RICOH R5322N Technical data

R5322N SERIES
120mA 2ch LDO REGULATORS
NO.EA-077-0606
OUTLINE
The R5322N Series are voltage regulator ICs with high output voltage accuracy, low supply current, low dropout, and high ripple rejection by CMOS process. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors for setting Output Voltage, a current limit circuit, and a chip enable circuit.
These ICs perform with low dropout voltage due to built-in transistor with low ON resistance, and a chip enable function and prolong the battery life of each system. The line transient response and load transient response of the R5322N Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.
The output voltage of these ICs is internally fixed with high accuracy. Since the package for these ICs is SOT-23-6W package, and include 2ch LDO regulators each, high density mounting of the ICs on boards is possible.
FEATURES
Ultra-Low Supply Current.............................................. Typ. 75µA (VR1, VR2)
Standby Current ............................................................Typ. 0.1µA (VR1, VR2)
Output Voltage .............................................................. 1.5V to 4.0V
Low Dropout Voltage.....................................................Typ. 0.15V (I
High Ripple Rejection ...................................................Typ. 75dB (f=1kHz)
High Output Voltage Accuracy ...................................... ±2.0%
Low Temperature-Drift Coefficient of Output Voltage....Typ. ±100ppm/°C
Excellent Line Regulation .............................................Typ.0.05%/V
Small Packages ..........................................................SOT-23-6W
Built-in chip enable circuit (A/B: active high)
Built-in fold-back protection circuit ................................ Typ. 40mA (Current at short mode)
OUT=100mA ,VOUT=3.0V)
APPLICATIONS
Power source for cellular phones such as GSM, CDMA and various kinds of PCS.
Power source for electrical appliances such as cameras, VCRs and camcorders.
Power source for battery-powered equipment.
1
R5322N
BLOCK DIAGRAMS
CE1
1
R5322NxxxA
6
V
OUT1
CE1
DD
V
CE2
1
2
3
Error Amp.
Vref
Current Limit
Error Amp.
Vref
Current Limit
R5322NxxxB
R1_1
R2_1
5
GND
R1_2
R2_2
VOUT2
4
6
OUT1
V
R1_2
R1_1
R2_1
5
4
GND
V
OUT2
VDD
CE2
2
3
Error Amp.
Vref
Error Amp.
Vref
Current Limit
R2_2
Current Limit
2
SELECTION GUIDE
The output voltage, mask option, and the taping type for the ICs can be selected at the user’s request.
The selection can be made with designating the part number as shown below;
R5322Nxxxx-xx-x ←Part Number
a b c d
Code Contents
Setting combination of 2ch Output Voltage (V
a
b
c
d
Serial Number for Voltage Setting, Stepwise setting with a step of 0.1V in the range of
1.5V to 4.0V is possible for each channel.
Designation of Mask Option : A Version: without auto discharge function at OFF state. B Version: with auto discharge function at OFF state.
Designation of Taping Type : Ex. TR (refer to Taping Specifications; TR type is the standard direction.)
Designation of Composition of pin plating.
-F : Lead free plating
OUT) :
R5322N
3
R5322N
PIN CONFIGURATION
SOT-23-6W
OUT1
V
(mark side)
564
GND V
OUT2
CE1 V
123
DD
CE2
PIN DESCRIPTIONS
SOT-23-6W
Pin No Symbol Pin Description
1 CE1 Chip Enable Pin 1
2 VDD Input Pin
3 CE2 Chip Enable Pin 2
4 VOUT2 Output Pin 2
5 GND Ground Pin
6 VOUT1 Output Pin 1
ABSOLUTE MAXIMUM RATINGS
Symbol Item Rating Unit
VIN Input Voltage 6.5 V
4
VCE Input Voltage (CE Pin)
VOUT Output Voltage
0.3 to VIN + 0.3
0.3 to VIN + 0.3
IOUT1 Output Current 1 130 mA
IOUT2 Output Current 2 130 mA
PD Power Dissipation (SOT-23-6W) *
Topt Operating Temperature Range
Tstg Storage Temperature Range
Note1
430 mW
40 to 85 °C
55 to 125 °C
Note1: For Power Dissipation please refer to PACKAGE INFORMATION to be described.
V
V
R5322N
<
<
<
<
<
<
<
<
<
<
<
ELECTRICAL CHARACTERISTICS
R5322NxxxA/B
Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
IN=Set VOUT+1V,
VOUT Output voltage
V 1mA
IOUT
30mA
×0.98
×1.02
V
IOUT Output Current
VOUT/IOUT
Load regulation
VDIF Dropout Voltage
ISS Supply Current
Istandby Supply Current (Standby)
VOUT/VIN
Line regulation
RR Ripple Rejection
IN−VOUT=1.0V
V
V
IN=Set VOUT+1V,
IOUT
1mA
120mA
Refer to the ELECTRICAL CHARACTERISTICS
by OUTPUT VOLTAGE
IN=Set VOUT+1V
V
IN=VCE=Set VOUT+1V
V
Set V
OUT+0.5V
I
OUT=30mA
(In case that V
2.2V
f
=1kHz,Ripple 0.5Vp-p,
V
VIN
IN=Set VOUT+1V,IOUT=30mA
OUT
6.0))
VIN
1.6,
6.0V
VIN Input Voltage 2.2
VOUT/
Topt
Ilim Short Current Limit
Output Voltage Temperature Coefficient
OUT=30mA
I
40°C
OUT=0V
V
Topt
85°C
RPD CE Pull-down Resistance 1.5 4.0 16.0
120 mA
12 40 mV
75 150
0.1 1.0
µA µA
0.05 0.20 %/V
75 dB
±100
6.0 V
ppm
/
°C
40 mA
M
VCEH CE Input Voltage “H” 1.5 VIN V
VCEL CE Input Voltage “L” 0.0 0.3 V
en Output Noise
RLOW
Low Output Nch Tr. ON Resistance (of B version)
BW=10Hz to 100kHz
VCE=0V
Electrical Characteristics by Output Voltage
Output Voltage
VOUT (V)
<
1.5V
1.7V
1.9V
2.1V
2.8V
VOUT < 1.6V 0.36 0.70
= <
VOUT < 1.8V 0.30 0.50
= <
VOUT < 2.0V 0.28 0.45
= <
VOUT < 2.7V 0.24 0.40
= <
VOUT < 4.0V
=
Condition Typ. Max.
OUT = 120mA
I
30
70
Dropout Voltage VDIF(V)
0.18 0.30
µVrms
5
R5322N
TYPICAL APPLIATION
IN
(External Components) Output Capacitor; Tantalum Type
C1
3
CE2
R5322N
Series
DD
2
V
1
CE1
OUT2
V
GND
OUT1
V
4
C
5
6
OUT2
3
OUT1
2
C
6
=
=
TEST CIRCUIT
R5322N
CE2 V
3
R5322N
2
VDD
Series
GND
OUT2
4
C3
V
OUT2
OUT2
I
V
5
SS
I
CE2 V
3
R5322N
2
VDD
Series
OUT2
GND
4
C3
5
A
C1
CE1 V
1
OUT1
6
C2
V
OUT1
OUT1
I
C1
CE1 V
1
OUT1
6
V
1
C
Tantal 1.0µF
=
2
3
C
C
Tantal 2.2µF
=
=
1
C
=
2
3
C
C
=
Fig.1 Standard test Circuit Fig.2 Supply Current Test Circuit
Pulse
Generator
PG
CE2 V
3
R5322N
2
VDD
CE1 V
1
Series
GND
OUT2
OUT1
CE2 V
3
2
R5322N
Series
VDD
4
C3
OUT2
I
5
CE1 V
6
C2
I
OUT1
C1
1
OUT2
GND
OUT1
4
C3
5
OUT2b
I
6
OUT1b
I
C2
C2
1.0µF
2.2µF
=
OUT2a
I
I
OUT1a
1
1.0µF
C
2
3
C
C
2.2µF
=
=
=
2
3
C
C
2.2µF
Fig.3 Ripple Rejection, Line Transient Response Fig.4 Load Transient Response Test Circuit Test Circuit
7
R5322N
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current
1.5V (VR1) 1.5V (VR2)
1.6
1.4
1.2
1.0
0.8
0.6
IN=1.8V
V
VIN=3.5V
VIN=2.0V
VIN=2.5V
0.4
Output V oltage VOUT(V)
0.2
0.0
0.00 0.10 Output Current IOUT(A)
0.300.20
2.8V (VR1) 2.8V (VR2)
3.0
1.6
1.4
(V)
1.2
OUT
1.0
0.8
0.6
0.4
Output V oltage V
0.2
0.0
0.00 0.10 0.150.05
3.0
IN
=1.8V
V
VIN=3.5V
Output Current I
OUT
(A)
VIN=2.0V
VIN=2.5V
0.300.20 0.25
IN
=3.1V
(V)
OUT
2.5
2.0
V
IN
=3.1V
VIN=3.3V
(V)
OUT
2.5
2.0
VIN=4.8V
1.5
1.0
0.5
Output Voltage V
0.0
0.00 0.10 0.150.05 Output Current I
VIN=3.5V
OUT
(A)
0.300.20 0.25
1.5
1.0
0.5
Output Voltage V
0.0
0.00 0.10 0.150.05
V
VIN=3.3V
VIN=4.8V
VIN=3.5V
Output Current I
4.0V (VR1) 4.0V (VR2)
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
Output V oltage VOUT(V)
0.5
0.0
0.00 0.10 0.150.05
V
IN=4.3V
VIN=4.5V
VIN=6.0V
Output Current I
VIN=5.0V
OUT(A)
0.300.20 0.25
4.5
4.0
(V)
3.5
OUT
3.0
2.5
2.0
1.5
1.0
Output Voltage V
0.5
0.0
0.00 0.10 0.150.05
IN
=4.3V
V
VIN=4.5V
VIN=6.0V
Output Current I
OUT
(A)
VIN=5.0V
OUT
(A)
0.300.20 0.25
0.300.20 0.25
8
2) Output Voltage vs. Input Voltage
1.5V (VR1) 1.5V (VR2)
1.6
1.6
R5322N
1.5
(V)
OUT
1.4
1.3 I
OUT
=1mA
1.2
1.1
Output Voltage V
1.0
1342
Input Voltage VIN(V)
I I
OUT OUT
=30mA =50mA
65
1.5
(V)
OUT
1.4
1.3
1.2
1.1
Output Voltage V
1.0 1342
Input Voltage VIN(V)
2.8V (VR1) 2.8V (VR2)
2.9
2.8
(V)
2.7
OUT
2.6
2.5
2.4
2.3
2.2
Output Voltage V
2.1
2.0 1342
Input Voltage VIN(V)
I I I
OUT OUT OUT
=1mA =30mA =50mA
65
2.9
2.8
(V)
2.7
OUT
2.6
2.5
2.4
2.3
2.2
Output Voltage V
2.1
2.0 1342
Input Voltage VIN(V)
4.0V (VR1) 4.0V (VR2)
4.2
4.2
I I I
I I I
OUT OUT OUT
OUT OUT OUT
=1mA =30mA =50mA
65
=1mA =30mA =50mA
65
4.0
(V)
OUT
3.8
3.6 I
OUT
3.4
3.2
Output Voltage V
3.0
1342
Input Voltage VIN(V)
I I
OUT OUT
=1mA =30mA =50mA
65
4.0
(V)
OUT
3.8
3.6
3.4
3.2
Output Voltage V
3.0 1342
Input Voltage VIN(V)
I I I
OUT OUT OUT
=1mA =30mA =50mA
65
9
R5322N
3) Dropout Voltage vs. Temperature
1.5V (VR1) 1.5V (VR2)
1.00
0.80
(V)
DIF
0.60
Topt=85°C 25°C
-40°C
(V)
DIF
1.00
0.80
0.60
Topt=85°C 25°C
-40°C
0.40
0.20
Dropout V oltage V
0.00 0406020
Output Current I
OUT
(mA)
12010080
0.40
0.20
Dropout V oltage V
0.00 0406020
Output Current I
2.8V (VR1) 2.8V (VR2)
0.40
0.35
(V)
0.30
DIF
Topt=85°C 25°C
-40°C
0.25
0.20
0.15
0.10
Dropout V oltage V
0.05
0.00 0406020
Output Current I
OUT
(mA)
12010080
0.40
0.35
(V)
0.30
DIF
0.25
0.20
0.15
0.10
Dropout V oltage V
0.05
0.00
Topt=85°C 25°C
-40°C
0406020
Output Current I
4.0V (VR1) 4.0V (VR2)
0.40
0.35
(V)
0.30
DIF
Topt=85°C 25°C
-40°C
0.25
0.20
0.15
0.10
Dropout V oltage V
0.05
0.00 0406020
Output Current I
OUT
(mA)
12010080
0.40
0.35
(V)
0.30
DIF
0.25
0.20
0.15
0.10
Dropout V oltage V
0.05
0.00
Topt=85°C 25°C
-40°C
0406020
Output Current I
OUT
OUT
OUT
(mA)
(mA)
(mA)
12010080
100 12080
12010080
10
4) Output Voltage vs. Temperature
1.5V (VR1) 1.5V (VR2)
V
IN
=2.5V I
OUT
1.54
1.53
(V)
1.52
OUT
1.51
1.50
1.49
1.48
Output Voltage V
1.47
1.46
-50 0 25-25 Temperature Topt(°C)
=30mA
7550
100
1.54
1.53
(V)
1.52
OUT
1.51
1.50
1.49
1.48
Output V oltage V
1.47
1.46
-50 0 25-25 T emper ature Topt(°C)
V
2.8V (VR1) 2.8V (VR2)
2.86
V
IN
=3.8V I
OUT
=30mA
2.86
V
IN
=2.5V I
IN
=3.8V I
OUT
7550
OUT
=30mA
=30mA
R5322N
100
2.84
(V)
OUT
2.82
2.80
2.78
2.76
Output Voltage V
2.74
-50 0 25-25 Temperature Topt(°C)
100
7550
2.84
(V)
OUT
2.82
2.80
2.78
2.76
Output Voltage V
2.74
-50 0 25-25 Temperature Topt(°C)
4.0V (VR1) 4.0V (VR2)
V
IN
=5.0V I
OUT
4.08
4.06
(V)
4.04
OUT
4.02
4.00
3.98
3.96
Output Voltage V
3.94
3.92
-50 0 25-25 Temperature Topt(°C)
=30mA
7550
100
4.08
4.06
(V)
4.04
OUT
4.02
4.00
3.98
3.96
Output Voltage V
3.94
3.92
-50 0 25-25 Temperature Topt(°C)
V
IN
=5.0V I
7550
OUT
7550
100
=30mA
100
11
R5322N
5) Supply Current vs. Input Voltage
1.5V 2.8V
100
100
80
(µA)
SS
60
40
20
Supply Current I
0
0231
Input V oltage VIN(V)
VR1 VR2
4
65
80
(µA)
SS
60
40
20
Supply Current I
0
0231
4
Input V oltage VIN(V)
VR1 VR2
65
4.0V
100
80
(µA)
SS
60
40
20
Supply Current I
0
0231
Input V oltage VIN(V)
VR1 VR2
4
65
6) Supply Current vs. Temperature
1.5V (VR1) 1.5V (VR2)
IN=2.5V
100
V
IN
=2.5V
100
V
12
80
(µA)
SS
60
40
20
Supply Current I
0
-50 0
50
Temperature Topt(°C)
100
80
60
40
20
Supply Current ISS(µA)
0
-50 0 Temperature Topt(°C)
50
100
2.8V (VR1) 2.8V (VR2)
V
IN
100
=3.8V
100
R5322N
IN
=3.8V
V
(µA)
SS
Supply Current I
80
60
40
20
0
-50 0 25-25 Temperature Topt(°C)
1007550
80
(µA)
SS
60
40
20
Supply Current I
0
-50 0 25-25 Temperature Topt(°C)
1007550
4.0V (VR1) 4.0V (VR2)
IN
(µA)
SS
Supply Current I
100
80
60
40
20
0
-50 0 25-25 Temperature Topt(°C)
V
=5.0V
100
80
(µA)
SS
60
40
20
Supply Current I
1007550
0
-50 0 25-25 Temperature Topt(°C)
V
IN
=5.0V
1007550
7) Dropout Voltage vs. Set Output Voltage
VR1 VR2
0.70
0.60
(V)
DIF
0.50
0.40
0.30
0.20
Dropout V oltage V
0.10
I
OUT
=10mA 30mA 50mA 120mA
0.70
0.60
(V)
DIF
0.50
0.40
0.30
0.20
Dropout V oltage V
0.10
I
OUT
=10mA 30mA 50mA 120mA
0.00
1.0 2.0 Output V oltage V
OUT
(V)
4.03.0
0.00
1.0 2.0 Output V oltage V
OUT
(V)
4.03.0
13
R5322N
8) Ripple Rejection vs. Frequency
1.5V (VR1) 1.5V (VR2)
IN
=2.5V+0.5Vp-p
V
C
OUT
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
0
0.1 1
=tantal 1.0µF T opt=25°C
Frequency f(kHz)
I I I
OUT OUT OUT
=1mA =30mA =50mA
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
10010
0
0.1 1
1.5V (VR1) 1.5V (VR2)
VIN=2.5V+0.5Vp-p
C
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
0
0.1 1
OUT=tantal 2.2µF T opt=25°C
OUT=1mA
I I
OUT=30mA
I
OUT=50mA
Frequency f(kHz)
10010
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
0
0.1 1
2.8V (VR1) 2.8V (VR2)
VIN=3.8V+0.5Vp-p
C
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
0
0.1 1
OUT=tantal 1.0µF T opt=25°C
OUT=1mA
I I
OUT=30mA
I
OUT=50mA
Frequency f(kHz)
10010
90 80
70 60
50 40 30 20
Ripple Rejection RR(dB)
10
0
0.1 1
C
OUT=tantal 1.0µF T opt=25°C
Frequency f(kHz)
C
OUT=tantal 2.2µF T opt=25°C
Frequency f(kHz)
C
OUT=tantal 1.0µF T opt=25°C
Frequency f(kHz)
VIN=2.5V+0.5Vp-p
OUT=1mA
I I
OUT=30mA
I
OUT=50mA
10010
VIN=2.5V+0.5Vp-p
I
OUT=1mA
I
OUT=30mA
I
OUT=50mA
10010
IN=3.8V+0.5Vp-p
V
I
OUT=1mA
I
OUT=30mA
I
OUT=50mA
10
100
14
2.8V (VR1) 2.8V (VR2)
V
IN=3.8V+0.5Vp-p
C
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
0
0.1 1
OUT=tantal 2.2µF T opt=25°C
OUT=1mA
I I
OUT=30mA
I
OUT=50mA
Frequency f(kHz)
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
10010
0
0.1 1
C
OUT=tantal 2.2µF T opt=25°C
Frequency f(kHz)
4.0V (VR1) 4.0V (VR2)
IN=5.0V+0.5Vp-p
V
C
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
0
0.1 1
C
OUT=tantal 1.0µF T opt=25°C
OUT=1mA
I I
OUT=30mA
I
OUT=50mA
Frequency f(kHz)
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
0
10010
0.1 1
OUT=tantal 1.0µF T opt=25°C
Frequency f(kHz)
4.0V (VR1) 4.0V (VR2)
IN=5.0V+0.5Vp-p
V
C
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
0
0.1 1
C
OUT=tantal 2.2µF T opt=25°C
OUT=1mA
I I
OUT=30mA
I
OUT=50mA
Frequency f(kHz)
90 80 70
60 50 40 30 20
Ripple Rejection RR(dB)
10
0
10010
0.1 1
OUT=tantal 2.2µF T opt=25°C
Frequency f(kHz)
R5322N
IN=3.8V+0.5Vp-p
V
OUT=1mA
I I
OUT=30mA
I
OUT=50mA
V
IN=5.0V+0.5Vp-p
OUT=1mA
I I
OUT=30mA
I
OUT=50mA
IN=5.0V+0.5Vp-p
V
OUT=1mA
I I
OUT=30mA
I
OUT=50mA
10010
10010
10010
15
R5322N
9) Ripple Rejection vs. Input Voltage (DC bias)
2.8V (VR1) 2.8V (VR2)
OUT
=tantal 2.2µF
C
I
OUT
100
=1mA
100
OUT
=tantal 2.2µF
C
I
OUT
=1mA
80
60
40
f=1kHz
80
60
40
f=10kHz
20
Ripple Rejection RR(dB)
0
2.9 3.0 Input V oltage VIN(V)
f=100kHz
3.33.1 3.2
20
Ripple Rejection RR(dB)
0
2.9 3.0 Input V oltage VIN(V)
2.8V (VR1) 2.8V (VR2)
C
OUT=tantal 2.2µF
I
100
80
60
40
OUT=30mA
f=1kHz
100
80
60
40
f=10kHz
20
Ripple Rejection RR(dB)
0
2.9 3.0 Input V oltage VIN(V)
f=100kHz
3.33.1 3.2
20
Ripple Rejection RR(dB)
0
2.9 3.0 Input V oltage VIN(V)
2.8V (VR1) 2.8V (VR2)
C
OUT
=tantal 2.2µF
I
OUT
100
=50mA
100
f=1kHz f=10kHz f=100kHz
C
OUT=tantal 2.2µF
I
OUT=30mA
f=1kHz f=10kHz f=100kHz
C
OUT
=tantal 2.2µF
I
OUT
=50mA
3.33.1 3.2
3.33.1 3.2
16
80
60
40
20
Ripple Rejection RR(dB)
0
2.9 3.0 Input V oltage VIN(V)
f=1kHz f=10kHz f=100kHz
80
60
40
f=1kHz f=10kHz
20
Ripple Rejection RR(dB)
3.33.1 3.2
0
2.9 3.0 Input V oltage VIN(V)
f=100kHz
3.33.1 3.2
10) Input Transient Response
2.84
2.83
(V)
OUT
2.82
R5322N001x (2.8V, VR1)
Input V oltage
OUT
=30mA C
I
OUT
=tantal 1.0µF
tr/tf=5µs T opt=25°C
6.0
5.0
4.0
R5322N
(V)
IN
2.81
3.0
Output V oltage
2.80
2.79
Output V oltage V
2.78 010
Time t(µs)
2.0
Input V oltage V
1.0
0.0
10090807020 30 40 50 60
R5322N001x (2.8V, VR1)
I
OUT
2.84
2.83
(V)
OUT
2.82
2.81
=30mA C
Input V oltage
OUT
=tantal 2.2µF
tr/tf=5µs T opt=25°C
6.0
5.0
4.0
3.0
(V)
IN
Output V oltage
2.80
2.79
Output V oltage V
2.78 010
Time t(µs)
2.0
Input V oltage V
1.0
0.0
10090807020 30 40 50 60
R5322N001x (2.8V, VR1)
I
OUT
2.84
2.83
(V)
OUT
2.82
=30mA C
Input V oltage
OUT
=tantal 6.8µF
tr/tf=5µs T opt=25°C
6.0
5.0
4.0
(V)
IN
2.81
3.0
Output V oltage
2.80
2.79
Output V oltage V
2.78 010
Time t(µs)
2.0
Input V oltage V
1.0
0.0
10090807020 30 40 50 60
17
R5322N
2.84
2.83
(V)
OUT
2.82
R5322N001x (2.8V, VR2)
Input V oltage
I
OUT
=30mA C
OUT
tr/tf=5µs T opt=25°C
=tantal 1.0µF
6.0
5.0
4.0
(V)
IN
2.81
3.0
Output V oltage
2.80
2.79
Output V oltage V
2.78 010
Time t(µs)
2.0
Input V oltage V
1.0
0.0
10090807020 30 40 50 60
R5322N001x (2.8V, VR2)
I
OUT
=30mA C
2.84
OUT
=tantal 2.2µF
tr/tf=5µs T opt=25°C
6.0
Input V oltage
2.83
(V)
OUT
2.82
2.81
5.0
4.0
3.0
(V)
IN
Output V oltage
2.80
2.79
Output V oltage V
2.78 010
Time t(µs)
2.0
Input V oltage V
1.0
0.0
10090807020 30 40 50 60
R5322N001x (2.8V, VR2)
OUT
2.84
2.83
(V)
OUT
2.82
Input V oltage
I
=30mA C
OUT
=tantal 6.8µF
tr/tf=5µs T opt=25°C
6.0
5.0
4.0
(V)
IN
18
2.81
2.80
2.79
Output V oltage V
2.78 010
Output V oltage
Time t(µs)
3.0
2.0
Input V oltage V
1.0
0.0
10090807020 30 40 50 60
11) Load Transient Response
3.00
2.95
2.90
Output V oltage VOUT(V)
2.85
2.80
2.75
2.70
2.80
2.75
VOUT1
VOUT2
R5322N001x (VR1=2.8V)
I
OUT=50mA 100mA VIN=3.8V CIN=tantal 1.0µF
C
OUT=tantal 1.0µF tr/tf=5µs T opt=25°C
IOUT2=30mA
IOUT1
R5322N
150 100 50 0
OUT1(mA)
Output Current I
-2 0
161412246810
Time t(µs)
18
R5322N001x (VR1=2.8V)
I
OUT=50mA 100mA VIN=3.8V CIN=tantal 1.0µF
C
3.00
2.95
2.90
2.85
2.80
OUT=tantal 2.2µF tr/tf=5µs T opt=25°C
IOUT1
VOUT1
150 100 50 0
OUT1(mA)
2.75
2.70
2.80
Output V oltage VOUT(V)
2.75
-2 0
VOUT2
Time t(µs)
IOUT2=30mA
Output Current I
18161412246810
R5322N001x (VR1=2.8V)
I
OUT=50mA 100mA VIN=3.8V CIN=tantal 1.0µF
C
3.00
2.95
2.90
2.85
2.80
2.75
2.70
VOUT1
OUT=tantal 6.8µF tr/tf=5µs T opt=25°C
IOUT1
150 100 50 0
OUT1(mA)
2.80
Output V oltage VOUT(V)
2.75
-2 0
VOUT2
Time t(µs)
IOUT2=30mA
Output Current I
18161412246810
19
R5322N
Output V oltage VOUT(V)
3.00
2.95
2.90
2.85
2.80
2.75
2.70
2.80
2.75
VOUT1
VOUT2
R5322N001x (VR2=2.8V)
OUT=50mA 100mA VIN=3.8V CIN=tantal 1.0µF
I
C
OUT=tantal 1.0µF tr/tf=5µs T opt=25°C
IOUT1=30mA
IOUT2
150 100 50 0
OUT2(mA)
Output Current I
-2 0 Time t(µs)
18161412246810
R5322N00x (VR2=2.8V)
I
OUT=50mA 100mA VIN=3.8V CIN=tantal 1.0µF
C
3.00
2.95
2.90
2.85
2.80
2.75
OUT=tantal 2.2µF tr/tf=5µs T opt=25°C
IOUT2
VOUT1
IOUT1=30mA
150 100 50 0
OUT2(mA)
2.70 VOUT2
2.80
Output V oltage VOUT(V)
2.75
-2 0
18161412246810
Time t(µs)
Output Current I
R5322N00x (VR2=2.8V)
I
OUT=50mA 100mA VIN=3.8V CIN=tantal 1.0µF
C
OUT=tantal 6.8µF tr/tf=5µs T opt=25°C
IOUT2
IOUT1=30mA
150 100 50 0
OUT2(mA)
Output Current I
Output V oltage VOUT(V)
3.00
2.95
2.90
2.85
2.80
2.75
2.70
2.80
2.75
VOUT1
VOUT2
20
-2 0 Time t(µs)
18161412246810
R5322N
TECHNICAL NOTES
When using these ICs, consider the following points:
In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, be sure to use a 2.2µF or more capacitance C (Equivalent Series Resistance) of which is in the range described as follows:
The relations between I
OUT (Output Current) and ESR of Output Capacitor are shown below. The conditions
when the white noise level is under 40µV (Avg.) are marked as the hatched area in the graph. (Note: When a ceramic capacitor is connected to the Output Pin as Output capacitor for phase compensation, the operation might be unstable unless as much as 1W resistor is connected between the capacitor and GND instead of ESR. Test these ICs with as same external components as ones to be used on the PCB.)
<Test conditions>
(1) V
IN=3.8V
(2) Frequency band: 10Hz to 2MHz
(3) Temperature: 25°C
R5322N001x (VR1=2.8V) R5322N001x (VR1=2.8V)
C
IN
=Ceramic 1.0µF
C
OUT
100
=Ceramic 2.2µF
OUT with good frequency characteristics and ESR
C
IN=Ceramic 2.2µF
C
100
OUT=Ceramic 2.2µF
ERS1()
0.01
10
1
0.1
0406020
Output Current IOUT1(mA)
12010080
10
1
ERS1()
0.1
0.01 0406020
Output Current I
OUT1
(mA)
12010080
21
R5322N
R5322N001x (VR2=2.8V) R5322N001x (VR2=2.8V)
C
IN
=Ceramic 2.2µF
C
OUT
=Ceramic 2.2µF
100
C
IN
=Ceramic 1.0µF
C
OUT
=Ceramic 2.2µF
100
ERS2()
0.01
10
1
0.1
0406020
Output Current I
OUT2
12010080
(mA)
10
1
ERS2()
0.1
0.01 0406020
Output Current I
OUT2
(mA)
12010080
Make V
DD and GND line sufficient. When the impedance of these is high, the noise might be picked up or
not work correctly.
Connect the capacitor with a capacitance of 1µF or more between V
DD and GND as close as possible.
Set external components, especially Output Capacitor, as close as possible to the ICs and make wiring
shortest.
22
PACKAGE INFORMATION
PE-SOT-23-6W-0512
SOT-23-6W Unit: mm
PACKAGE DIMENSIONS
2.9±0.2
1.9±0.2
(0.95) (0.95)
1.1
0.8±0.1
+0.2
0.1
6
1
TAPING SPECIFICATION
2.0MAX.
2
0.4
0.3±0.1
+0.1
0.2
45
1.8±0.2
+0.1
1.5 0
564
213
4.0±0.1
2.8±0.3
TR
0.15
4.0±0.1
3.3
+0.1
0.075
3.2
1.1±0.1
2.0±0.05
0 to 0.1
0.1
±
1.75
3.5±0.05
8.0±0.3
0.2 MIN.
TAPING REEL DIMENSIONS
(1reel=3000pcs)
21±0.8
User Direction of Feed
2±0.5
11.4±1.0
9.0±0.3
13±0.2
1.5
0
+1
0
60
180
PACKAGE INFORMATION
PE-SOT-23-6W-0512
POWER DISSIPATION (SOT-23-6W)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment Mounting on Board (Wind velocity=0m/s)
Board Material Glass cloth epoxy plactic (Double sided)
Board Dimensions
Copper Ratio Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Power Dissipation 430mW
Thermal Resistance
600
40mm × 40mm × 1.6mm
φ0.5mm × 44pcs
θja=(12525°C)/0.43W=233°C/W
500
(mW)
D
Power Dissipation P
430
400
300
200
100
0
0 50 10025 75 85 125 150
On Board
Ambient Temperature (°C)
40
40
Power Dissipation Measurement Board Pattern
IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN (SOT-23-6W)
0.7 MAX.
1.0
2.4
0.95
0.95
1.9
(Unit: mm)
MARK INFORMATION
R5322N SERIES MARK SPECIFICATION
SOT-23-6W
1, 2
: Product Code (refer to Part Number vs. Product Code)
3, 4
: Lot Number
1234
Part Number vs. Product Code
ME-R5322N-0310
Part Number
R5322N001B-TR
R5322N002B-TR
R5322N003B-TR
R5322N004B-TR
R5322N005B-TR
R5322N001A-TR
R5322N002A-TR
R5322N003A-TR
R5322N006B-TR
R5322N007B-TR
R5322N008B-TR
R5322N009B-TR
R5322N010B-TR
Product Code
1
H 0
H 1
H 2
H 3
H 4
H 5
H 6
H 7
H 8
H 9
H A
H B
H C
2
Loading...