Riftek RF605-25/50, RF605 Series, RF605-45/100, RF605-65/250, RF605-105/500 User Manual

...
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Triangulation Laser Sensors, RF605 Series
Contents
1. Safety precautions ................................................................................................................ 4
2. Electromagnetic compatibility ............................................................................................... 4
3. Laser safety .......................................................................................................................... 4
4. General information .............................................................................................................. 4
5. Basic technical data.............................................................................................................. 4
6. Example of item designation when ordering ......................................................................... 5
7. Structure and operating principle .......................................................................................... 5
8. Dimensions and mounting .................................................................................................... 6
8.1. Overall and mounting dimensions ................................................................................. 6
8.2. Overall demands for mounting ................................................................ ...................... 7
9. Connection ........................................................................................................................... 7
9.1. Designation of connector contacts ................................................................................ 7
9.2. Cables .......................................................................................................................... 8
10. Configuration parameters ..................................................................................................... 8
10.1. Time limit for integration ................................................................................................ 8
10.2. Sampling mode ............................................................................................................. 9
10.3. Sampling period ............................................................................................................ 9
10.4. The point of zero ........................................................................................................... 9
10.5. Line AL operation mode .............................................................................................. 10
10.6. Time lock of the result ................................................................................................. 10
10.7. Method of results averaging ........................................................................................ 10
10.8. Number of averaged values/time of averaging ............................................................ 11
10.9. Factory parameters table ............................................................................................ 11
11. Description of RS232 and RS485 interfaces ....................................................................... 11
11.1. RS232 port ................................................................................................................. 11
11.2. RS485 port ................................................................................................................. 11
11.3. Modes of data transfer ................................................................................................ 11
11.4. Configuration parameters ................................................................ ........................... 11
11.4.1. Rate of data transfer through serial port .............................................................. 11
11.4.2. Net address ........................................................................................................ 12
11.4.3. Factory parameters table .................................................................................... 12
11.5. Interfacing protocol ..................................................................................................... 12
11.5.1. Serial data transmission format ........................................................................... 12
11.5.2. Communication sessions types ........................................................................... 12
11.5.3. Request .............................................................................................................. 12
11.5.4. Message ............................................................................................................. 12
11.5.5. Answer ................................................................................................................ 13
11.5.6. Data stream ........................................................................................................ 13
11.5.7. Request codes and list of parameters ................................................................. 13
12. Analog outputs ................................................................ ................................................... 13
12.1. Current output 4…20 mA ............................................................................................ 13
12.2. Voltage output ............................................................................................................ 14
12.3. Configuration parameters ................................................................ ........................... 14
12.3.1. Range of the analog output. ................................................................................ 14
12.3.2. Analog output operation mode. ........................................................................... 14
12.4. Factory parameters table ............................................................................................ 14
13. Request codes and list of parameters ................................ ................................................ 15
13.1. Request codes table ................................................................................................... 15
13.2. List of parameters ....................................................................................................... 15
13.3. Notes .......................................................................................................................... 16
13.4. Examples of communication sessions ........................................................................ 16
14. Parameterization program .................................................................................................. 18
14.1. Function ...................................................................................................................... 18
14.2. Program setup ............................................................................................................ 18
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Triangulation Laser Sensors, RF605 Series
14.3. Obtaining connection to sensor ................................................................................... 18
14.4. Checking of the sensor operability .............................................................................. 20
14.5. Display, gathering and scanning of data ..................................................................... 21
14.6. Setting and saving parameters of the sensor ............................................................. 21
14.6.1. Setting parameters .............................................................................................. 21
14.6.2. Saving parameters .............................................................................................. 22
14.6.3. Saving and writing a group of parameters ........................................................... 23
14.6.4. Recovery of default parameters .......................................................................... 23
15. RF60X-SDK. Function description ...................................................................................... 23
15.1. Connection to COM-port (RF60x_OpenPort) .............................................................. 23
15.2. Disconnection from COM-port (RF60x_ClosePort) ..................................................... 23
15.3. Device identification (RF60x_HelloCmd) ..................................................................... 24
15.4. Reading of parameters (RF60x_ReadParameter) ....................................................... 24
15.5. Saving current parameters in FLASH-memory (RF60x_FlushToFlash) ....................... 25
15.6. Restoration of default parameters from FLASH-memory (RF60x_RestoreFromFlash) 26
15.7. Latching of the current result (RF60x_LockResult) ..................................................... 26
15.8. Getting measurement result (RF60x_Measure) .......................................................... 26
15.9. Starting measurement stream (RF60X_StartStream) .................................................. 27
15.10. Stopping measurement stream (RF60x_StopStream) ............................................. 27
15.11. Getting measurement results from the stream (RF60X_GetStreamMeasure) ......... 27
15.12. Transmission of user data (RF60x_CustomCmd) ................................................... 28
15.13. Functions for operation of sensors connected to FTDI-based USB ......................... 28
16. Examples ........................................................................................................................... 29
17. Warranty policy ................................................................................................................... 30
18. Distributors ......................................................................................................................... 31
19. Annex 1. Sensors produced by RIFTEK ............................................................................. 32
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
RF605-
25/50
45/100
65/250
105/500
Base distance X, мм
25
45
65
105
Measurement range, mm
50
100
250
500
Linearity, %
±0.1 of the range
Triangulation Laser Sensors, RF605 Series
1. Safety precautions
Use supply voltage and interfaces indicated in the sensor specifications. In connection/disconnection of cables, the sensor power must be switched off. Do not use sensors in locations close to powerful light sources. To obtain stable results, wait about 20 minutes after sensor activation to
achieve uniform sensor warm-up.
2. Electromagnetic compatibility
The sensors have been developed for use in industry and meet the requirements
of the following standards:
EN 55022:2006 Information Technology Equipment. Radio disturbance cha-
racteristics. Limits and methods of measurement.
EN 61000-6-2:2005 Electromagnetic compatibility (EMC). Generic standards.
Immunity for industrial environments.
EN 61326-1:2006 Electrical Equipment for Measurement, Control, and Labor-
atory Use. EMC Requirements. General requirements.
3. Laser safety
The sensors make use of an c.w. 660 nm wavelength semiconductor laser. Max­imum output power is 1 mW. The sensors belong to the 2 laser safety class. The follow­ing warning label is placed on the laser body:
The following safety measures should be taken while operating the sensor:
Do not target laser beam to humans; Do not disassemble the sensor; Avoid staring into the laser beam.
4. General information
The sensors are intended for non-contact measuring and checking of position, displacement, dimensions, surface profile, deformation, vibrations, sorting and sensing of technological objects as well as for measuring levels of liquid and bulk materials.
The series includes 4 sensors with the measurement range, from 50 to 500 mm and the base distance from 25 to 105 mm. Custom-ordered configurations are possible with parameters different from those shown below.
5. Basic technical data
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Resolution, %
0.02 of the range
Temperature drift
0,02% of the range/0С
Max. sampling frequency, Hz
2000
Light source
red semiconductor laser, 660 nm wavelength
Output power, mW
0,95 mW
Laser safety Class
2 (IEC60825-1)
Output interface
digital
RS232 (max. 460,8 kbit/s) or RS485 (max. 460,8 kbit/s)
analog
4…20 mA ( 500 Ω load) or 0…10 V
Synchronization input
2,4 – 5 V (CMOS, TTL)
Logic output
programmed functions, NPN: 100 mA max; 40 V max for output
Power supply, V
24 (9 …36)
Power consumption, W
1,5..2
Environment resistance
Enclosure rating
IP67 ( for sensors with cable connector only)
Vibration
20g/10…1000Hz, 6 hours, for each of XYZ axes
Shock
30 g / 6 ms
Operation tempera­ture, °С
-10…+60
Permissible ambient light, lx
7000
Relative humidity
35-85%
Storage temperature, °С
-20…+70
Housing material
aluminum
Weight (without cable), gram
60
Description
Base distance (beginning of the range), mm
Measurement range, mm
Type of serial interface: RS232 - 232, or RS485 - 485
Attribute showing the presence of 4…20 mA ( I ) or 0…10V ( U )
Trigger input (input of synchronization) presence
Programmed signal, which has triple purpose. It can be used as
1) logical output (индикация наличия объекта в рабочем диапазоне);
2) line of mutual synchronization of two and more sensors
3) line of hardware zero setting
Cable gland - CG, or cable connector - CC (Binder 702, IP67)
Note 1: R option – robot cable
Cable length, m
Triangulation Laser Sensors, RF605 Series
6. Example of item designation when ordering
RF605-X/D-SERIAL-ANALOG-IN-AL- СС(R)-M
Example. RF605-105/500-232-I-IN-СG-3 –base distance – 105 mm, range – 500 mm, RS232 serial port,
4…20mA analog output, trigger input is available, cable gland, 3 m cable length.
7. Structure and operating principle
Operation of the sensors is based on the principle of optical triangulation (Figure
1.). Radiation of a semiconductor laser 1 is focused by a lens 2 onto an object 6. Radia­tion reflected by the object is collected by a lens 3 onto a linear CMOS array 4. A signal processor 5 calculates the distance to the object from the position of the light spot on the array 4.
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
WORKING RANGEBASE DISTANCE
Figure 2. Sensor with connector
Triangulation Laser Sensors, RF605 Series
Figure 1
8. Dimensions and mounting
8.1. Overall and mounting dimensions
Overall and mounting dimensions of the sensor are shown in Figure 2 and 3. Sensor package is made of anodized aluminum. The front panel of the package has output window: The package also contains mounting holes.
Sensors are equipped by cable gland or connector.
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Figure 3. Sensor with cable gland
Binder 702 Series, #09-0427-80-08
7
1
2
3
4
8
6
5
Triangulation Laser Sensors, RF605 Series
8.2. Overall demands for mounting
The sensor is positioned so that of object under control should place in this work­ing range. In addition, no foreign objects should be allowed to stay on the path of the in­cident and reflected laser radiation.
Where objects to be controlled have intricate shapes and textures, the incidence of mirror component of the reflected radiation to the receiving window should be mini­mized.
9. Connection
9.1. Designation of connector contacts
View from the side of connector contacts used in the sensor is shown in the fol­lowing figures.
Designation of contacts is given in the following tables:
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Model of the sensor
Pin number
Assignment
(232-U/I-IN-AL
1 2 3 4 5 6 7 8
IN
Gnd (power supply)
TXD
RXD
Gnd (common for signals)
AL U/I
Power supply U+
485-U/I-IN-AL
1 2 3 4 5 6 7 8
IN
Gnd (power supply)
DATA+
DATA-
Gnd (common for signals)
AL U/I
Power supply U+
Model of the sen-
sor
Pin number
Assignment
Wire color
232-U/I-IN-AL
free lead free lead
DB9
DB9 free lead free lead free lead
DB9
-
­2 3
-
-
­5
Power U+
Gnd (power supply)
TXD
RXD
U/I
IN
AL
Gnd (Общий для сигналов)
Red Brown Green
Yellow
Blue
White
Pink
Grey
485-U/I-IN-AL
free leads
Power U+
Gnd (power supply)
DATA+
DATA-
U/I
IN
AL
Gnd (common for signals)
Red Brown Green
Yellow
Blue
White
Pink
Grey
Triangulation Laser Sensors, RF605 Series
Connector
9.2. Cables
Designation of cable wires is given in the table below:
10. Configuration parameters
The nature of operation of the sensor depends on its configuration parameters (operation modes), which can be changed by transmission of commands through serial port RS232 or RS485. The basic parameters are as follows:
10.1. Time limit for integration
Intensity of the reflected radiation depends on the surface characteristic of ob­jects under control. Therefore, output power of the laser and the time of integration of radiation incident onto the CMOS-array are automatically adjusted to achieve maximum measurement accuracy.
Parameter "time limit for integration" specifies maximum allowable time of inte­gration. If the radiation intensity received by the sensor is so small that no reasonable result is obtained within the time of integration equal to the limiting value, the sensor transmits a zero value.
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Triangulation Laser Sensors, RF605 Series
Note 1. The measurement frequency depends on the integration time of the re-
ceiving array. Maximum frequency (2 kHz) is achieved for the integration time 106 μs (minimum possible integration time is 10 μs). As the integration time increases above 106 μs, the result updating time increases proportionally. Note 2. Increasing of this parameter expands the possibility of control of low­reflecting (diffuse component) surfaces; at the same time this leads to reduction of mea­surement frequency and increases the effects of exterior light (background) on the mea­surement accuracy. Factory setting of the limiting time of integration is 3200 us. Note 3. Decreasing of this parameter lets to increase measurement frequency, but can decrease measurement accuracy.
10.2. Sampling mode
This parameter specifies one of the two result sampling options in the case where the sensor works in the data stream mode:
Time Sampling; Trigger Sampling.
With Time Sampling selected, the sensor automatically transmits the measure­ment result via serial interface in accordance with selected time interval (sampling pe­riod).
With Trigger sampling is selected, the sensor transmits the measurement result when external synchronization input (IN input of the sensor) is switched and taking the division factor set into account.
10.3. Sampling period
If the Time Sampling mode is selected, the ‗sampling period‘ parameter deter­mines the time interval in which the sensor will automatically transmit the measurement result. The time interval value is set in increments of 0.01 ms. For example, for the pa­rameter value equal to 100, data are transmitted through bit-serial interface with a period of 0,01*100 = 1 ms.
If the Trigger Sampling mode is selected, the ‗sampling period‘ parameter de­termines the division factor for the external synchronization input. For example, for the parameter value equal to 100, data are transmitted through bit-serial interface when each 100th synchronizing pulse arrives at IN input of the sensor.
Note 1. It should be noted that the ‗sampling mode‘ and ‗sampling period‘ para-
meters control only the transmission of data. The sensor operation algorithm is so built that measurements are taken at a maximum possible rate determined by the integration time period, the measurement results is sent to buffer and stored therein until a new re­sult arrives. The above-mentioned parameters determine the method of the readout of the result form the buffer.
Note 2. If the bit-serial interface is used to receive the result, the time required
for data transmission at selected data transmission rate should be taken into account in the case where small sampling period intervals are used. If the transmission time ex­ceeds the sampling period, it is this time that will determine the data transmission rate.
10.4. The point of zero
This parameter sets a zero point of absolute system of coordinates in any point within the limits of a working range. You can set this point by corresponding command or by connecting AL input to the ground line (this input must preliminarily be set to mode 3). When the sensor is fabricated, the base distance is set with a certain uncertainty, and, if necessary, it is possible to define the point zero more accurately.
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Out of the range indication
Mutual synchronization
Hardware zero-set/
Hardware laser ON/OFF
+24VDC
AL
RF605
100mA max
+24VDC
AL
RF605
RF605
AL
IN
IN
RF605
AL
Figure 4.1
Figure 4.2
Figure 4.3
Triangulation Laser Sensors, RF605 Series
10.5. Line AL operation mode
This line can work in one of the four modes defined by the configuration parame-
ter value:
mode 1: indication of run-out beyond the range ("0" – object is beyond the
range (beyond the selected window in the range), "1" – object is within the
range (within the selected window in the range); mode 2: mutual synchronization of two or more sensors; mode 3: hardware zero-set line; mode 4: hardware laser switch OFF/ONN
In the "Indication of run-out beyond the range" mode, logical ―1‖ occurs on the AL line if an object under control is located within the working range of the sensor (within the selected window in the range), and logical "0" occurs if the object is absent in the working range (within the selected window). For example, in such mode this line can be used for controlling an actuator (a relay) which is activated when the object is present (absent) within the selected range (Fig.4.1).
The "Mutual synchronization mode makes it possible to synchronize measure­ment times of two and more sensors. It is convenient to use this mode to control one ob­ject with several sensors, e.g., in the measurement of thickness. On the hardware level, synchronization of the sensor is effected by combining AL lines (Fig.4.2.).
In the "Hardware zero-set" mode connection AL input to the ground potential sets beginning of coordinates into current point (Fig.4.3.). In the "Hardware laser switch OFF/ONN' mode connection AL input to the ground potential switch laser ON/OFF (Fig.4.3)
10.6. Time lock of the result
If the sensor does not find out object or if the authentic result cannot be received, zero value is transferred. The given parameter sets time during which is transferred the last authentic result instead of zero value.
10.7. Method of results averaging
This parameter defines one of the two methods of averaging of measurement re­sults implemented directly in the sensor:
Averaging over a number of results
lated. time interval chosen.
Time averaging
When averaging over a number of results is selected, sliding average is calcu-
When time averaging is selected, the results obtained are averaged over the
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Parameter
Value
Time limit for integration
3200 (3,2 ms)
Sampling mode
time
Sampling period
5000 (5 ms)
Point of zero
Beginning of the range
Line AL operation mode
1
Time lock of the result
5 ms
Method of results averaging
Over a number of results
Number of averaged values
1
Triangulation Laser Sensors, RF605 Series
10.8. Number of averaged values/time of averaging
This parameter specifies the number of source results to be averaged for deriv­ing the output value or time of the averaging .
The use of averaging makes it possible to reduce the output noise and increase the sensor resolution.
Averaging over a number of results does not affect the data update in the sensor output buffer.
In case of time averaging, data in the output buffer are updated at a rate equal to
the averaging period.
Note. Maximum parameters value is 127.
10.9. Factory parameters table
The sensors are supplied with the parameters shown in the table below:
The parameters are stored in nonvolatile memory of the sensor. Correct chang­ing of the parameters is carried out by using the parameterization program supplied with the sensor or a user program.
11. Description of RS232 and RS485 interfaces
11.1. RS232 port
The RS232 port ensures a ―point-to-point‖ connection and allows the sensor to be connected directly to RS232 port of a computer or controller.
11.2. RS485 port
In accordance with the protocol accepted and hardware capability, the RS485 port makes it possible to connect up to 127 sensors to one data collection unit by a common bus circuit.
11.3. Modes of data transfer
Through these serial interfaces measurement data can be obtained by two me­thods:
by single requests (inquiries); by automatic data streaming (stream).
11.4. Configuration parameters
11.4.1. Rate of data transfer through serial port
This parameter defines the rate of data transmission via the bit-serial interface in increments of 2400 bit/s. For example, the parameter value equal to 4 gives the trans­mission rate of 2400*4 = 9600 bit/s.
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Parameter
Value
Baud rate
9600 bit/s
Net address
1
Mode of data transfer
request
1 start-bit
8 data bits
1 odd bit
1 stop-bit
Byte 0
Byte 1
[ Bites 2…N ]
INC0(7:0)
INC1(7:0)
MSG
0
ADR(6:0)
1 0 0 0 COD(3:0)
Triangulation Laser Sensors, RF605 Series
Note. The maximum transmission rate for RS232/RS485 interface is 460,8 kbit/s.
11.4.2. Net address
This parameter defines the network address of the sensor equipped with RS485 interface.
Note. Network data communications protocol assumes the presence of ‗master‘ in the net, which can be a computer or other information-gathering device, and from 1 to
127 ‗slaves‘ (RF60x Series sensors) which support the protocol.
Each ‗slave‘ is assigned a unique network identification code – a device address.
The address is used to form requests or inquiries all over the net. Each slave receive inquiries containing its unique address as well as ‗0‘ address which is broadcast-oriented and can be used for formation of generic commands, for example, for simultaneous latching of values of all sensors and for working with only one sensor (with both RS232 port and RS485 port).
11.4.3. Factory parameters table
11.5. Interfacing protocol
11.5.1. Serial data transmission format
Data message has the following format:
11.5.2. Communication sessions types
The communications protocol is formed by communication sessions, which are only initiated by the ‗master‘ (PC, controller). There are two kinds of sessions with such structures:
1) ―request‖, [―message‖] — [―answer‖], square brackets include optional elements
2) request‖ — data stream‖ — [―request‖].
11.5.3. Request
Request‖ (INC) — is a two-byte message, which fully controls communication session. The ‗request‘ message is the only one of all messages in a session where most significant bit is set at 0, therefore, it serves to synchronize the beginning of the session. In addition, it contains the device address (ADR), code of request (COD) and, optional, the message [MSG].
"Request" format:
11.5.4. Message
"Message‘‘ is data burst that can be transmitted by ‗master‘ in the course of the
session.
All messages with a "message" burst contain 1 in the most significant digit. Data in a message are transferred in tetrads. When byte is transmitted, lower tetrad goes first,
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
DAT(7:0)
Byte 0
Byte 1
1 0 0 0 DAT(3:0)
1 0 0 0 DAT(7:4)
DAT(7:0)
Byte 0
Byte 1
1
SB
CNT(1:0)
DAT(3:0)
1
SB
CNT(1:0)
DAT(7:4)
Triangulation Laser Sensors, RF605 Series
and then follows higher tetrad. When multi-byte values are transferred, the transmission begins with lower byte.
The following is the format of two ‗message‘ data bursts for transmission of byte:
11.5.5. Answer
"Answer‘‘ is data burst that can be transmitted by ‗slave‘ in the course of the ses­sion.
All messages with a message burst contain 1 in the most significant digit. Data in a message are transferred in tetrads. When byte is transmitted, lower tetrad goes first, and then follows higher tetrad. When multi-byte values are transferred, the transmission begins with lower byte.
When ‗answer‘ is transmitted, the message contains:
SB-bit, characterizes the updating of the result. If SB is equal to "1" this
means that the sensor has updated the measurement result in the buffer, if SB is equal to "0" - then non-updated result has been transmitted (see. Note 1, p.10.3.). SB=0 when parameters transmit;
two additional bits of cyclic binary batch counter (CNT). Bit values in the
batch counter are identical for all sendings of one batch. The value of batch counter is incremented by the sending of each burst and is used for formation (assembly) of batches or bursts as well as for control of batch losses in re­ceiving data streams.
The following is the format of two ‗answer‘ data bursts for transmission of byte:
11.5.6. Data stream
‗Data stream‘ is an infinite sequence of data bursts or batches transmitted from
‗slave‘ to ‗master‘, which can be interrupted by a new request. In transmission of ‗data
stream‘ one of the ‗slaves‘ fully holds data transfer channel, therefore, when ‗master‘
produces any new request sent to any address, data streaming process is stopped. Also, there is a special request to stop data streaming.
11.5.7. Request codes and list of parameters
Request codes and list of parameters are presented in Chapter 13.
12. Analog outputs
Changing of the signal at analog output occurs in synchronism with the changing
of the result transferred through the bit-serial interface
12.1. Current output 4…20 mA
The connection scheme is shown in the figure. The value of load resistor should not be higher than 500 Ом. To reduce noise, it is recommended to install RC filter be­fore the measuring instrument. The filter capacitor value is indicated for maximum sam­pling frequency of the sensor (9,4 kHz) and this value increases in proportion to the fre­quency reduction.
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
RF605
Blue
Grey
500 Om
10 kOm
5 nF
Voltmeter
RF605
Blue
Grey
10 kOm
5 nF
Voltmeter
Range of the analog output
Measuring range of sensor
Analog output operation mode
Window
Triangulation Laser Sensors, RF605 Series
12.2. Voltage output
The connection scheme is shown in the figure. To reduce noise, it is recom­mended to install RC filter before the measuring instrument. The filter capacitor value is indicated for maximum sampling frequency of the sensor (9,4 kHz) and this value in­creases in proportion to the frequency reduction.
12.3. Configuration parameters
12.3.1. Range of the analog output.
While working with the analog output, resolution can be increased by using the
‗Window in the operating range‘ function which makes it possible to select a window of
required size and position in the operating range of the sensor within which the whole range of analog output signal will be scaled.
If the beginning of the range of the analog signal is set at a higher value than the end value of the range, this will change the direction of rise of the analog signal.
Note. If the beginning of the range of the analog signal is set at a higher value
than the end value of the range, this will change the direction of rise of the analog signal.
12.3.2. Analog output operation mode.
When using ‗window in the operating range‘ function, this mode defines the ana­log output operation mode.
Analog output can be:
in the window mode or in the full mode.
"Window mode". The entire range of the analog output is scaled within the se­lected window. Outside the window, the analog output is "0".
"Full mode". The entire range of the analog output is scaled within the selected window (operating range). Outside the selected window, the whole range of the analog output is automatically scaled onto the whole operating range of the sensor (sensitivity range).
12.4. Factory parameters table
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Request
code
Description
Message
(size in bytes)
Answer
(size in bytes)
01h
Device identification
device type (1) firmware release (1) serial number (2) base distance (2) range (2)
02h
Reading of parameter
- code of parameter (1)
- value of parameter (1)
03h
Writing of parameter
- code of parameter (1)
- value of parameter (1)
04h
Storing current parameters to FLASH-memory
- constant AAh (1)
- constant AAh (1)
04h
Recovery of parameter default values in FLASH-memory
- constant 69h (1)
- constant 69h (1) 05h
Latching of current result
06h
Inquiring of result
- result (2)
07h
Inquiring of a stream of results
- stream of results (2)
08h
Stop data streaming
Code of
parameter
Name
Values
00h
Sensor ON
1 — laser is ON, measurements are taken (default state); 0 — laser is OFF, sensor in power save mode
01h
Analog output ON
1/0 analog output is ON/OFF; if a sensor has no analog output, this
bit will remain in 0 despite all attempts of writing 1 into it.
02h
Averaging, sampling and AL output control
x,x,M,C,M1,M0,R,S – control byte which determines averaging mode –
bit M, CAN interface mode - bit C, logical output mode - bit M1,
analog output mode - bit R, and sampling mode - bit S; bites x – do not use; bit M: 0 — quantity sampling mode (by default); 1 — time sampling mode bit C: 0 – request mode of CAN interface (by default); 1 – synchronization mode of CAN interface. bit M1 and M0: 00 – out of the range indication (by default): 01 – mutual synchronization mode. 10 – hardware zero set mode 11 – laser turn OFF/ON bit R: 0 – window mode (default); 1 – full range. bit S: 0 – time sampling (default) 1 – trigger sampling.
03h
Network address
1…127 (default — 1)
04h
Rate of data transfer through serial port
1…192, (default — 4) specifies data transfer rate in increments of 2400 baud; e.g., 4 means the rate of 4 2400=9600baud. (NOTE: max baud rate = 460800)
05h
Reserved
06h
Number of averaged values
1…128, (default — 1)
07h
Reserved
08h
Lower byte of the sampling period
1) 10…65535, (default 500)
Triangulation Laser Sensors, RF605 Series
13. Request codes and list of parameters
13.1. Request codes table
13.2. List of parameters
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
09h
Higher byte of the sampling period
the time interval in increments of 0.01 ms with which sensor au-
tomatically communicates of results on streaming request (priority
of sampling = 0);
2) 1…65535, (default 500) divider ratio of trigger input with which sensor automatically com-
municates of result on streaming request (priority of sampling = 1)
0Ah
Lower byte of maximum integration time
2…65535, (default — 200) specifies the limiting time of integration by
CMOS-array in increments of 1mks
0Bh
Higher byte of maximum integration time
0Ch
Lower byte for the beginning of analog output range
0…4000h, (default 0) specifies a point within the absolute range of
transducer where the analog output has a minimum value
0Dh
Higher byte for the beginning of analog output range
0Eh
Lower byte for the end of analog output range
0…4000h, (default — 4000h) ) specifies a point within the absolute
range of transducer where the analog output has a maximum
value
0Fh
Higher byte for the end of analog output range
10h
Time lock of result
0…255, specifies of time interval in increments of 5 mс
11…16h
Reserved
17h
Lower zero point
0…4000h, (default — 0) specifies beginning of absolute coordinate
system.
18h
Higher byte zero point
Byte 0
Byte 1
[ Bytes 2…N ]
INC0(7:0)
INC1(7:0)
MSG
0
ADR(6:0)
1 0 0 0 COD(3:0)
Triangulation Laser Sensors, RF605 Series
13.3. Notes
All values are given in binary form. Base distance and range are given in millimeters. The value of the result transmitted by a sensor (D) is so normalized that
4000h (16384) corresponds to a full range of the sensor (S in mm), therefore, the result in millimeters is obtained by the following formula:
On special request (05h), the current result can be latched in the output buffer
where it will be stored unchanged up to the moment of arrival of request for data transfer. This request can be sent simultaneously to all sensors in the net in the broadcast mode in order to synchronize data pickup from all sensors.
When working with the parameters, it should be borne in mind that when
power is OFF the parameter values are stored in nonvolatile FLASH-memory of the sensor. When power is ON, the parameter values are read out to RAM of the sensor. In order to retain these changes for the next power-up state, a special command for saving current parameter values in the FLASH-memory (04h) must be run.
Parameters with the size of more than one byte should be saved starting
from the high-order byte and finishing with the low-order byte.
X=D*S/4000h (mm) (1).
13.4. Examples of communication sessions
1) Request "Device identification". Condition: device address 1, request code – 01h, device type 61, firmware release 88 (58h), serial number 0402 (0192h), base distance 80mm (0050h), measure­ment range 50мм (0032h), packet number 1.
The request format:
Request from Master"
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Byte 0
Byte 1
INC0(7:0)
INC1(7:0)
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1
01h
81h
DAT(7:0)
Byte 0
Byte 1
1 0 CNT(1:0)
DAT(3:0)
1 0 CNT(1:0)
DAT(7:4)
DAT(7:0)
Byte 0
Byte 1
1 0 0 1 0 0 0 1 1 0 0 1 0 1 1
0
91h
96h
DAT(7:0)
Byte 0
Byte 1
1 0 0 1 1 0 0 0 1 0 0 1 0 1 0
1
98h
95h
DAT(7:0)
Byte 0
Byte 1
1 0 0 1 0 0 1 0 1 0 0 1 1 0 0
1
92h
96h
DAT(7:0)
Byte 0
Byte 1
1 0 0 1 0 0 0 1 1 0 0 1 0 0 0
0
91h
90h
DAT(7:0)
Byte 0
Byte 1
1 0 0 1 0 0 0 0 1 0 0 1 0 1 0
1
90h
95h
DAT(7:0)
Byte 0
Byte 1
1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0
90h
90h
DAT(7:0)
Byte 0
Byte 1
1 0 0 1 0 0 1 0 1 0 0 1 0 0 1
1
92h
93h
DAT(7:0)
Byte 0
Byte 1
1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0
90h
90h
Triangulation Laser Sensors, RF605 Series
The following is the format of two ‗answer‘ data bursts for transmission of byte DAT(7:0):
Answer of Slave: Device type:
Firmware release
Serial Number
Base distance
Measurement range
Note: as bust number =1, then CNT=1
2) Request "Reading of parameter".
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Triangulation Laser Sensors, RF605 Series
Condition: device address 1, request code – 02h, code of parameter 05h, value of parameter 04h, packet number 2. Request (―Master‖) — 01h;82h; Message (―Master‖) — 85h, 80h; Answer (―Slave‖) — A4h, A0h
3) Request "Inquiring of result". Condition: device address 1, result 02A5h, packet number 3. Request (―Master‖) — 01h;86h; Answer (―Slave‖) — B5h, BAh, B2h, B0h Measured distance (mm) (for example, range of the sensor= 50 mm):
X=677(02A5h)*50/16384 = 2.066 mm
4) Request "writing sampling regime (trigger sampling)". Condition: device address – 1, request code – 03h, code of parameter – 02h, value of parameter – 01h. Request ("Master") – 01h, 83h; Message ("Master") – 82h, 80h, 81h, 80h;
5) Request: "writing the divider ration" Condition: divider ration – 1234=3039h, device address – 1, request code – 03h, code of parameter – 09h (first or higher byte), value of parameter – 30h Request ("Master") – 01h, 83h Message ("Master") – 89h, 80h, 80h, 83h and for lower byte, code of parameter – 08h, value of parameter – 39h Request ("Master") – 01h, 83h Message ("Master") – 88h, 80h, 89h, 83h
14. Parameterization program
14.1. Function
The RF60Х-SP-2.0 software (www.riftek.com/resource/files/rf60x-sp-2-0.zip) is
intended for:
1) Testing and demonstration of work of RF605 series sensors;
2) Setting of the sensor parameters;
3) Reception and gathering of the sensor data signals
14.2. Program setup
Start file RF60Xsetup.exe and follow instructions of the installation wizard
14.3. Obtaining connection to sensor
Once the program is started, the pop-up window emerges:
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Triangulation Laser Sensors, RF605 Series
To obtain connection, go to RS232/RS485 PC settings in the Interface confi-
guration parameters panel:
select СОМ-port whereto the sensor is connected (logical port if the sensor is
connected via USB-adapter) select transmission rate (Baud rate) at which the sensor will work select the sensor network address, if necessary press the Device identification button.
If the selected parameters correspond to the parameters of the sensor interface,
the program will identify the sensor, read and display its configuration parameters:
If connection is not established, a prompt will appear asking to make automatic
search of the sensor:
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Triangulation Laser Sensors, RF605 Series
To start search, press the Yes button
set the range of transmission rate search in the Baud rate line set the range of network address search in the Net address line press the Search button
The program will perform automatic search of the sensor by searching over
possible rates, network addresses and COM-ports of PC.
14.4. Checking of the sensor operability
Once the sensor is successfully identified, check its operability as follows.
place an object inside the sensor working range by pressing the Request button, obtain the result of one measurement on the
(Current result) indicator. The 06h request type is realized (see par. 13.1). pressing the Stream button will switch the sensor to the data stream trans-
mission mode. The 07h request type is realized (see par. 13.1). by shifting the object, observe changes in the readings. the status line in the lower part of the window will show current data transmis-
sion and refreshing rates.
Pressing of the Stop stream button will stop data transmission
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Triangulation Laser Sensors, RF605 Series
14.5. Display, gathering and scanning of data
Measurement result is displayed in digital form and in the form of oscillogram
and is stored in the PC memory.
the number of points displayed along the X co-ordinate can be set in the
Number of points in buffer window; scaling method along the Y co-ordinate can be set by the Auto scaling func-
tion; turn-on/turn-off of the scaling grid is effected by using the Grid function; the number of displayed digits after decimal point can be set in the Set win-
dow; to save received data to a file, select (tick) Write data file;
Note: the number of points displayed on the graph depends on PC speed and becomes smaller in proportion to the data transmission rate. After the stream is stopped by using the Stop Stream button, the graph will display all data re­ceived.
to work with the image, click the right mouse key on the graph to call the cor-
responding menu:
to move the image, just press the mouse wheel to zoom, rotate the mouse wheel to save data to a file, press the Export button. The program will offer saving
of data in two possible formats: internal and Exel. to scan or look at previously saved data, press the Import button and select
the required file.
14.6. Setting and saving parameters of the sensor
14.6.1. Setting parameters
Parameterization of the sensor is effected through RS232 or RS485 interfaces. Setting of parameters for all interfaces can be done using the respective tabs on the In- terfaces configuration parameters panel:
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Triangulation Laser Sensors, RF605 Series
Setting of all configuration parameters of the sensor is possible with the help of the respective panel (Sensor configuration parameters):
14.6.2. Saving parameters
after setting one or several parameters as required, it is necessary to write
them into the sensor memory, this is done by executing File>Write parame-
ters.
Note: a special key is offered for fast writing of parameters of the
RS232/RS485 interfaces;
perform testing of the sensor operation with new parameters; to store new parameters in nonvolatile memory, execute File>Write to flash.
Now, with any subsequent activation of the sensor it will work in the configu­ration you have selected.
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
BOOL RF60x_OpenPort( LPCSTR
lpPort_Name,
DWORD
dwSpeed,
HANDLE *
lpHandle
);
BOOL RF60x_ClosePort( HANDLE
hHandle
);
Triangulation Laser Sensors, RF605 Series
14.6.3. Saving and writing a group of parameters
Parameters of the sensor can be saved to a file. This is done by selecting
File>Write parameters set and saving the file in the window offered.
To call a group of parameters from a file, select File>Sensor parameters sets…, and select the file required. Note: these functions are convenient to use if it is necessary to write identical parameters to several sensors.
14.6.4. Recovery of default parameters
To restore the sensor parameters set by default, use File>Restore defaults.
15. RF60X-SDK. Function description
Laser sensor is supplied together with SDK (www.riftek.com/resource/files/rf60x-
sdk_eng.zip) consisting of:
- dynamic library RF60x.dll,
- file for static linking of DLL to project RF60x.lib,
- definition file RF60x.h. The SDK allows user to develop his own software products without going into de-
tails of the sensor communications protocol.
15.1. Connection to COM-port (RF60x_OpenPort)
The function RF60x_OpenPort opens COM-port with specified symbolic name,
fills in the pointer to the device descriptor and returns the operation result.
Parameters:
COM-port name specification see in MSDN, function CreateFile; rameter is identical to field BaudRate in DCB structure described in MSDN;
Returned value:
If COM-port fails to be opened and adjusted, the function will return FALSE, otherwise if COM-port was opened and adjusted successfully the function will return TRUE. More detailed information about returned errors can be obtained using API function GetLastEr­ror described in MSDN.
lpPort_Name
name of COM-port (e.g., ―COM1:‖), full syntax for
dwSpeed -
lpHandle -
operation speed through COM-port. The pa-
pointer to the device descriptor;
15.2. Disconnection from COM-port (RF60x_ClosePort)
The function RF60x_ClosePort closes COM-port and returns the operation
result:
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
BOOL RF60x_HelloCmd (
HANDLE
hCOM
,
BYTE
bAddress,
LPRF60xHELLOANSWER
lprfHelloAnswer
);
typedef struct _RF60x_HELLO_ANSWER_ { BYTE bDeviceType; BYTE bcDeviceModificaton; WORD wDeviceSerial; WORD wDeviceMaxDistance; WORD wDeviceRange;
BOOL RF60x_ReadParameter (
HANDLE
hCOM
,
BYTE
bAddress,
WORD
wParameter
,
DWORD *
lpdwValue
);
Triangulation Laser Sensors, RF605 Series
Parameters:
hHandle
descriptor of the device obtained from func-
tion RF60x_OpenPort or CreateFile;
Returned value:
If COM-port fails to be closed, the function will return FALSE, otherwise if COM-port was closed successfully, the function will return TRUE.
15.3. Device identification (RF60x_HelloCmd)
The function RF60x_HelloCmd makes identification of RF60x according to net
address and fills RF60xHELLOANSWER structure:
There:
bDeviceType – one byte value, which shows type of the device
(for RF60x this value is equal 60) (type BYTE);
bDeviceModificaton – one byte value, which shows firmware release
(type BYTE);
wDeviceSerial – two byte value, which contains serial number of
the device (type WORD);
wDeviceMaxDistance – two byte value, which contains the base distance
of RF60Х sensor (type WORD);
wDeviceRange – two byte value, which contains the measurement
range of RF60Х sensor (tpe WORD).
The function RF60x_HelloCmd:
Parameters:
hCOM
descriptor of the device obtained from function
RF60x_OpenPort or CreateFile;
bAddress ­lprfHelloAnswer -
device address; pointer to the RF60xHELLOANSWER structure.
Returned value:
If the device does not respond to identification request, the function returns FALSE, oth­erwise the function returns TRUE and fills variable RF60xHELLOANSWER structure
15.4. Reading of parameters (RF60x_ReadParameter)
The function RF60x_ReadParameter reads internal parameters of the sensor and re­turns the current value to the parameters address:
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Parameter
Description
RF60x_PARAMETER_POWER_STATE
Power status of sensor
RF60x_PARAMETER_ANALOG_OUT
Connection of analog output
RF60x_PARAMETER_SAMPLE_AND_SYNC
Control of sampling and synchronization
RF60x_PARAMETER_NETWORK_ADDRESS
Network address
RF60x_PARAMETER_BAUDRATE
Data transmission rate through serial port
RF60x_PARAMETER_AVERAGE_COUNT
Number of averaged values
RF60x_PARAMETER_SAMPLING_PERIOD
Sampling period
RF60x_PARAMETER_ACCUMULATION_TIME
Maximum accumulation time
RF60x_PARAMETER_BEGIN_ANALOG_RANGE
Beginning of analog output range
RF60x_PARAMETER_END_ANALOG_RANGE
End of analog output range
RF60x_PARAMETER_RESULT_DELAY_TIME
Result delay time
RF60x_PARAMETER_ZERO_POINT_VALUE
Zero point value
BOOL RF60x_FlushToFlash( HANDLE
hCOM,
BYTE
bAddress
);
Triangulation Laser Sensors, RF605 Series
Parameters:
RF60x_OpenPort, or CreateFile;
Table 1
hCOM
bAddress ­wParameter -
address of the device; number of parameter, see Table 1,
descriptor of the device obtained from function
lpdwValue -
meter value will be saved.
Returned value:
If the device does not respond to parameter reading request, the function returns FALSE, otherwise the function returns TRUE and fills variable
pointer to WORD-type variable where current para-
lpdwValue
.
15.5. Saving current parameters in FLASH-memory (RF60x_FlushToFlash)
Function RF60x_FlushToFlash saves all parameters in the FLASH-memory of the sen­sor:
Parameters:
RF60x_OpenPort or CreateFile;
Returned value:
If the device does not respond to request to save all parameters in the FLASH-memory, the function returns FALSE, otherwise, if record confirm is obtained from the sensor, the function returns TRUE.
hCOM
bAddress -
descriptor of the device obtained from function address of the device.
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
BOOL RF60x_LockResult( HANDLE
hCOM,
BYTE
bAddress
);
BOOL RF60x_RestoreFromFlash( HANDLE
hCOM,
BYTE
bAddress
);
BOOL RF60x_Measure( HANDLE
hCOM,
BYTE
bAddress,
USHORT *
lpusValue
);
Triangulation Laser Sensors, RF605 Series
15.6. Restoration of default parameters from FLASH-memory (RF60x_RestoreFromFlash)
The function RF60x_RestoreFromFlash restores all parameter values in the FLASH by default:
Parameters:
RF60x_OpenPort or CreateFile;
Returned value:
If the device does not respond to request to restore all parameters in the FLASH­memory, the function returns FALSE, otherwise, if restore confirm is obtained from the sensor, the function returns TRUE.
hCOM
bAddress -
descriptor of the device obtained from function address of the device.
15.7. Latching of the current result (RF60x_LockResult)
The function RF60x_LockResult latches current measurement result till next calling of the function RF60x_LockResult:
Parameters:
RF60x_OpenPort or CreateFile;
Returned value:
If the device does not respond to result-latching request, the function returns FALSE, otherwise the function returns TRUE.
hCOM
bAddress -
descriptor of the device obtained from function address of the device.
15.8. Getting measurement result (RF60x_Measure)
The function RF60x_Measure reads current measurement value from the sensor. The result value (D) transmitted by the sensor is normalized in such a way as the value of 4000h (16384) corresponds to full range of the sensor (S в мм), the result in mm is ob­tained by the following formula: X=D*S/4000h (mm) :
Parameters:
RF60x_OpenPort or CreateFile;
the result D.
hCOM
bAddress -
lpusValue -
descriptor of the device obtained from function address of the device.
pointer to USHORT/WORD-type variable containing
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
BOOL RF60x_StartStream( HANDLE
hCOM,
BYTE
bAddress
);
BOOL RF60x_StartStream( HANDLE
hCOM,
BYTE
bAddress
);
BOOL RF60x_GetStreamMeasure( HANDLE
hCOM,
USHORT *
lpusValue
);
Triangulation Laser Sensors, RF605 Series
Returned value:
If the device does not respond to result request, the function returns FALSE, otherwise, if the restore confirm is obtained from the sensor, the function returns TRUE.
15.9. Starting measurement stream (RF60X_StartStream)
The function RF60x_StartStream switches RF605 sensor to the mode where conti­nuous transmission of measurement results takes place:
Parameters:
RF60x_OpenPort or CreateFile;
Returned value:
If the device fails to be switched to continuous measurement transmission mode, the function returns FALSE, otherwise the function returns TRUE.
hCOM
bAddress -
descriptor of the device obtained from function address of the device.
15.10. Stopping measurement stream (RF60x_StopStream)
The function RF60x_StopStream switches the sensor from continuous measurement transmission mode to the ―request-response‖ mode:
Parameters:
RF60x_OpenPort or CreateFile;
Returned value:
If the device fails to be stopped in the continuous data transmission mode, the function returns FALSE, otherwise the function returns TRUE
hCOM
bAddress -
descriptor of the device obtained from function address of the device.
15.11. Getting measurement results from the stream (RF60X_GetStreamMeasure)
The function RF60x_GetStreamMeasure reads data from the COM-port input buffer which are received from RF605 sensor after successful execution of the RF60xX_StartStream function. The data arrive in the buffer at a rate specified in the RF605 sensor parameters. Since depth of the input buffer is limited to 1024 bytes, it is preferable to read data with periodicity equal to that specified in the sensor parameters. The parameter RF60x_Measure function.
lpusValue
is identical to the parameter
lpusValue
in the
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
BOOL RF60x_CustomCmd( HANDLE
hCOM,
char *
pcInData,
DWORD
dwInSize,
char *
pcOutData,
DWORD *
pdwOutSize
);
Triangulation Laser Sensors, RF605 Series
Parameters:
RF60x_OpenPort or CreateFile; the result D.
Returned value:
If there are no data in the buffer, the function returns FALSE, otherwise the function re­turns TRUE and fills the value
hCOM
lpusValue -
lpusValue.
descriptor of the device obtained from function
pointer to USHORT/WORD-type variable containing
15.12. Transmission of user data (RF60x_CustomCmd)
The function RF60x_CustomCmd is used for transmission and/or reception of data from the sensor.
Parameters:
RF60x_OpenPort or CreateFile; RF605 sensor. If no data need to be transmitted,
Size
mitted, this parameter must be 0. will be saved. If no data need to be received, received. If no data need to be received, this parameter must be NULL. After successful
receipt of data, the amount of read bytes will be recorded to the variable where this pa­rameter points to.
Returned value:
If transmission or reception of bytes fails, the function returns FALSE, otherwise the function returns TRUE
hCOM
pcInData -
must be 0.
dwInSize -
pcOutData -
pdwOutSize -
descriptor of the device obtained from function
pointer to data array which will be transmitted to
pcInData
size of transmitted data. If no data need to be trans-
pointer to data array where data received from sensor
pcOutData
pointer to the variable containing size of data to be
must be NULL and
must be NULL.
dwIn-
15.13. Functions for operation of sensors connected to FTDI-based USB
To work with FTDI-based USB devices, this library supports functions operating through D2XX library of FTDI. Performance of the functions is identical to that of the functions used for operation through serial port, the main difference being the presence of FTDI_
prefix in the function name, for example: ―getting result‖ function for serial port is
RF60x_Measure while for FTDI USB devices it is RF60x_FTDI_Measure.
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
HANDLE hRF60x = INVALID_HANDLE_VALUE; DWORD
dwValue;
USHORT usMeasured; RF60XHELLOANSWER hlans;
// Clear structure RF60xHELLOANSWER memset(&hlans, 0x00, sizeof(RF60xHELLOANSWER));
// Open COM-port if (!RF60X_OpenPort("COM2:", CBR_9600, &hRF60X)
return (FALSE);
// Interrogate device if (RF60X_HelloCmd( hRF60x, 1, &hlans )) {
///////////////////////////////////////////////// // // // After successful execution of RF60x_HelloCmd//
// the structure hlans contains information // // about RF605 sensor that responded to request// // // /////////////////////////////////////////////////
//Read parameter: Laser brightness
RF60x_ReadParameter(
hRF60x, 1, RF60x_PARAMETER_LASER_BRIGHT, &dwValue
);
/* dwValue contains laser brightness values */
//Obtain distance values from RF605 sensor RF60x_Measure( hRF60x, 1, &usMeasured );
/* usMeasured contains measurement result */
}
RF60x_ClosePort( hRF60x );
Triangulation Laser Sensors, RF605 Series
16. Examples
EXAMPLE 1
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
HANDLE hRF60x = INVALID_HANDLE_VALUE; USHORT usMeasured; RF60xHELLOANSWER hlans;
memset(&hlans, 0x00, sizeof(RF60xHELLOANSWER));
RF60x_OpenPort("COM2:", CBR_9600, &hRF60x);
if (RF60x_HelloCmd( hRF60x, 1, &hlans )) {
printf("Dev modify\t: %d\r\nDev type\t: %d\r\nDev max dist\t:
%d\r\nDev range\t: %d\r\nDev serial\t: %d\r\n", hlans.bDeviceModificaton, hlans.bDeviceType, hlans.wDeviceMaxDistance, hlans.wDeviceRange, hlans.wDeviceSerial );
if (!RF60x_WriteParameter( hRF60x, 1, RF60x_PARAMETER_SAMPLING_PERIOD, 500 )) return (-1);
if (!RF60x_StartStream(hRF60x, 1)) return (-1);
RF60x_GetStreamMeasure(hRF60x, &usMeasured); printf("Measure \t: %d\r\n", usMeasured);
RF60x_GetStreamMeasure(hRF60x, &usMeasured); printf("Measure \t: %d\r\n", usMeasured);
RF60x_StopStream(hRF60x, 1); } else printf("rs232 error!\r\n");
RF60x_ClosePort( hRF60x );
for (int i=0;i<100;i++) { // Result latching
RF60x_LockResult(hRF60x, 1);
// Result receiving RF60x_Measure( hRF60x, 1, &usMeasured);
printf("Measure-l \t: %d\r\n", usMeasured); }
Triangulation Laser Sensors, RF605 Series
EXAMPLE 2 (how to get a stream of result)
EXAMPLE 3 (how to get a result with latching)
You can find examples of programs for LabView here:
www.riftek.com/resource/files/rf60x_labview_example.zip
You can find examples of programs for Visal Basic 6 here
www.riftek.com/resource/files/rf60x-vb.zip
17. Warranty policy
Warranty assurance for the Laser triangulation sensors RF605 - 24 months from
the date of putting in operation; warranty shelf-life - 12 months
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
BENELUX
ALTHERIS bv
Scheveningseweg 15
2517 KS The Hague
The Netherlands
Tel: 0031-(0)70 392 44 21
Fax: 0031-(0)70 364 42 49
sales@altheris.nl
www.altheris.com
CHINA
Zhenshangyou Technologies
Co.,Ltd.
Rm 2205-2210, Zhongyou Hotel
1110 Nanshan Road, Nanshan District 518054 Shenzhen, China Tel: 86)755-26528100/8011/8012
Fax: (86)755-26528210/26435640
info@51sensors.com
www.51sensors.com
CZECH REPUBLIC
RMT Ltd.
Zahradni 224
739 21 Paskov
Tel: +420 558640211
Fax: +420 558640218
lubomir.kolar@rmt.cz
www.rmt.cz
INDONESIA
PT. Dhaya Baswara Saniyasa
Sentra Niaga Puri Indah Blok T6. 41
Kembangan, Jakarta 11610
Tel: 021 5830 4517
Fax: 021 5830 4518
management@ptdbs.co.id
ITALY
FAE s.r.l.
Via Tertulliano, 41
20137 Milano Tel: +39-02-55187133 Fax: +39-02-55187399
fae@fae.it www.fae.it
GERMANY
Disynet GmbH
Westwall 12
D-41379 Brueggen
Tel: +49(2157)8799-0
Fax: +49(2157)8799-22
disynet@sensoren.de
www.sensoren.de
LITHUANIA
JSC "Comexim"
Serbentu. 222, LT -5419 Siauliai
Tel./Fax:+370 41553487
comexim@siauliai.aiva.lt
www.komeksimas.lt.
MALAYSIA
OptoCom Equiptech (M) Sdn
H-49-2, Jalan 5, Cosmoplex Indus-
trial Park. Bandar Baru Salak Tinggi,
Sepang
Tel: 603-8706 6806/6809
optocom@tm.net.my
www.optocom.com.my
POLAND
P.U.T. GRAW Sp. z o.o.
ul. Karola Miarki 12, skr.6.
44-100 Gliwice,
Poland
tel./fax: +48 (32) 231 70 91
info@graw.com
www.graw.com
PORTUGAL
UltraSens.
Tel.: (0351) 239700373 Fax: (0351) 239700301
geral@ultrasens.com
www.ultrasens.com
RUSSIA
Sensorika-M LLC
Dmitrovskoye shosse 64, к.4
127474, Moscow, Russia
Tel.: 487-0363 Fax: 487-7460
info@sensorika.com
www.sensorika.com
RUSSIA
Intellect-Optic
Ekaterinburg Mira str 32 - 120.
tel/fax 343 2227565 tel/fax 343 2227370
pesterev@d-test.ru
www.inoptic.ru
SOUTH KOREA
Santec Co
322, Wongok-dong Danwon-gu Ansan-
si Kyunggi-do,
425-850 Tel : +82-31-493-1162 Fax: +82-31-493-1164
santec@naver.com
www.santec.co.kr
SPAIN
Iberfluid Instruments
C/ Cardenal Reig, 12
08028 BARCELONA
Tel. 93 447 10 65
Fax. 93 334 05 24
myct@iberfluid.com
www.iberfluid.com
SWEDEN
BLConsult
Rävbergsvägen 31, SE -713 30
NORA Contactperson: Berndt Lundström Directnumber: +46 (0) 587 153 20
Tel.: +46 (0) 70 663 19 25
info@blconsult.se
www.blconsult.se
SWITZERLAND
ID&T Gmbh
Gewerbestrasse 12/a
8132 Egg (Zurich) Tel.: +41 (0)44 994 92 32 Fax: +41 (0)44 994 92 34
info@idtlaser.com
www.idtlaser.com
UKRAINE
KODA
Frunze st 22,
61002, Harkov, Ukraine
Tel/fax.: +38 057 714 26 54
mail@koda.com.ua
www.koda.com.ua
United Kingdom, Ireland
Ixthus Instrumentation
The Stables, Williams' Barns
Tiffield road, Towcester, Northents,
UK Tel.: 01327 353437 Fax: 01327 353564
info@ixthus.co.uk
www.ixthus.co.uk
Triangulation Laser Sensors, RF605 Series
18. Distributors
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Laser triangulation sensors. RF60x Series
dimensions and displacements measurement; 2 mm to 2,5 m ranges; ±1 um accuracy; 180 kHz sampling frequency; sensors on the base of BLUE and IR lasers; High Speed sensors (HS);
The series includes four lines of models:
RF603 - universal sensors with 2 to 1250 mm oper-
ating ranges;
RF603HS - high speed sensors; RF600 - large-base and long range sensors; RF605 - compact value sensors.
Laser 2D scanners. RF620HS (DHS)
2D/3D Measurements; 5 mm to 1500 mm ranges; 0,05% of F.S. linearity; 1000 profiles/s sampling rate; scanners on the base of BLUE and IR lasers;
Optical micrometers. RF65x Series
diameter, gaps and displacements measurement; 6 mm to 60 mm ranges; ±0.5 um accuracy; 1000 Hz sampling rate;
The series includes two lines of models:
RF651 - direct through beam micrometers with 25
and 59 mm ranges, and accuracy ±5 µm; RF656 – high precision through beam micrometers
with telecentric lens, 5 and 25 mm. ranges and
accuracy ±0,5 µm;
Triangulation Laser Sensors, RF605 Series
19. Annex 1. Sensors produced by RIFTEK
RF605 [Revision 2.0] 10th January 2011 valid for sensors with serial numbers 11000 and higher
Absolute linear encoders. RF25x Series
dimensions and displacements measurement; innovative technology of absolute measure-
ment;
3 to 55 mm ranges; 0,1 um resolution;
The series include two models:
RF251 – sensors for hard industrial environments; RF256 – sensors with a built-in display option for la-
boratory environments.
All details about measurement sensors and instruments are on our website
www.riftek.com .
Triangulation Laser Sensors, RF605 Series
Loading...