxBuffer,bPacketLength); MiliSec(1000); }
//while(1); }
void static interrupt far Serial0Interrupt(void) //Serial RxD Interrupt routine { STI; //Enable Interrupt gbpInterruptRxBuffer[gbRxBufferWritePointer++] = RXD_DATA0; //Reading Arrival Data outpw(EOI, 0x14); //End of Interrupt }
byte RxPacket(byte *bpRxBuffer) {
DX-Series
35
#define RX_TIMEOUT_COUNT2 10000L //10mSec #define RX_TIMEOUT_COUNT1 (RX_TIMEOUT_COUNT2*10L) //1Sec
unsigned long ulCounter; byte bCount;
ulCounter = 0; while(gbRxBufferReadPointer == gbRxBufferWritePointer) { if(ulCounter++ > RX_TIMEOUT_COUNT1) { return 0; } } bCount = 0; for(bCount = 0; bCount < 254; bCount++) //Maximum Data Length Limit : 255 { ulCounter = 0; while(gbRxBufferReadPointer == gbRxBufferWritePointer) { if(ulCounter++ > RX_TIMEOUT_COUNT2) { return bCount; } } bpRxBuffer[bCount] = gbpInterruptRxBuffer[gbRxBufferReadPointer++]; } return bCount; }
byte TxPacket(byte *bpTxBuffer, byte bID, byte bInstruction, byte *bpParameter, byte bParameterLength) { byte bCount,bCheckSum,bPacketLength;
bpTxBuffer[0] = 0xff; bpTxBuffer[1] = 0xff; bpTxBuffer[2] = bID; bpTxBuffer[3] = bParameterLength+2; //Length(Paramter,Instruction,Checksum) bpTxBuffer[4] = bInstruction; for(bCount = 0; bCount < bParameterLength; bCount++) { bpTxBuffer[bCount+5] = bpParameter[bCount]; } bCheckSum = 0; bPacketLength = bParameterLength+4+2; for(bCount = 2; bCount < bPacketLength-1; bCount++) //except 0xff,checksum { bCheckSum += bpTxBuffer[bCount]; } bpTxBuffer[bCount] = ~bCheckSum; //Writing Checksum with Bit Inversion
RS485_TXD; //Change 485 Direction to Transmission for(bCount = 0; bCount < bPacketLength; bCount++) { TxD80(bpTxBuffer[bCount]); } while(!TXD_FINISH0); //Wait until TXD Shift register empty RS485_RXD; return(bPacketLength); }
void PrintBuffer(byte *bpPrintBuffer, byte bLength) { byte bCount; for(bCount = 0; bCount < bLength; bCount++)
DX-Series
Should wait until last data bit transmission is completed. Note.: Shift register empty is differ from Tx Ready. Tx Ready just means you can load the data to CPU UART TxD Register. There can be several Tx Buffering registers as what kind of
36
{ TxD8Hex(bpPrintBuffer[bCount]); TxD8(' '); } }
DX-Series
Result
0xFE is BROADCAST_ID, so Dynamixel does not return status packet.(First 2 Instruction Packet)
Set ID to 3
Motor Torque Enable
37
Connector Company Name : Molex
Pin Number: 4
Model Number
Temperature range : -40°C to +105°C
Contact Insertion Force-max : 14.7N (3.30 lb)
Contact Retention Force-min : 14.7N (3.30 lb)
Female Connector
Male Connector
DX-Series
Molex Part Number Old Part Number
Male 22-03-5045 5267-04
Female 50-37-5043 5264-04
www.molex.com
or www.molex.co.jp for more detail information
Pin No.1
38
Dimension
Motor Curve(No reduction gear state)
DX-Series
39
DX-Series
Optional Frame Application Example
OF116H
OF116S
OF116B
Body to Body Mount
40
Full Option frame
DX-Series
The CM-2 Board
- A dedicated board designed for controlling Dynamixel actuators
- Available optional parts: Blue-tooth module, RS232 UART, and 6-button blue-tooth
remote controller
- Can be directly mounted on a multi-degrees of freedom robot.
41
Dynamixel Application Example
DX-Series
CYCLOID
42
Loading...