z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------------- 260°C
z Storage Temperature Range -------------------------------------------------------------------------------------------- −65°C to 150°C
z ESD Susceptibility (Note 2)
HBM (Human Body Mode) ---------------------------------------------------------------------------------------------- 2kV
MM (Machine Mode) ------------------------------------------------------------------------------------------------------ 200V
Recommended Operating Conditions (Note 3)
z Supply Input Voltage ------------------------------------------------------------------------------------------------------ 2.5V to 5.5V
z Enable Input Voltage------------------------------------------------------------------------------------------------------ 0V to 5.5V
z Operation Junction Temperature Range ------------------------------------------------------------------------------ −40°C to 125°C
z Operation Ambient Temperature Range ------------------------------------------------------------------------------ 0°C to 85°C
Electrical Characteristics
(V
= V
IN
Input Voltage
Dropout Voltage (Note 5)
Output voltage range
V
OUT
Line Regulation
Load Regulation
Current Limit
Quiescent Current
Shutdown Current
EN Threshold
Output Voltage TC -- 100 --
OUT
+ 1V, V
= VIN, C
EN
= C
IN
= 1μF, TA = 25°C, unless otherwise specified.)
OUT
Parameter Symbol Test Conditions Min Typ Max Units
2.5 -- 5.5 V
-- 120 -- mV
-- 240 -- mV
-2 -- +2 %
-- -- 0.2 %/V
-- -- 0.6
330 450 700 mA
-- 58 80 uA
-- -- 1 uA
1.5 -- --
-- -- 0.4
Accuracy
V
V
IN
V
DROP
V
OUT
ΔV
ΔV
LINE
ΔV
LOAD
VEN > 1.5V
I
Q
VEN < 0.4V
I
Q_SD
VIH V
V
V
IL
= 2.5V to 5.5V
IN
I
= 150mA
OUT
= 300mA
I
OUT
1.2 -- 3.6 V
I
= 1mA
OUT
= (V
V
IN
V
> 2.5V, whichever is larger
IN
1mA < I
R
LOAD
= 2.5V to 5.5V, Power On
IN
= 2.5V to 5.5V, Shutdown
IN
OUT
OUT
= 1Ω
+ 0.3V) to 5.5V or
< 300mA
%
V
ppm/°C
Thermal Shutdown
Thermal Shutdown Hysteresis
T
ΔT
SD
-- 170 --
-- 40 --
SD
°C
°C
To be continued
DS9014/A-02 May 2006www.richtek.com
5
RT9014/A
Parameter Symbol Test Conditions Min Typ Max Units
PSRR
= 10mA
I
LOAD
PSRR
I
= 150mA
LOAD
Power Good
PSRR
PSRR
Preliminary
f =100Hz -- 65 -- dB
f =1kHz -- 60 -- dB
f =10kHz -- 50 -- dB
f =100Hz -- 65 -- dB
f =1kHz -- 50 -- dB
f =10kHz -- 50 -- dB
Reset Threshold
POR Output Logic Low Voltage
POR Leakage Current
Set pin current source
V
THL
V
THH
V
I
OL
I
POR
Low Threshold, % of nominal
(Flag On)
V
OUT2
High Threshold, % of nominal
(Flag Off)
V
OUT2
= 250uA
LOW
Flag Off -1 0.01 1
V
= 0
SET
90 -- -- %
-- -- 96 %
-- 0.02 0.1 V
μA
0.60 1.25 1.70
μA
Set pin threshold POR = high -- 1.4 -- V
DRV output
Voltage Low
Leakage current
SW input current
I
= 150mA
DRV
I
= 0mA, V
DRV
V
< 0.6V(DRV Shutdown)
IL
> 2.5V(DRV Enable)
V
IH
= 5V, SW = 0V
DRV
-- 0.2 0.5 V
-1 0.01 1
-1 0.01 1
-1 0.01 1
μA
μA
μA
VIL Logic Low -- -- 0.4 V
SW input voltage
Logic High 1.5 -- -- V
V
IH
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended
periods may remain possibility to affect device reliability.
Note 2. Devices are ESD sensitive. Handling precaution recommended.
Note 3. The device is not guaranteed to function outside its operating conditions.
Note 4. θ
Note 5. The dropout voltage is defined as V
is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of
JA
JEDEC 51-3 thermal measurement standard.
-V
IN
, which is measured when V
OUT
OUT
is V
OUT(NORMAL)
− 100mV.
DS9014/A-02 May 2006www.richtek.com
6
Preliminary
Typical Operating Characteristics
RT9014/A
Output Voltage vs. Temperature
1.9
RT9014/A-GS, V
1.85
1.8
Output Voltage (V)
1.75
1.7
-50-250255075100125
OUT1
Temperature
(°C)
Quiescent Current vs. Temperature
70
RT9014/A-GS
VIN = V
CIN = C
65
60
55
Quiescent Current (uA)
EN
OUT1
= V
= C
SW
OUT2
= 4.3V
= 1uF/X7R
Output Voltage vs. Temperature
3.4
RT9014-GS, V
3.35
3.3
3.25
Output Voltage (V)
3.2
-50-250255075100125
OUT2
Temperature
(°C)
Dropout Voltage vs. Loa d Current
350
RT9014/A-GS, V
300
250
200
150
100
Dropout Voltage (mV)
50
OUT2
TJ = 25°C
TJ = 125°C
TJ = -40°C
50
-50-250255075100125
Temperature
(°C)
PSRR
20
RT9014-FM, V
VIN = 4.3V ± 0.1V
0
CIN = C
-20
-40
PSRR (dB)
-60
-80
0.01 0.1 1 10k 100k 1000k
101001000100001000001000000
OUT1
OUT1
= C
= 1uF/X7R
OUT2
Frequency (Hz)
(Hz)
I
LOAD
I
= 100mA
LOAD
= 50mA
I
LOAD
= 10mA
0
050100150200250300
Load Current (mA)
POR Dela y
10000
POR Delay Time (ms)
RT9014/A-FM
1000
100
10
1
0.1
0.01
0.00010.00100.01000.10001.0000
POR Setting Capacitance (uF)
DS9014/A-02 May 2006www.richtek.com
7
RT9014/A
Preliminary
4.8
V
IN
(V)
3.8
V
OUT2
(10mV/Div)
V
OUT1
(10mV/Div)
4.8
V
IN
(V)
3.8
V
OUT2
(10mV/Div)
Line Transient Response
RT9014/A-GS, Both I
V
= 3.8V to 4.8V
IN
LOAD
Time (100μs/Div)
Line Transient Response
RT9014/A-GS, Both I
V
= 3.8V to 4.8V
IN
LOAD
= 1mA
= 50mA
4.8
V
IN
(V)
3.8
V
OUT2
(10mV/Div)
V
OUT1
(10mV/Div)
4.8
V
IN
(V)
3.8
V
OUT2
(10mV/Div)
Line Transient Response
RT9014/A-GS, Both I
V
= 3.8V to 4.8V
IN
Time (100μs/Div)
LOAD
= 10mA
Line Transient Response
RT9014/A-GS, Both I
V
= 3.8V to 4.8V
IN
LOAD
= 100mA
V
OUT1
(10mV/Div)
I
OUT
(50mA/Div)
V
OUT1
(20mV/Div)
V
OUT2
(20mV/Div)
Time (100μs/Div)
Load Transient Response
RT9014/A-GS, I
V
= V
EN
OUT1
= 4.3V
= C
IN
CIN = C
= 10mA to 50mA
LOAD
= 1uF/X7R
OUT2
Time (250μs/Div)
V
OUT1
(10mV/Div)
I
OUT
(100mA/Div)
V
OUT1
(20mV/Div)
V
OUT2
(20mV/Div)
Time (100μs/Div)
Load Transient Response
RT9014/A-GS, I
V
= V
EN
OUT1
= 4.3V
= C
IN
CIN = C
= 10mA to 100mA
LOAD
= 1uF/X7R
OUT2
Time (250μs/Div)
DS9014/A-02 May 2006www.richtek.com
8
Preliminary
RT9014/A
(5V/Div)
(1V/Div)
V
EN
(5V/Div)
RT9014/A-FM, V
I
= I
OUT2
= 50mA
OUT1
V
EN
RT9014/A-FM
Both I
LOAD
= 10mA
Start Up
= V
V
OUT1
V
SW
OUT2
= 5V
IN
Time (5μs/Div)
Power-On
(5V/Div)
(1V/Div)
150
100
50
EN Pin Shutdown Response
RT9014/A-FM, V
I
= I
OUT1
OUT2
V
EN
V
OUT2
V
OUT1
= V
IN
SW
= 50mA
Time (50μs/Div)
= 5V
Noise
RT9014/A-GS, No LOAD
V
= V
= V
IN
EN
C
= C
IN
OUT1
= 4.5V(By battery)
SW
= C
= 1uF/X7R
OUT2
V
OUT1
(1V/Div)
V
OUT2
(2V/Div)
POR
(5V/Div)
300
200
100
-100
Noise (μV/Div)
-200
-300
RT9014/A-GS, I
V
= V
IN
EN
C
= C
IN
OUT1
0
Time (10μs/Div)
LOAD
= V
= 4.5V(By battery)
SW
= C
= 1uF/X7R
OUT2
Noise
= 50mA
Noise (μV/Div)
0
-50
-100
-150
Time (10ms/Div)
Time (10ms/Div)
DS9014/A-02 May 2006www.richtek.com
9
RT9014/A
Applications Information
Preliminary
Like any low-dropout regulator, the external capacitors used
with the RT9014/A must be carefully selected for regulator
stability and performance. Using a capacitor whose value
is > 1μF on the RT9014/A input and the amount of
capacitance can be increased without limit. The input
capacitor must be located a distance of not more than 0.5
inch from the input pin of the IC and returned to a clean
analog ground. Any good quality ceramic or tantalum can
be used for this capacitor. The capacitor with larger value
and lower ESR (equivalent series resistance) provides
better PSRR and line-transient response.
The output capacitor must meet both requirements for
minimum amount of capacitance and ESR in all LDOs
application. The RT9014/A is designed specifically to work
with low ESR ceramic output capacitor in space-saving
and performance consideration. Using a ceramic capacitor
whose value is at least 1μF with ESR is > 20mΩ on the
RT9014/A output ensures stability. The RT9014/A still
works well with output capacitor of other types due to the
wide stable ESR range. Figure 1. shows the curves of
allowable ESR range as a function of load current for various
output capacitor values. Output capacitor of larger
capacitance can reduce noise and improve load transient
response, stability, and PSRR. The output capacitor should
be located not more than 0.5 inch from the VOUT pin of
the RT9014/A and returned to a clean analog ground.
Thermal Considerations
Thermal protection limits power dissipation in RT9014/A.
When the operation junction temperature exceeds 170°C,
the OTP circuit starts the thermal shutdown function and
turns the pass element off. The pass element turn on again
after the junction temperature cools by 40°C. RT9014/A
lowers its OTP trip level from 170°C to 110°C when output
short circuit occurs (V
< 0.4V) as shown in Figure 2. It
OUT
limits IC case temperature under 100°C and provides
maximum safety to customer while output short circuit
occurring.
V
Short to GND
OUT
0.4V
V
OUT
I
OUT
TSD
°
170 C
110 C
OTP Trip Point
IC Te mpe ra ture
°
°
110 C
80 C
°
Region of Stable C
100
10
ESR (Ω)
ESR (Ω)
OUT
OUT
1
0.1
0.01
Region of Stable C
Region of Stable C
0.001
050100150200250300
Figure 1. Stable Cout ESR Range
10
OUT
Unstable Range
Stable Range
Simulation Verify
Load Current (mA)
ESR vs. Load Current
RT9014-FM, V
C
= C
IN
OUT1
C
= 1uF/X7R
OUT2
= 5V
IN
=
Figure 2. Short Circuit Thermal Folded Back Protection
when Output Short Circuit Occurs (Patent)
For continuous operation, do not exceed absolute
maximum operation junction temperature 125°C. The
power dissipation definition in device is :
PD = (V
IN
− V
OUT
) x I
+ VIN x I
OUT
Q
The maximum power dissipation depends on the thermal
resistance of IC package, PCB layout, the rate of
surroundings airflow and temperature difference between
junction to ambient. The maximum power dissipation can
be calculated by following formula :
P
Where T
D(MAX)
= ( T
J(MAX)
J(MAX)
temperature 125°C, T
θ
is the junction to ambient thermal resistance.
JA
− T
) /θ
A
JA
is the maximum operation junction
is the ambient temperature and the
A
DS9014/A-02 May 2006www.richtek.com
Preliminary
For recommended operating conditions specification of
RT9014/A, where T
temperature of the die (125°C) and TA is the operated
ambient temperature. The junction to ambient thermal
resistance (θJA is layout dependent) for WDFN-10L 3x3
package is 108°C/W on the standard JEDEC 51-3 single-
layer thermal test board. The maximum power dissipation
at TA = 25°C can be calculated by following formula :
is the maximum junction
J(MAX)
RT9014/A
P
= ( 125°C − 25°C ) / 108 = 0.926W for
D(MAX)
WDFN-10L 3x3 packages
The maximum power dissipation depends on operating
ambient temperature for fixed T
resistance θ
. For RT9014/A packages, the Figure 3 of
JA
and thermal
J(MAX)
derating curves allows the designer to see the effect of
rising ambient temperature on the maximum power
allowed.
Power Dissipation vs. Ambient Temperature
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Power Dissipation (W)
0.1
0
0255075100125
Ambient Temperature
WDFN-10L 3x3
(°C)
Figure 3. Derating Curves for RT9014/A Packages
DS9014/A-02 May 2006www.richtek.com
11
RT9014/A
Outline Dimension
Preliminary
D
E
A
A3
A1
D2
L
E2
SEE DETAIL A
1
e
b
2
1
1
2
DETAIL A
Pin #1 ID and Tie Bar Mark Options
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Dimensions In Millimeters Dimensions In Inches
Symbol
Min Max Min Max
A 0.700 0.800 0.028 0.031
A1 0.000 0.050 0.000 0.002
A3 0.175 0.250 0.007 0.010
b 0.180 0.300 0.007 0.012
D 2.950 3.050 0.116 0.120
D2 2.300 2.650 0.091 0.104
E 2.950 3.050 0.116 0.120
E2 1.500 1.750 0.059 0.069
e 0.500 0.020
L 0.350 0.450
RICHTEK TECHNOLOGY CORP .
Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
0.014 0.018
W-Type 10L DFN 3x3 Package
RICHTEK TECHNOLOGY CORP .
Taipei Office (Marketing)
8F-1, No. 137, Lane 235, Paochiao Road, Hsintien City
Taipei County, Taiwan, R.O.C.
Tel: (8862)89191466 Fax: (8862)89191465
Email: marketing@richtek.com
12
DS9014/A-02 May 2006www.richtek.com
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.