Richtek RT8884B User Manual

®
RT8884B
Multi-Phase PWM Controller for CPU Core Power Supply
General Description
The RT8884B is a 4/3/2/1 multi-phase synchronous Buck
controller designed to meet Intel VR12.5 compatible CPU
specification with a serial VID control interface. The
TM
RT8884B adopts G-NAVP
Richtek's proprietary topology derived from finite DC gain
of EA amplifier with current mode control, making it easy
to set the droop to meet all Intel CPU requirements of
AVP (Adaptive Voltage Positioning). Based on the G-
NAVPTM topology, the RT8884B also features a quick
response mechanism for optimized AVP performance
during load transient. The RT8884B supports mode
transition function with various operating states. A Serial
VID (SVID) interface is built in the RT8884B to
communicate with Intel VR12.5 compliant CPU. The
RT8884B supports VID on-the-fly function with three
different slew rates : Fast, Slow and Decay. By utilizing
the G-NAVPTM topology, the operating frequency of the
RT8884B varies with VID, load current and input voltage
to further enhance the efficiency even in CCM. Besides
G-NAVPTM, the CCRCOT (Constant Current Ripple
Constant On Time) technology provides superior output
voltage ripple over the entire input/output range.
(Green Native AVP) which is
Features

Intel VR12.5 Serial VID Interface Compatible


4/3/2/1 Phase PWM Controller


G-NAV P


0.5% DAC Accuracy


Differential Remote Voltage Sensing


Built-in ADC for Platform Programming


Accurate Current Balance


System Thermal Compensated AVP


Diode Emulation Mode at Light Load Condition for

TM
T opology
Single Phase Operation

Fast T ran sient Respon se


VR Ready Indicator


Thermal Throttling


Current Monitor Output


OVP, UVP, OCP, NVP, UVLO


External No-Load Offset Setting


DVID Enhancement


Small 32-Lead WQFN Package


RoHS Compliant and Halogen Free

Applications
Notebook/Desktop Computer/Servers Multi-phase CPU
Core Power Supply
AVP Step-Down Converter
Simplified Application Circuit
RT8884B
To PCH
VR_RDY
VR_HOT
To CPU
VCLK
VDIO
ALERT
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
©
PWM1
PWM2
PWM3
PWM4
DS8884B-01 September 2013 www.richtek.com
RT9624A
RT9624A
RT9624A
RT9624A
V
CORE
1
RT8884B
Ordering Information
RT8884B
Package Type QW : WQFN-32L 4x4 (W-Type)
Lead Plating System G : Green (Halogen Free and Pb Free)
Note :
Richtek products are :
` RoHS compliant and compatible with the current require-
ments of IPC/JEDEC J-STD-020.
` Suitable for use in SnPb or Pb-free soldering processes.
Pin Configurations
(TOP VIEW)
ISEN2N
ISEN2PENPWM2
31 30 29 28
32
ISEN1P ISEN3P ISEN3N ISEN4N ISEN4P
COMP TSEN
1
2
3
4
5
6
IMON
7
VREF VR_HOT
8
10 11 12 13
9
GND
27
25
24
DVD
23
VR_RDY
22
TONSET
21
VCLK
20
ALERT
19
152616
VDIO
18
17
33
14
Marking Information
0F= : Product Code
0F=YM
DNN
YMDNN : Date Code
FB ISEN1N
VCC
SET2 PWM1
SET3 PWM3
SET1
VSEN
RGND
WQFN-32L 4x4
IBIAS PWM4
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
©
DS8884B-01 September 2013www.richtek.com
2
Functional Pin Description
Pin No. Pin Name Pin Function
1, 30, 2, 5 ISEN [1:4] P Positive Current Sense Inputs of Channel 1, 2, 3 and 4.
32, 31, 3, 4 ISEN [1:4] N Negat ive Curre nt Sense Inputs of Chan nel 1, 2, 3 and 4 .
RT8884B
6 IMON
7 VREF
8 COMP CORE VR Compensation. This pin is an erro r amplifier output pin .
9 FB
10 VSEN
11 R G N D
12 VCC
13 SET1
14 SET2
15 SET3
CPU CORE Current Monitor Outpu t. This pin outputs a voltage proportion al to the output curre nt.
Fixed 0. 6V Output Ref erence Voltage. T his voltage is only used to offset th e output voltage of IMON pin. Connect a 0.47μF decoupling capacitor between this pi n a nd GND.
Negative Input of the Error Amplif ier. This pin is for output voltag e fee dba ck to controller.
VR Voltage Sense Input . This pin is connected to the terminal of VR output voltage .
Return Ground for VR. Th is pin is the negative node of the di fferential rem o te voltage se nsing.
Contro lle r Power Supply. Connect this pin to 5V and place a minimum 2.2μF decoup lin g capacitor. The decoupling capacito r should be pl aced to th is pin as close as possible.
st
1
Platform Setting. Platform can use this pin to set DVID time, RSET, DVID
width and OCS.
nd
2
Platform Setting. Platform can use this p in t o set ICCMAX, QRTH and
QRSET.
rd
3
Platform Setting. Platform can use this to set output offset voltage.
Internal B ias Current Setting. Connect a 100kΩ resistor from this pin to GND for
16 IBIAS
17 TSEN Thermal Sense Input fo r CORE VR.
18
19 VDIO VR and CPU Data Transmission In terface.
20
21 VCLK Synchronous Clock from the CPU.
22 TONSET
23 VR_RDY VR Ready Indicator.
24 DVD
27, 28, 26, 25 PWM [1:4] PWM Outputs for Channel 1, 2, 3 and 4.
29 EN VR Enable.
33
(Exposed Pad)
VR_HOT
ALERT
GND
setting the internal current. Don ’t conn ect a bypass capacit or from this pin to GND.
Thermal Monitor Output. ( Active low).
SVID Alert. (Active low)
On-time Setting. An on-time setting resistor is connected from this pin to input voltage .
Divided Input Voltage Detec tio n of CORE VR. Connect this pin to a vo ltag e divide r from input voltage of power stage to det ect in put voltag e.
Ground. The exposed p ad must be soldered to a la rge PCB and connec ted to GND for maximum power dissipation.
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
3
RT8884B
Function Block Diagram
SET2
SET1
SET3
TSEN
EN
DVD
VCLK
VDIO
ALERT
VR_HOT
IMONI
VCC
VSEN
VR_RDY
IBIAS
RGND
FB
COMP
ISEN1P ISEN1N
ISEN2P
ISEN2N
ISEN3P
ISEN3N
ISEN4P
ISEN4N
From Control Logic
DAC
DVID_TH, DVID_WTH
Soft-Start & Slew
Rate Control
+
-
+
-
+
-
+
-
MUX
ADC
VSET
Current mirror
IB1
Current mirror
IB2
Current mirror
IB3
Current mirror
IB4
ERROR
AMP
+
-
SVID Interface
Configuration Registers
Control Logic
Offset
Cancellation
IMON Filter IMONI
+
OCS
-
UVLO
TON, QR_TH QRWIDTH
DVID_TH, DVID_WTH
RSETOCS
1/2
Ai
OC
To Protection Logic
+
RSET
Loop Control
Protection Logic
PWM
CMP
+
-
QR_TH
QRWIDTH
Current Balance
To Protection Logic
TON GEN
IB4IB3IB1 IB2
OCP
GND
TONSET
PWM1
PWM2
PWM3
PWM4
VSEN
IMON VREF
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
©
OVP/UVP/NVP
DS8884B-01 September 2013www.richtek.com
4
Operation
The RT8884B adopts G-NAVPTM (Green Native AVP) which
is Richtek's proprietary topology derived from finite DC
gain of EA amplifier with current mode control, making it
easy to set the droop to meet all Intel CPU requirements
of AVP (Adaptive Voltage Positioning).
The RT8884B adopts the G-NAVPTM controller, which is
one type of current mode constant on-time control with
DC offset cancellation. The approach can not only improve
DC offset problem for increasing system accuracy but also
provide fast transient response. For the RT8884B, when
current feedback signal reaches COMP signal to generate
an on-time width to achieve PWM modulation.
TON GEN
Generate the PWM1 to PWM4 sequentially according to
the phase control signal from the Loop Control Protection
Logic.
SVID Interface/Configuration Registers/Control Logic
The interface that receives the SVID signal from CPU and
sends the relative signals to Loop Control Protection Logic
to execute the action by CPU.
RT8884B
Loop Control Protection Logic
It controls the power on sequence, the protection behavior,
and the operational phase number.
Current Balance
Each phase current sense signal is sent to the current
balance circuit which adjusts the on-time of each phase
to optimize current sharing.
Offset Cancellation
Cancel the current/voltage ripple issue to get the accurate
VSEN.
UVLO
Detect the DVD and VCC voltage and issue POR signal as
they are high enough.
DAC
Generate an analog signal according to the digital code
generated by Control Logic.
Soft-Start & Slew Rate Control
Control the Dynamic VID slew rate of VSET according to
the SetVID fast or SetVID slow.
The registers save the pin setting data from ADC output.
The Control Logic controls the ADC timing and generates
the digital code of the VID that is relative to VSEN.
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
5
RT8884B
Table 1. VR12.5 VID Code Table
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V)
0 0 0 0 0 0 0 0 00 0.000
0 0 0 0 0 0 0 1 01 0.500
0 0 0 0 0 0 1 0 02 0.510
0 0 0 0 0 0 1 1 03 0.520
0 0 0 0 0 1 0 0 04 0.530
0 0 0 0 0 1 0 1 05 0.540
0 0 0 0 0 1 1 0 06 0.550
0 0 0 0 0 1 1 1 07 0.560
0 0 0 0 1 0 0 0 08 0.570
0 0 0 0 1 0 0 1 09 0.580
0 0 0 0 1 0 1 0 0A 0.590
0 0 0 0 1 0 1 1 0B 0.600
0 0 0 0 1 1 0 0 0C 0.610
0 0 0 0 1 1 0 1 0D 0.620
0 0 0 0 1 1 1 0 0E 0.630
0 0 0 0 1 1 1 1 0F 0.640
0 0 0 1 0 0 0 0 10 0.650
0 0 0 1 0 0 0 1 11 0.660
0 0 0 1 0 0 1 0 12 0.670
0 0 0 1 0 0 1 1 13 0.680
0 0 0 1 0 1 0 0 14 0.690
0 0 0 1 0 1 0 1 15 0.700
0 0 0 1 0 1 1 0 16 0.710
0 0 0 1 0 1 1 1 17 0.720
0 0 0 1 1 0 0 0 18 0.730
0 0 0 1 1 0 0 1 19 0.740
0 0 0 1 1 0 1 0 1A 0.750
0 0 0 1 1 0 1 1 1B 0.760
0 0 0 1 1 1 0 0 1C 0.770
0 0 0 1 1 1 0 1 1D 0.780
0 0 0 1 1 1 1 0 1E 0.790
0 0 0 1 1 1 1 1 1F 0.800
0 0 1 0 0 0 0 0 20 0.810
0 0 1 0 0 0 0 1 21 0.820
0 0 1 0 0 0 1 0 22 0.830
0 0 1 0 0 0 1 1 23 0.840
0 0 1 0 0 1 0 0 24 0.850
0 0 1 0 0 1 0 1 25 0.860
0 0 1 0 0 1 1 0 26 0.870
0 0 1 0 0 1 1 1 27 0.880
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
6
©
DS8884B-01 September 2013www.richtek.com
RT8884B
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V)
0 0 1 0 1 0 0 0 28 0.890
0 0 1 0 1 0 0 1 29 0.900
0 0 1 0 1 0 1 0 2A 0.910
0 0 1 0 1 0 1 1 2B 0.920
0 0 1 0 1 1 0 0 2C 0.930
0 0 1 0 1 1 0 1 2D 0.940
0 0 1 0 1 1 1 0 2E 0.950
0 0 1 0 1 1 1 1 2F 0.960
0 0 1 1 0 0 0 0 30 0.970
0 0 1 1 0 0 0 1 31 0.980
0 0 1 1 0 0 1 0 32 0.990
0 0 1 1 0 0 1 1 33 1.000
0 0 1 1 0 1 0 0 34 1.010
0 0 1 1 0 1 0 1 35 1.020
0 0 1 1 0 1 1 0 36 1.030
0 0 1 1 0 1 1 1 37 1.040
0 0 1 1 1 0 0 0 38 1.050
0 0 1 1 1 0 0 1 39 1.060
0 0 1 1 1 0 1 0 3A 1.070
0 0 1 1 1 0 1 1 3B 1.080
0 0 1 1 1 1 0 0 3C 1.090
0 0 1 1 1 1 0 1 3D 1.100
0 0 1 1 1 1 1 0 3E 1.110
0 0 1 1 1 1 1 1 3F 1.120
0 1 0 0 0 0 0 0 40 1.130
0 1 0 0 0 0 0 1 41 1.140
0 1 0 0 0 0 1 0 42 1.150
0 1 0 0 0 0 1 1 43 1.160
0 1 0 0 0 1 0 0 44 1.170
0 1 0 0 0 1 0 1 45 1.180
0 1 0 0 0 1 1 0 46 1.190
0 1 0 0 0 1 1 1 47 1.200
0 1 0 0 1 0 0 0 48 1.210
0 1 0 0 1 0 0 1 49 1.220
0 1 0 0 1 0 1 0 4A 1.230
0 1 0 0 1 0 1 1 4B 1.240
0 1 0 0 1 1 0 0 4C 1.250
0 1 0 0 1 1 0 1 4D 1.260
0 1 0 0 1 1 1 0 4E 1.270
0 1 0 0 1 1 1 1 4F 1.280
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
7
RT8884B
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V)
0 1 0 1 0 0 0 0 50 1.290
0 1 0 1 0 0 0 1 51 1.300
0 1 0 1 0 0 1 0 52 1.310
0 1 0 1 0 0 1 1 53 1.320
0 1 0 1 0 1 0 0 54 1.330
0 1 0 1 0 1 0 1 55 1.340
0 1 0 1 0 1 1 0 56 1.350
0 1 0 1 0 1 1 1 57 1.360
0 1 0 1 1 0 0 0 58 1.370
0 1 0 1 1 0 0 1 59 1.380
0 1 0 1 1 0 1 0 5A 1.390
0 1 0 1 1 0 1 1 5B 1.400
0 1 0 1 1 1 0 0 5C 1.410
0 1 0 1 1 1 0 1 5D 1.420
0 1 0 1 1 1 1 0 5E 1.430
0 1 0 1 1 1 1 1 5F 1.440
0 1 1 0 0 0 0 0 60 1.450
0 1 1 0 0 0 0 1 61 1.460
0 1 1 0 0 0 1 0 62 1.470
0 1 1 0 0 0 1 1 63 1.480
0 1 1 0 0 1 0 0 64 1.490
0 1 1 0 0 1 0 1 65 1.500
0 1 1 0 0 1 1 0 66 1.510
0 1 1 0 0 1 1 1 67 1.520
0 1 1 0 1 0 0 0 68 1.530
0 1 1 0 1 0 0 1 69 1.540
0 1 1 0 1 0 1 0 6A 1.550
0 1 1 0 1 0 1 1 6B 1.560
0 1 1 0 1 1 0 0 6C 1.570
0 1 1 0 1 1 0 1 6D 1.580
0 1 1 0 1 1 1 0 6E 1.590
0 1 1 0 1 1 1 1 6F 1.600
0 1 1 1 0 0 0 0 70 1.610
0 1 1 1 0 0 0 1 71 1.620
0 1 1 1 0 0 1 0 72 1.630
0 1 1 1 0 0 1 1 73 1.640
0 1 1 1 0 1 0 0 74 1.650
0 1 1 1 0 1 0 1 75 1.660
0 1 1 1 0 1 1 0 76 1.670
0 1 1 1 0 1 1 1 77 1.680
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
8
©
DS8884B-01 September 2013www.richtek.com
RT8884B
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V)
0 1 1 1 1 0 0 0 78 1.690
0 1 1 1 1 0 0 1 79 1.700
0 1 1 1 1 0 1 0 7A 1.710
0 1 1 1 1 0 1 1 7B 1.720
0 1 1 1 1 1 0 0 7C 1.730
0 1 1 1 1 1 0 1 7D 1.740
0 1 1 1 1 1 1 0 7E 1.750
0 1 1 1 1 1 1 1 7F 1.760
1 0 0 0 0 0 0 0 80 1.770
1 0 0 0 0 0 0 1 81 1.780
1 0 0 0 0 0 1 0 82 1.790
1 0 0 0 0 0 1 1 83 1.800
1 0 0 0 0 1 0 0 84 1.810
1 0 0 0 0 1 0 1 85 1.820
1 0 0 0 0 1 1 0 86 1.830
1 0 0 0 0 1 1 1 87 1.840
1 0 0 0 1 0 0 0 88 1.850
1 0 0 0 1 0 0 1 89 1.860
1 0 0 0 1 0 1 0 8A 1.870
1 0 0 0 1 0 1 1 8B 1.880
1 0 0 0 1 1 0 0 8C 1.890
1 0 0 0 1 1 0 1 8D 1.900
1 0 0 0 1 1 1 0 8E 1.910
1 0 0 0 1 1 1 1 8F 1.920
1 0 0 1 0 0 0 0 90 1.930
1 0 0 1 0 0 0 1 91 1.940
1 0 0 1 0 0 1 0 92 1.950
1 0 0 1 0 0 1 1 93 1.960
1 0 0 1 0 1 0 0 94 1.970
1 0 0 1 0 1 0 1 95 1.980
1 0 0 1 0 1 1 0 96 1.990
1 0 0 1 0 1 1 1 97 2.000
1 0 0 1 1 0 0 0 98 2.010
1 0 0 1 1 0 0 1 99 2.020
1 0 0 1 1 0 1 0 9A 2.030
1 0 0 1 1 0 1 1 9B 2.040
1 0 0 1 1 1 0 0 9C 2.050
1 0 0 1 1 1 0 1 9D 2.060
1 0 0 1 1 1 1 0 9E 2.070
1 0 0 1 1 1 1 1 9F 2.080
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
9
RT8884B
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V)
1 0 1 0 0 0 0 0 A0 2.090
1 0 1 0 0 0 0 1 A1 2.100
1 0 1 0 0 0 1 0 A2 2.110
1 0 1 0 0 0 1 1 A3 2.120
1 0 1 0 0 1 0 0 A4 2.130
1 0 1 0 0 1 0 1 A5 2.140
1 0 1 0 0 1 1 0 A6 2.150
1 0 1 0 0 1 1 1 A7 2.160
1 0 1 0 1 0 0 0 A8 2.170
1 0 1 0 1 0 0 1 A9 2.180
1 0 1 0 1 0 1 0 AA 2.190
1 0 1 0 1 0 1 1 AB 2.200
1 0 1 0 1 1 0 0 AC 2.210
1 0 1 0 1 1 0 1 AD 2.220
1 0 1 0 1 1 1 0 AE 2.230
1 0 1 0 1 1 1 1 AF 2.240
1 0 1 1 0 0 0 0 B0 2.250
1 0 1 1 0 0 0 1 B1 2.260
1 0 1 1 0 0 1 0 B2 2.270
1 0 1 1 0 0 1 1 B3 2.280
1 0 1 1 0 1 0 0 B4 2.290
1 0 1 1 0 1 0 1 B5 2.300
1 0 1 1 0 1 1 0 B6 2.310
1 0 1 1 0 1 1 1 B7 2.320
1 0 1 1 1 0 0 0 B8 2.330
1 0 1 1 1 0 0 1 B9 2.340
1 0 1 1 1 0 1 0 BA 2.350
1 0 1 1 1 0 1 1 BB 2.360
1 0 1 1 1 1 0 0 BC 2.370
1 0 1 1 1 1 0 1 BD 2.380
1 0 1 1 1 1 1 0 BE 2.390
1 0 1 1 1 1 1 1 BF 2.400
1 1 0 0 0 0 0 0 C0 2.410
1 1 0 0 0 0 0 1 C1 2.420
1 1 0 0 0 0 1 0 C2 2.430
1 1 0 0 0 0 1 1 C3 2.440
1 1 0 0 0 1 0 0 C4 2.450
1 1 0 0 0 1 0 1 C5 2.460
1 1 0 0 0 1 1 0 C6 2.470
1 1 0 0 0 1 1 1 C7 2.480
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
10
©
DS8884B-01 September 2013www.richtek.com
RT8884B
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V)
1 1 0 0 1 0 0 0 C8 2.490
1 1 0 0 1 0 0 1 C9 2.500
1 1 0 0 1 0 1 0 CA 2.510
1 1 0 0 1 0 1 1 CB 2.520
1 1 0 0 1 1 0 0 CC 2.530
1 1 0 0 1 1 0 1 CD 2.540
1 1 0 0 1 1 1 0 CE 2.550
1 1 0 0 1 1 1 1 CF 2.560
1 1 0 1 0 0 0 0 D0 2.570
1 1 0 1 0 0 0 1 D1 2.580
1 1 0 1 0 0 1 0 D2 2.590
1 1 0 1 0 0 1 1 D3 2.600
1 1 0 1 0 1 0 0 D4 2.610
1 1 0 1 0 1 0 1 D5 2.620
1 1 0 1 0 1 1 0 D6 2.630
1 1 0 1 0 1 1 1 D7 2.640
1 1 0 1 1 0 0 0 D8 2.650
1 1 0 1 1 0 0 1 D9 2.660
1 1 0 1 1 0 1 0 DA 2.670
1 1 0 1 1 0 1 1 DB 2.680
1 1 0 1 1 1 0 0 DC 2.690
1 1 0 1 1 1 0 1 DD 2.700
1 1 0 1 1 1 1 0 DE 2.710
1 1 0 1 1 1 1 1 DF 2.720
1 1 1 0 0 0 0 0 E0 2.730
1 1 1 0 0 0 0 1 E1 2.740
1 1 1 0 0 0 1 0 E2 2.750
1 1 1 0 0 0 1 1 E3 2.760
1 1 1 0 0 1 0 0 E4 2.770
1 1 1 0 0 1 0 1 E5 2.780
1 1 1 0 0 1 1 0 E6 2.790
1 1 1 0 0 1 1 1 E7 2.800
1 1 1 0 1 0 0 0 E8 2.810
1 1 1 0 1 0 0 1 E9 2.820
1 1 1 0 1 0 1 0 EA 2.830
1 1 1 0 1 0 1 1 EB 2.840
1 1 1 0 1 1 0 0 EC 2.850
1 1 1 0 1 1 0 1 ED 2.860
1 1 1 0 1 1 1 0 EE 2.870
1 1 1 0 1 1 1 1 EF 2.880
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
11
RT8884B
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V)
1 1 1 1 0 0 0 0 F0 2.890
1 1 1 1 0 0 0 1 F1 2.900
1 1 1 1 0 0 1 0 F2 2.910
1 1 1 1 0 0 1 1 F3 2.920
1 1 1 1 0 1 0 0 F4 2.930
1 1 1 1 0 1 0 1 F5 2.940
1 1 1 1 0 1 1 0 F6 2.950
1 1 1 1 0 1 1 1 F7 2.960
1 1 1 1 1 0 0 0 F8 2.970
1 1 1 1 1 0 0 1 F9 2.980
1 1 1 1 1 0 1 0 FA 2.990
1 1 1 1 1 0 1 1 FB 3.000
1 1 1 1 1 1 0 0 FC 3.010
1 1 1 1 1 1 0 1 FD 3.020
1 1 1 1 1 1 1 0 FE 3.030
1 1 1 1 1 1 1 1 FF 3.040
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
12
©
DS8884B-01 September 2013www.richtek.com
Table 2. Standard Serial VID Commands
RT8884B
Master
Code Commands
00h not supported N/A N/A N/A
01h SetVID_Fast VID code N/A
02h SetVID_Slow VID code N/A
03h SetVID_Decay VID code N/A
04h SetPS
Payload
Contents
Byte
indicating
power states
Slave
Payload
Contents
N/A
1. Set new target VID code, VR jumps to new VID target
with controlled default “fast” slew rate 12.5mV/μs.
2. Set VR_Settled when VR reaches target VID voltage.
1. Set new target VID code, VR jumps to new VID target
with controlled default “slow” slew rate 3.125mV/μs.
2. Set VR_Settled when VR reaches target VID voltage.
1. Set new target VID code, VR jumps to new VID target, but does not control the slew rate. The output voltage decays at a rate proportional to the load current.
2. Low side MOSFET is not allowed to sync current.
3. ACK 11b when target higher than current VOUT voltage.
4. ACK 10b when target lower than current VOUT voltage.
1. Set power state.
2. ACK 11b when not support.
3. ACK 10b even slave not change configuration.
4. ACK 11b for still running SetVID command.
5. VR remains in lower state when receiving SetVID (decay).
Description
Pointer of
05h SetRegADR
06h SetReg DAT
07h GetReg
08h to
1Fh
not supported N/A N/A N/A
registers in
data table
New data
register
content
N/A
N/A
Specified
Register
Contents
1. Set the pointer of the data register.
2. ACK 11b for address outside of support.
3. NAK 01b for SetADR (all call).
1. Write the contents to the data register.
2. NAK 01b for SetReg (all call).
1. Slave returns the contents of the specified register as the payload.
2. ACK 11b for non support address.
3. NAK 01b for GetReg (all call).
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
13
RT8884B
Table 3. SVID Data and Configuration Register
Index Register Name Description Access Default
00h Vendor ID Vendor ID RO, Vendor 1Eh
01h Product ID Product ID RO, Vendor 84h
02h Product Revision Product Revision RO, Vendor 00h
05h Protocol ID SVID Protocol ID RO, Vendor 02h
06h Capability
10h Status_1 Data register containing the status of VR.
11h Status-2 Data register containing the status of transmission.
12h
Temperature Zone
15h IOUT
1Ch Status_2_lastread The register contains a copy of the status_2.
21h ICC Max
22h Temp Max
24h SR-fast
25h SR-slow
30h VOUT Max
31h VID Setting Data register containing currently programmed VID. RW, Master 00h
32h Power State Register containing the current programmed power state. RW, Master 00h
33h Offset Set offset in VID steps. RW, Master 00h
34h
Multi VR Configuration
35h Pointer
Bit mapped register, identifies the SVID VR Capabilities and which of the optional telemetry register is supported.
Data register showing temperature zone that has been entered.
At PS0 to PS2, IOUT report data from ADC sense IMON voltage. When power state at PS3, the IOUT report data is fixed to 04h.
Data register containing the ICC max the platform supports. Binary format in A IE 64h = 100A.
Data register containing the temperature max the platform supports. Binary format in °C IE 64h = 100°C.
Data register containing the capability of fast slew rate the platform can sustain. Binary format in mV/μs IE 0Ah = 10 mV/μs.
Data register containing the capability of slow slew rate. Binary format in mV/μs IE 02h = 2mV/μs.
The register is programmed by master and sets the maximum VID.
Bit mapped data register which configures multiple VRs behavior on the same bus.
Scratch pad register for temporary storage of the SetRegADR pointer register.
RO, Vendor 81h
R-M,
W-PWM
R-M,
W-PWM
R-M,
W-PWM
R-M,
W-PWM
R-M,
W-PWM
RO,
Platform
RO,
Platform
00h
00h
00h
00h
00h
7Dh
64h
RO 0Ah
RO 02h
RW, Master B5h
RW, Master 00h
RW, Master 30h
Notes :
RO = Read Only
RW = Read/Write
R-M = Read by Master
W-PWM = Write by PWM Only
Vendor = Hard Coded by VR Vendor
Platform = Programmed by the Master
PWM = Programmed by the VR Control IC
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
14
©
DS8884B-01 September 2013www.richtek.com
RT8884B
Absolute Maximum Ratings (Note 1)
VCC to GND --------------------------------------------------------------------------------------------------------- 0.3V to 6.5V
RGND to GND ------------------------------------------------------------------------------------------------------- 0.3V to 0.3V
TONSET to GND---------------------------------------------------------------------------------------------------- 0.3V to 6.5V
Other Pins------------------------------------------------------------------------------------------------------------ 0.3V to (V
Power Dissipation, P
@ T
D
= 25°C
A
WQFN-32L 4x4 ----------------------------------------------------------------------------------------------------- 3.6W
Package Thermal Resistance (Note 2)
WQFN-32L 4x4, θJA------------------------------------------------------------------------------------------------ 27.8°C/W
WQFN-32L 4x4, θJC----------------------------------------------------------------------------------------------- 7°C/W
Junction Temperature ---------------------------------------------------------------------------------------------- 150°C
Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------ 260°C
Storage Temperature Range ------------------------------------------------------------------------------------- 65°C to 150°C
ESD Susceptibility (Note 3)
HBM (Human Body Model)--------------------------------------------------------------------------------------- 2kV
CC
+ 0.3V)
Recommended Operating Conditions
Supply Voltage, VCC ----------------------------------------------------------------------------------------------4.5V to 5.5V
Junction Temperature Range ------------------------------------------------------------------------------------- 40°C to 125°C
Ambient Temperature Range ------------------------------------------------------------------------------------- 40°C to 85°C
(Note 4)
Electrical Characteristics
(VCC = 5V, TA = 25°C, unless otherwise specified)
Parameter Symbol Test Conditions Min Typ Max Unit
Supply Input
Supply Current I
Supply Current at PS3 I
Shutdown Current I
Reference and DAC
DAC Accuracy VFB
Sle w Rate
Dynamic VID Slew Rate SR
V
VC C
VC C_PS3
SH DN
VEN = H, Not switching -- 2.7 -- mA
V
V
V
V
Set VID slow 2.5 3.125 3.75
Set VID fast 10 12.5 15
= H, Not switching -- 4.1 -- mA
EN
= 0V -- -- 5 μA
EN
= 1.5V − 2.3V 0.5 0 0.5
DAC
= 1V − 1.49V 8 0 8
DAC
= 0.5V − 0.99V 10 0 10
DAC
% of
VID
mV
mV/μs
EA Amp lifier
DC Gain ADC R
Gain-Bandwidth Product GBW C
Slew Rate SREA
= 47kΩ 70 -- -- dB
L
= 5pF 4 5 -- MHz
LOAD
C
= 10pF (Gain = 4, RF = 47kΩ,
LOAD
= 0.5V to 3V)
V
OUT
5 -- -- V/μs
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
15
RT8884B
Parameter Symbol Test Conditions Min Typ Max Unit
Output Voltage Range V
Maximum Source/Sink Current I
Load-Line Current Gain Amplifier
Input Offset Voltage V
Current Gain A
Current Sensing Amplifier
Input Offset Voltage V
Impedance at Positive Input R
Current Mirror Gain A
TO N S etting
TONSET Pin Voltage V
On-Time Setting TON I
Input Current Range I
Minimum Off time T
IBIAS
IBIAS Pin Voltage V
OFS Setting
Impedance R
Set OFS Voltage V
Protections
V
Under Voltage Lockout Threshold
ΔV
Over Voltage Protection Threshold VOV
Under Voltage Protection Threshold VUV Respect to VID voltage −400 −350 −300 mV
Negative Voltage Protection Threshold
V
EN and VR_RDY
Logic-High VIH 0.7 -- --
EN Input Voltage
Logic-Low V
Leakage Current of EN 1 -- 1 μA
RL = 47kΩ 0.5 -- 3.6 V
COMP
V
OUTEA
V
ILOFS
V
ILGAIN
OSCS
ISENxP
MIRROR IIMON
TON
RTON
OFF
IBIAS
OFS
V
0.8 -- 0.8 mV 1 -- -- MΩ
I
V
V
R
1 -- -- MΩ
Enable OFS function and offset 600mV
Enable OFS function and offset 300mV
= 2V -- 5 -- mA
COMP
= 1V 5 -- 5 mV
IMON
V
IMON
= V
FB
COMP
/ I
SENxN
= 80μA, V
RTON
= 80μA, V
RTON
= 1.7V 25 -- 280 μA
DAC
= 1.7V -- 400 -- ns
DAC
= 100kΩ 1.85 2 -- V
IBIA S
= 1V
VREF
= 1.7V
-- 1/2 -- A/A
0.97 1 1.03 A/A
= 1.7V 1.6 1.7 1.8 V
DAC
= 1.7V 450 500 550 ns
DAC
1.95 2.4 2.44
1.76 1.8 1.84
Enable OFS function and offset 0V 1.16 1.2 1.24
SET3
Enable OFS function and offset
50mV
Enable OFS function and offset
250mV
1.06 1.1 1.14
0.66 0.7 0.74
Disable -- -- 0.55
4.1 4.3 4.45 V
UVLO
Falling edge hysteresis -- 200 -- mV
UVLO
VID higher than 1.5V
VID
+ 300
VID
+ 350
VID
+ 400
VID lower than 1.5V 1800 1850 1900
100 70 -- mV
NV
-- -- 0.3
IL
V
mV
V
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
16
©
DS8884B-01 September 2013www.richtek.com
RT8884B
Parameter Symbol Test Conditions Min Typ Max Unit
VR_RDY Delay T
VR_RDY Pull Low Voltage V
DVD
DVD Input V
Serial VID and VR_HOT
VCLK, VDIO Input Voltage
Logic-High VIH
Logic-Low V
Leakage Current of VCLK, VDIO, ALERT and VR_HOT
VDIO, ALERT and VR_HOT
Pull Low Voltage
V
and V
REF
V
Vol ta g e V
REF
V
Voltage V
BOOT
BOOT
ADC
Update Period of IMON T
TSEN Threshold for Tmp_Zone [7] transition
VR_RDY
PGOOD
DVD
IL
I
LEAK_IN
V
I
Detect VIN Voltage 2 -- -- V
-- -- 0.45
1 -- 1 μA
0.55 0.6 0.65 V
REF
No Load, set V
BOOT
IMON
320 400 480 μs
IMON
100°C -- 1.887 -- V
V
TSEN
= VBoot to VR_RDY High 3 4.5 6 μs
SEN
VR_RDY
Respect to INTEL Spec. with 50mV hysteresis
I
VDIO
I
ALERT
I
VR_HOT
V
V
V
= 10mA -- -- 0.13 V
0.65 -- --
= 10mA
= 10mA
-- -- 0.13 V
= 10mA
= 1.7V 1.692 1.7 1.708 V
BOOT
IMON
IMON
IMON
V
V
V
IMON_INI
IMON_INI
IMON_INI
= 1.6V 252 255 258
= 0.8V 125 128 131 Digital IMON Set V
= 0V 0 0 3
Decimal
V
TSEN Threshold for Tmp_Zone [6] transition
TSEN Threshold for Tmp_Zone [5] transition
TSEN Threshold for Tmp_Zone [4] transition
TSEN Threshold for Tmp_Zone [3] transition
TSEN Threshold for Tmp_Zone [2] transition
TSEN Threshold for Tmp_Zone [1] transition
TSEN Threshold for Tmp_Zone [0] transition
Update Period of TSEN t
Digital Code of ICCMAX
97°C -- 1.837 -- V
V
TSEN
94°C -- 1.784 -- V
V
TSEN
91°C -- 1.729 -- V
V
TSEN
88°C -- 1.672 -- V
V
TSEN
85°C -- 1.612 -- V
V
TSEN
82°C -- 1.551 -- V
V
TSEN
75°C -- 1.402 -- V
V
TSEN
40 50 60 μs
TSEN
C
ICCMAX1
C
ICCMAX2
C
ICCMAX3
V
V
V
ICCMAX
ICCMAX
ICCMAX
= 0.403V 58 64 70
= 0.806V 122 128 134
= 1.6V 248 256 260
Decimal
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
17
RT8884B
Parameter Symbol Test Conditions Min Typ Max Unit
PWM Driving Capability
PWM Source Resistance R
PWM Sink R
Note 1. Stresses beyond those listed Absolute Maximum Ratings may cause permanent damage to the device. These are
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may
affect device reliability.
Note 2. θ
Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions.
is measured at T
JA
measured at the exposed pad of the package.
PWM_SRC
PWM_SNK
= 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is
A
-- -- 30 Ω
-- -- 10 Ω
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
18
©
DS8884B-01 September 2013www.richtek.com
Typical Application Circuit
Ω
E S N E S _ S S
V
E S N
R37 R38
E S _ C C
V
RT8884B
T U O _ E R O
LOAD
C
V
C22
22µFx19
C23
560µF/7m
x4
C22
Optional
L1
C13
390µF
360nH / 0.72mΩ
510
R29
C12
22µF
V 2 1
Q1
C11
0.1µF
R27 0
R26 2.2
BOOT
Optional
PHASE
UGATE
R28
C14
Q2 x 2
LGATE
V 2 1
C17
L2
C19
390µF
360nH / 0.72mΩ
C18
22µF
Optional
Q3
0.1µF
R33 0
R32 2.2
BOOT
PHASE
UGATE
R30
Optional
C15 1µF
RT9624A
PWM
0.1µF
GND
EN
R31 680
5V
27
1
PWM1
ISEN1P
V 2 1
32
ISEN1N
VCC
C10
V 2 1
VCC
C16
0.1µF
GND
PWM
28
PWM2
RT8884B
SET2
SET1
C2
SET3
15
2.2µF
Optional for OFS
R4
R6 30k
TSEN
14
13
17
R5
R7
1.833k
R9
9.68k
R12
6.2k
R11 5.6k
R8 75.8k
NTC1
100k
R
R10 100k
ß = 4485
DVD
24
C1
VCC
12
0.1µF
R3
2.2
5V
R2
125k
R1
510k
12V
C21 1µF
510
R35
R34
Q4 x 2
LGATE
RT9624A
EN
5V
R14
130k
R13 1
C20
22
Optional
T E S N O T
VIN
R36
R37 680
30
31
ISEN2P
S A
I B
I
16
R15
100k
C3
0.1µF
ISEN2N
C28
390µF
L3
360nH / 0.72m
C27
22µF
C26
0.1µF
R38 2.2
Q5
BOOT
VCC
C25
R39 0
UGATE
GND
0.1µF
Optional
PHASE
PWM
V 2 1
V 2 1
26
PWM3
F E R
IMON
V
6
7
R18
5.43k
NTC2
100k
R
ß = 4485
R16 12.6k
R17
C4
0.47µF
VCCIO
13.9k
C30 1µF
510
R41
R40
Q6 x 2
LGATE
EN5V
R42
Optional
C29
RT9624A
2
ISEN3P
VR_RDY
23
R19
10k
R20
75
R21
130
R22
130
R23
150
L4
C34
390µF
360nH / 0.72mΩ
C33
22µF
V 2 1
C32
R43 680
V 2 1
3
ISEN3N
VR_HOT
VCLK
VDIO
18
20
21
19
To CPU
Optional
Q7
0.1µF
R45 0
R44 2.2
BOOT
PHASE
UGATE
PWM
VCC
GND
C31
0.1µF
25
PWM4
N E S
29
EN
Enable
V
10
C6
C5
ALERT
C36 1µF
510
R47
R46
Q8 x 2
LGATE
EN
5V
90pF
390pF
R48
Optional
C35
RT9624A
5
COMP
8
R25
59.2k
10k
R24
Optional
CC_SENSE
V
ISEN4P
R49 680
33 (Exposed Pad)
4
GND
ISEN4N
RGND
FB
9
11
C8
Optional
C9
C7
Optional
SS_SENSE
V
VCC
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
©
DS8884B-01 September 2013 www.richtek.com
19
RT8884B
Typical Operating Characteristics
V
CORE
(2V/Div)
EN
(2V/Div)
VR_RDY
(2V/Div)
UGATE1 (20V/Div)
V
CORE
(2V/Div)
I
LOAD
(150A/Div)
CORE VR Power On from EN
V
= 12V, No Load, Boot VID 1.7V
IN
Time (200μs/Div)
CORE VR OCP
V
CORE
(2V/Div)
EN
(2V/Div)
VR_RDY
(2V/Div)
UGATE1
(20V/Div)
V
CORE
(2V/Div)
VR_RDY
(1V/Div)
CORE VR Power Off from EN
V
= 12V, No Load, Boot VID 1.7V
IN
Time (200μs/Div)
CORE VR OVP
VR_RDY
(2V/Div)
UGATE1 (50V/Div)
V
CORE
(1V/Div)
VCLK
(2V/Div)
VDIO
(2V/Div)
ALERT
(2V/Div)
V
= 12V, Boot VID 1.7V
IN
Time (100μs/Div)
CORE VR Dynamic VID Up
V
= 12V, VID = 1.6V to 1.85V, Slew Rate = Slow
IN
Time (20μs/Div)
UGATE1 (20V/Div)
LGATE1
(20V/Div)
V
CORE
(1V/Div)
VCLK
(2V/Div)
VDIO
(2V/Div)
ALERT
(2V/Div)
V
= 12V, Boot VID 1.7V
IN
Time (40μs/Div)
CORE VR Dynamic VID Down
V
= 12V, VID = 1.85V to 1.6V, Slew Rate = Slow
IN
Time (20μs/Div)
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
©
DS8884B-01 September 2013www.richtek.com
20
RT8884B
V
CORE
(1V/Div)
VCLK
(2V/Div)
VDI O
(2V/Div)
ALERT
(2V/Div)
V
CORE
(50mV/Div)
VCLK
(1V/Div)
CORE VR Dynamic VID Up
V
= 12V, VID = 1.6V to 1.85V, Slew Rate = Fast
IN
Time (10μs/Div)
CORE VR Mode Transient
V
CORE
(1V/Div)
VCLK
(2V/Div)
VDI O
(2V/Div)
ALERT
(2V/Div)
V
CORE
(50mV/Div)
VCLK
(1V/Div)
CORE VR Dynamic VID Down
V
= 12V, VID = 1.85V to 1.6V, Slew Rate = Fast
IN
Time (10μs/Div)
CORE VR Mode Transient
UGATE1
(20V/Div)
LGATE1
(10V/Div)
TSEN
(1V/Div)
VR_HOT
(1V/Div)
V
= 12V, VID = 1.7V, PS0 to PS2, I
IN
LOAD
= 0.6A
Time (100μs/Div)
CORE VR Thermal Monitoring
V
= 12V, TSEN Sweep from 1.7V to 2.1V
IN
Time (10ms/Div)
UGATE1
(20V/Div)
LGATE1
(10V/Div)
2.5
2.0
1.5
(V)
IMON
1.0
V
0.5
0.0
V
= 12V, VID = 1.7V, PS2 to PS0, I
IN
LOAD
= 0.6A
Time (100μs/Div)
V
vs. Load Current
IMON
0 25 50 75 100 125
Load Current (A)
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
©
DS8884B-01 September 2013 www.richtek.com
21
RT8884B
Applications information
The RT8884B is a 4/3/2/1 multiphase synchronous Buck
controller designed to meet Intel VR12.5 compatible CPU
specification with a serial SVID control interface. The
controller uses an ADC to implement all kinds of settings
to save a total number of pins for easily using and
increasing PCB space utilization. RT8884B is used in
notebook, desktop computer and server.
G-NAV PTM Control Mode
The RT8884B adopts the G-NAVPTM controller, which is a
current mode constant on-time control with DC offset
cancellation. The approach can not only improve DC offset
problem for increasing system accuracy but also provide
fast transient response. For the RT8884B, when current
feedback signal reaches comp signal to generate an on-
time width to achieve PWM modulation. Figure 1 shows
the basic G-NAVPTM behavior waveforms in continuous
conduct mode (CCM).
Current feedback signal
Comp signal
PWM1
PWM2
PWM3
PWM4
Figure 1 (b). G-NAVPTM Behavior Waveforms in CCM in
Load Transient.
Current feedback signal
Comp signal
PWM1
PWM2
PWM3
PWM4
Figure 1 (a). G-NAVPTM Behavior Waveforms in CCM in
Steady State
Diode Emulation Mode (DEM)
As well-known, the dominate power loss is switching
related loss during light load, hence VR needs to be
operated in asynchronous mode (or called discontinuous
conduct mode, DCM) to reduce switching related loss
since switching frequency is dependent on loading in the
asynchronous mode. RT8884B can operate in Diode
Emulation Mode (DEM) in order to improve light load
efficiency. In DEM operation, the behavior of the low side
MOSFET(s) needs to work like a diode, that is, the low
side MOSFET(s) will be turned on when the phase voltage
is a negative value, i.e. the inductor current follows from
source to drain of low side MOSFET(s). The low side
MOSFET(s) will be turned off when phase voltage is a
positive value, i.e. reversed current is not allowed. Figure
2 shows the control behavior in DEM. Figure 3 shows the
G-NAVPTM operation in DEM to illustrate the control
behaviors. When the load decreases, the discharge time
of output capacitors increases during UGATE and LGATE
are turned off. Hence, the switching frequency and
switching loss will be reduced to improve efficiency in
light load condition.
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
22
©
DS8884B-01 September 2013www.richtek.com
Inductor current
Phase node
UGATE
LGATE
Figure 2. Diode Emulation Mode (DEM) in Steady State
RT8884B
Inductor
current signal
Output capacitor
discharge slope
Output capacitor
discharge slope
COMP signal
UGATE
LGATE
(a). Lighter Load Condition
Capacitor discharge slope is lower than Figure 3 (b).
Inductor
current signal
COMP signal
UGATE
LGATE
(b). Load Increased Condition
Capacitor discharge slope is higher than Figure 3 (a).
Figure 3. G-NAVPTM Operation in DEM.
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
23
RT8884B
Phase Interleaving Function
RT8884B is a multiphase controller, which has a phase
interleaving function, 90 degree phase shift for 4-phase
operation, 120 degree phase shift for 3-phase operation
and 180 degree phase shift for 2-phase operation which
can help reduce output voltage ripple and EMI problem.
Switching Frequency (TON) Setting
RT8884B is one kind of constant on-time control. The
patented CCRCOT (Constant Current Ripple COT)
technology can generate an adaptive on-time with input
voltage and VID code to obtain a constant current ripple.
So that the output voltage ripple can be controlled nearly
like a constant as different input and output voltage change.
Connect a resistor R
between input terminal and
TON
TONSET pin to set the on-time width.
RC2.2
××
T = V < 2.2V
ON DAC
T = V 2.2V
ON DAC
TON
VV
IN DAC
RCV
××
TON DAC
VV
IN DAC
()
()
Where C = 18.2pF. By using the relationship between
TON and fSW, the switching frequency fSW is :
f =
SW(MAX)
⎛⎞⎛ ⎞
1
⎜⎟⎜ ⎟
TV
ON (MAX) IN (MAX)
⎝⎠⎝ ⎠
V
×
DAC (MAX)
Where
Per Phase Current Sense
In the RT8884B, the current signal is used for load-line
setting and OC (Over Current) protection. The inductor
current sense method adopts the lossless current sensing
for allowing high efficiency as illustrated in the Figure 4.
When inductance and DCR time constant is equal to RXC
filter network time constant, a voltage ILX x DCR will drop
on CX to generate inductor current signal. According to
the Figure 4, the ISENxN is as follows :
I DCR
×
ISENxN =
LX
R
CSx
Where LX / DCR = RXCX is held. The method can get high
efficiency performance, but DCR value will be drifted by
temperature, a NTC resistor should add in the resistor
network in the IMON pin to achieve DCR thermal
compensation.
In RT8884B design, the resistance of the R
is restricted
CSx
to 680Ω; moreover, the accuracy of RCS is recommended
to be 1% or higher.
DCR
C
V
X
CORE
I
SENxN
+
-
ISENxP
ISENxN
I
Lx
L
X
R
X
R
CSx
X
f
SW(MAX)
V
V
is the maximum switching frequency.
DAC(MAX)
IN(MAX)
is the maximum V
is the maximum application input voltage.
of application.
DAC
Figure 4. Lossless Current Sense Method
Total Current Sense
Total current sense method is a patented topology, unlike
T
ON(MAX)
parameters (V
When load increases, on-time keeps constant. The
off-time width will be reduced so that loading can load
more power from input terminal to regulate output voltage.
Hence the loading current increases in case the switching
frequency also increases. Higher switching frequency
operation can reduce power components' size and PCB
space, trading off the whole efficiency since switching
related loss increases, vice versa.
is derived from TON equation with maximum
IN(MAX)
, V
DAC(MAX)
).
conventional current sense method requiring a NTC resistor
in per phase current loop for thermal compensation.
RT8884B adopts the total current sense method requiring
only one NTC resistor for thermal compensation, and NTC
resistor cost can be saved by using this method. Figure 5
shows the total current sense method which connecting
the resistor network between the IMON and VREF pins to
set a part of current loop gain for load-line (droop) setting
and set accurate over current protection.
V V = R (I + I + I + I )
−××
IMON REF EQ L1 L2 L3 L4
DCR
R
CS
REQ includes a NTC resistor to compensate DCR thermal
drifting for high accuracy load-line (droop).
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
24
©
DS8884B-01 September 2013www.richtek.com
RT8884B
V
V
I
L1
L
CORE
DCR
CORE
R
I
IMON
R
NTC
R
EQ
SEN1N
I
SEN2N
V
REF
I
SEN3N
+
-
+
-
+
-
ISEN1P
ISEN1N
L
R
ISEN2P
ISEN2N
L
R
ISEN3P
ISEN3N
L
C
R
x I
LL
CC
R
CS
I
L2
DCR
C
V
CORE
R
CS
I
L3
DCR
C
R
CS
I
L4
DCR
Voltage Loop
I
L1.2.3.4
DCR
C
R
CS
Figure 6. Load-Line (Droop)
L
R
ISEN[1:4]P
ISEN[1:4]N
Figure 7. Voltage Loop and Current Loop
Load-line slope = -R
R2
-
R1
+
VID
I
+ I
SEN1N
SEN2N
+ I
I
SEN3N
+
-
SEN4N
IMON
LL
I
CC
TON Generator
+
-
1/2
+
-
+
R
NTC
V
REF
R
EQ
C
R
CS
I
SEN4N
+
-
R
ISEN4P
ISEN4N
Figure 5. Total Current Sense Method
Load-Line (Droop) Setting
The G-NAVPTM topology can set load-line (droop) via the
current loop and the voltage loop, the load-line is a slope
between load current ICC and output voltage V
CORE
as
shown in Figure 6. Figure 7 shows the voltage control and
current loop. By using both loops, the load-line (droop)
can easily be set. The load-line set equation is :
1 DCR
××
2R
A
R = = (m )
LL
I
A
V
CS
R2
R
EQ
Ω
R1
Compensator Design
The compensator of RT8884B doesn't need a complex
type II or type III compensator to optimize control loop
performance. It can adopt a simple type I compensator
(one pole, one zero) in G-NAVPTM topology to achieve
constant output impedance design for Intel VR12.5 ACLL
specification. The one pole one zero compensator is
shown as Figure 8, the transfer function of compensator
should be designed as the following transfer function to
achieve constant output impedance, i.e. Zo(s) = load-line
slope in the entire frequency range :
1 +
s
fsw
×
π
s
ω
ESR
G (s)
CON
≈×
1 +
A
I
R
LL
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
©
DS8884B-01 September 2013 www.richtek.com
25
RT8884B
Where AI is current loop gain, RLL is load-line, fSW is
switching frequency and ω
located at 1 / (C
x ESR). Then the C1 and C2 should
OUT
is a pole that should be
ESR
be designed as follows :
C1 =
C2 =
1
R1 f
π
××
SW
C ESR
×
OUT
R2
C1
R1
C2
R2
­+
VID
Figure 8. Type I Compensator
Multi-Function Pin Setting Mechanism
For reducing total pin number of package, the SET[1:2]
pins adopt the multi-function pin setting mechanism in
RT8884B. Figure 9 illustrates this operating mechanism.
First, external voltage divider is to set the Function 1 and
then internal current source 80μA is to set the Function
2. The setting voltage of Function 1 and Function 2 can
be represented as follows :
V = V
Function 1 CC
V = 80A
Function 2
R2
R1 + R2
×
μ
×
R1 R2
×
R1 + R2
All function setting will be done within 500μs after power
ready (POR).
If V
Function 1
and V
Function 2
are determined, R1 and R2 can
be calculated as follows :
VV
×
R1 =
R2 =
CC Function 2
80 A V
μ
×
Function 1
R1 V
×
Function 1
VV
CC Function 1
Function 2
<5:0>
Function 2
<5:0>
Function 1
ADC
Function 1
Register
Function 2
Register
Function 1
ADC
Function 1
Register
Function 2
Register
<5:0>
<5:0>
80µA
SET[1:2]
80µA
SET[1:2]
V
CC
R1
R2
V
CC
R1
R2
Figure 9. Multi-Function Pin Setting Mechanism
Connecting a R3 resistor from SET[1:2] pin to the middle
node of voltage divider can help to fine tune the set voltage
of Function 2, which does not affect the set voltage of
Function 1. The Figure 10 shows the setting method and
the set voltage of Function 1 and Function 2 can be
represented as :
V = V
Function 1 CC
V = 80AR3 +
Function 2
R2
R1 + R2
μ
×
×
R1 R2
⎛⎞ ⎜⎟
⎝⎠
×
R1 + R2
In addition, Richtek provides a Microsoft Excel-based
spreadsheet to help design the SETx resistor network for
RT8884B.
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
26
©
DS8884B-01 September 2013www.richtek.com
Function 2
<5:0>
ADC
Function 1
<5:0>
Function 1
Register
Function 2
Register
80µA
SET[1:2]
R3
RT8884B
QR Width
VCORE
V
CC
R1
R2
PWM1
PWM2
PWM3
PWM4
QR Threshold
Load
Function 2
<5:0>
Function 1
ADC
Function 1
Register
Function 2
Register
<5:0>
80µA
SET[1:2]
R3
V
CC
R1
R2
Figure 10. Multi-Function Pin Setting Mechanism with a
R3 Resistor to Fine Tune the Set Voltage of Function 2
Quick Response (QR) Mechanism
When the transient load step-up becomes quite large, it
is difficult for loop response to meet the energy transfer.
Hence, that output voltage generate undershoot to fail
specification. RT8884B has Quick Response (QR)
mechanism being able to improve this issue. It adopts a
nonlinear control mechanism which can disable
interleaving function and simultaneously to turn on all
UGATE one pulse at instantaneous step-up transient load
to restrain the output voltage drooping, Figure 11 shows
the QR behavior.
Figure 11. Quick Response Mechanism
The output voltage signal behavior needs to be detected
so that QR mechanism can be trigged. The output voltage
signal is via a remote sense line to connect at the VSEN
pin that is shown in Figure 12. The QR mechanism needs
to set QR width and QR threshold. Both definitions are
shown in Figure 9. A proper QR mechanism set can meet
different applications. The SET2 pin is a multi-function
pin which can set QR threshold, QR width and ICCMAX.
Current Mirror
V
CC_SENSE
VSEN
QR trigger
I
Mirror
VID
+
-
R
QR
Figure 12. Simplified QR Trigger Schematic
An internal current source 80μA is used in multi-function
pin setting mechanism. For example, 35mV QR threshold
and 1.3 x TON QR width are set. According to the Table
4, the set voltage should be between 0.4504V and 0.4723V.
Please note that a high accuracy resistor is needed for
this setting accuracy, <1% error tolerance is
recommended.
In the Table 4, there are some No Use marks in
QRWIDTH section. It means that user should not use it
to avoid the possibility of shift digital code due to tolerance
concern.
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
27
RT8884B
Table 4 : SET2 Pin Setting for QR Threshold and QR Width
R1 R2
×
R1 R2
× +
QR_TH
<2:0>
000
001
010
011
100
QRWIDTH
<2:0>
111
111
111
111
111
QR
Threshold
Disable
30mV
35mV
40mV
45mV
QR Width
(%TON)
No Use
No Use
No Use
No Use
No Use
V = 80A
QR_ SET
Min Typical Max unit
0.000 10.948 21.896 mV 000 No Use
25.024 35.973 46.921 mV 001 155%
50.049 60.997 71.945 mV 010 133%
75.073 86.022 96.970 mV 011 111%
100.098 111.046 121.994 mV 100 89%
125.122 136.070 147.019 mV 101 67%
150.147 161.095 172.043 mV 110 44%
175.171 186.119 197.067 mV
200.196 211.144 222.092 mV 000 No Use
225.220 236.168 247.116 mV 001 155%
250.244 261.193 272.141 mV 010 133%
275.269 286.217 297.165 mV 011 111%
300.293 311.241 322.190 mV 100 89%
325.318 336.266 347.214 mV 101 67%
350.342 361.290 372.239 mV 110 44%
375.367 386.315 397.263 mV
400.391 411.339 422.287 mV 000 No Use
425.415 436.364 447.312 mV 001 155%
450.440 461.388 472.336 mV 010 133%
475.464 486.413 497.361 mV 011 111%
500.489 511.437 522.385 mV 100 89%
525.513 536.461 547.410 mV 101 67%
550.538 561.486 572.434 mV 110 44%
575.562 586.510 597.458 mV
600.587 611.535 622.483 mV 000 No Use
625.611 636.559 647.507 mV 001 155%
650.635 661.584 672.532 mV 010 133%
675.660 686.608 697.556 mV 011 111%
700.684 711.632 722.581 mV 100 89%
725.709 736.657 747.605 mV 101 67%
750.733 761.681 772.630 mV 110 44%
775.758 786.706 797.654 mV
800.782 811.730 822.678 mV 000 No Use
825.806 836.755 847.703 mV 001 155%
850.831 861.779 872.727 mV 010 133%
875.855 886.804 897.752 mV 011 111%
900.880 911.828 922.776 mV 100 89%
925.904 936.852 947.801 mV 101 67%
950.929 961.877 972.825 mV 110 44%
975.953 986.901 997.849 mV
μ
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
28
©
DS8884B-01 September 2013www.richtek.com
RT8884B
R1 R2
×
R1 R2
× +
QR_TH
<2:0>
101
110
111
QRWIDTH
<2:0>
111
111
111
QR
Threshold
50mV
55mV
60mV
QR Width
(%TON)
No Use
No Use
No Use
V = 80A
QR_ SET
Min Typical Max unit
1000.978 1011.926 1022.874 mV 000 No Use
1026.002 1036.950 1047.898 mV 001 155%
1051.026 1061.975 1072.923 mV 010 133%
1076.051 1086.999 1097.947 mV 011 111%
1101.075 1112.023 1122 .9 7 2 mV 100 8 9%
1126.100 1137.048 1147.996 mV 101 67%
1151.124 1162.072 1173.021 mV 110 44%
1176.149 1187.097 1198.045 mV
1201.173 1212.121 1223.069 mV 000 No Use
1226.197 1237.146 1248.094 mV 001 155%
1251.222 1262.170 1273.118 mV 010 133%
1276.246 1287.195 1298.143 mV 011 111%
1301.271 1312.219 1323.167 mV 100 89%
1326.295 1337.243 1348.192 mV 101 67%
1351.320 1362.268 1373.216 mV 110 44%
1376.344 1387.292 1398.240 mV
1401.369 1412.317 1423.265 mV 000 No Use
1426.393 1437.341 1448.289 mV 001 155%
1451.417 1462.366 1473.314 mV 010 133%
1476.442 1487.390 1498.338 mV 011 111%
1501.466 1512.414 1523.363 mV 100 89%
1526.491 1537.439 1548.387 mV 101 67%
1551.515 1562.463 1573.412 mV 110 44%
1576.540 1587.488 1598.436 mV
μ
Dynamic VID (DVID) Compensation
When VID transition event occurs, a charge current will
be generated in the loop to cause that DVID performance
is deteriorated by this induced charge current, the
phenomenon is called droop effect. The droop effect is
shown in Figure 13. When VID up transition occurs, the
output capacitor will be charged by inductor current. Since
current signal is sensed in inductor, an induced charge
current will appear in control loop. The induced charge
current will produce a voltage drop in R1 to cause output
voltage to have a droop effect. Due to this, VID transition
performance will be deteriorated.
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
The RT8884B provides a DVID compensation function. A
virtual charge current signal can be established by the
SET1 pin to cancel the real induced charge current signal
and the virtual charge current signal is defined in Figure
15. Figure 14 shows the operation of cancelling droop
effect. A virtual charge current signal is established first
and then VID signal plus virtual charge current signal is
generated in FB pin. Hence, an induced charge current
signal flows to R1 and is cancelled to reduce droop effect.
29
RT8884B
V
IN
Q1
Gate
Driver
Q2
Charge current
L
C
C
O2
O1
R
ESR
CPU
VIN
VID
Ai
­+
C2
R2
EA
CCRCOT
Induced charge current signal
COMP
t
ON
Figure 13. Droop Effect in VID Transition
V
IN
VIN
VID
Q1
CCRCOT
Gate
Driver
Induced charge current signal
COMP
t
ON
Q2
­+
I
DROOP
VID
VID Transition
­+
C1
R1
Output voltage
DVID_Width
DVID_Threshold
Figure 15. Definition of Virtual Charge Current Signal
Charge current
L
C
C
R
Ai
R2
I
DROOP
EA
O1
C2
ESR
­+
O2
Output voltage
CPU
C1
R1
Virtual Charge Current
DVID Event
+
Slew Rate
Control
Virtual Charge
Current
VID
VID Transition
SET1
Generator
Figure 14. DVID Compensation
Table 5 and Table 6 show the DVID_Threshold and
DVID_Width settings in SET1 pin. For example, 25mV
DVID_Threshold and 72μs DVID_Width are designed (OCP
sets as 100% ICCMAX, and RSET sets as 100% Ramp
current). The DVID_Width is set by an external voltage
divider and the DVID_Threshold is set by an internal current
source 80μA by the multi-function pin setting mechanism.
According to the Table 5 and Table 6, the DVID_Threshold
set voltage should be between 0.225V and 0.247V and
the DVID_Width set voltage should be between 0.275V
and 0.297V. Please note that a high accuracy resistor is
needed for this setting, <1% error tolerance is
recommended.
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
30
©
DS8884B-01 September 2013www.richtek.com
RT8884B
Table 5 : SET1 Pin Setting for DVID_Threshold
R1 R2
V = 80A
DVID_T hreshol d
Min Typical Max unit
0.000 10.948 21.896 mV 000 No Use
25.024 35.973 46.921 mV 001 100%
50.049 60.997 71.945 mV 010 110%
75.073 86.022 96.970 mV 011 120%
100.098 111.046 121.994 mV 100 130%
125.122 136.070 147.019 mV 101 140%
150.147 161.095 172.043 mV 110 150%
175.171 186.119 197.067 mV
200.196 211.144 222.092 mV 000 No Use
225.220 236.168 247.116 mV 001 100%
250.244 261.193 272.141 mV 010 110%
275.269 286.217 297.165 mV 011 120%
300.293 311.241 322.190 mV 100 130%
325.318 336.266 347.214 mV 101 140%
350.342 361.290 372.239 mV 110 150%
375.367 386.315 397.263 mV
400.391 411.339 422.287 mV 000 No Use
425.415 436.364 447.312 mV 001 100%
450.440 461.388 472.336 mV 010 110%
475.464 486.413 497.361 mV 011 120%
500.489 511.437 522.385 mV 100 130%
525.513 536.461 547.410 mV 101 140%
550.538 561.486 572.434 mV 110 150%
575.562 586.510 597.458 mV
600.587 611.535 622.483 mV 000 No Use
625.611 636.559 647.507 mV 001 100%
650.635 661.584 672.532 mV 010 110%
675.660 686.608 697.556 mV 011 120%
700.684 711.632 722.581 mV 100 130%
725.709 736.657 747.605 mV 101 140%
750.733 761.681 772.630 mV 110 150%
775.758 786.706 797.654 mV
800.782 811.730 822.678 mV 000 No Use
825.806 836.755 847.703 mV 001 100%
850.831 861.779 872.727 mV 010 110%
875.855 886.804 897.752 mV 011 120%
900.880 911.828 922.776 mV 100 130%
925.904 936.852 947.801 mV 101 140%
950.929 961.877 972.825 mV 110 150%
975.953 986.901 997.849 mV
μ
×
R1 R2
× +
DVID_TH
<2:0>
000
001
010
011
100
OCS
<2:0>
111
111
111
111
111
DVID_Threshold OCP = %ICCMAX
15mV
No Use
25mV
No Use
35mV
No Use
45mV
No Use
55mV
No Use
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
31
RT8884B
R1 R2
V = 80A
DVID_Threshold
Min Typical Max unit
1000.978 1011.926 1022.874 mV 000 No Use
1026.002 1036.950 1047.898 mV 001 100%
1051.026 1061.975 1072.923 mV 010 110%
1076.051 1086.999 1097.947 mV 011 120%
1101.075 1112.023 1122.972 mV 100 130%
1126.100 1137.048 1147.996 mV 101 140%
1151.124 1162.072 1173.021 mV 110 150%
1176.149 1187.097 1198.045 mV
1201.173 1212.121 1223.069 mV 000 No Use
1226.197 1237.146 1248.094 mV 001 100%
1251.222 1262.170 1273.118 mV 010 110%
1276.246 1287.195 1298.143 mV 011 120%
1301.271 1312.219 1323.167 mV 100 130%
1326.295 1337.243 1348.192 mV 101 140%
1351.320 1362.268 1373.216 mV 110 150%
1376.344 1387.292 1398.240 mV
1401.369 1412.317 1423.265 mV 000 No Use
1426.393 1437.341 1448.289 mV 001 100%
1451.417 1462.366 1473.314 mV 010 110%
1476.442 1487.390 1498.338 mV 011 120%
1501.466 1512.414 1523.363 mV 100 130%
1526.491 1537.439 1548.387 mV 101 140%
1551.515 1562.463 1573.412 mV 110 150%
1576.540 1587.488 1598.436 mV
μ
×
R1 R2
× +
DVID_TH
<2:0>
101
110
111
OCS
<2:0>
111
111
111
DVID_Threshold OCP = %ICCMAX
65mV
No Use
75mV
No Use
85mV
No Use
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
32
©
DS8884B-01 September 2013www.richtek.com
RT8884B
Table 6 : SET1 Pin Setting for DVID_Width
V = V
DVID_ W idth CC
Min Typical Max unit
0.000 10.948 21.896 mV 000 No Use
25.024 35.973 46.921 mV 001 75%
50.049 60.997 71.945 mV 010 87.5%
75.073 86.022 96.970 mV 011 100%
100.098 111.046 121.994 mV 100 112.5%
125.122 136.070 147.019 mV 101 125%
150.147 161.095 172.043 mV 110 137.5%
175.171 186.119 197.067 mV
200.196 211.144 222.092 mV 000 No Use
225.220 236.168 247.116 mV 001 75%
250.244 261.193 272.141 mV 010 87.5%
275.269 286.217 297.165 mV 011 100%
300.293 311.241 322.190 mV 100 112.5%
325.318 336.266 347.214 mV 101 125%
350.342 361.290 372.239 mV 110 137.5%
375.367 386.315 397.263 mV
400.391 411.339 422.287 mV 000 No Use
425.415 436.364 447.312 mV 001 75%
450.440 461.388 472.336 mV 010 87.50%
475.464 486.413 497.361 mV 011 100%
500.489 511.437 522.385 mV 100 112.5%
525.513 536.461 547.410 mV 101 125%
550.538 561.486 572.434 mV 110 137.5%
575.562 586.510 597.458 mV
600.587 611.535 622.483 mV 000 No Use
625.611 636.559 647.507 mV 001 75%
650.635 661.584 672.532 mV 010 87.50%
675.660 686.608 697.556 mV 011 100%
700.684 711.632 722.581 mV 100 112.50%
725.709 736.657 747.605 mV 101 125%
750.733 761.681 772.630 mV 110 137.5%
775.758 786.706 797.654 mV
800.782 811.730 822.678 mV 000 No Use
825.806 836.755 847.703 mV 001 75%
850.831 861.779 872.727 mV 010 87.5%
875.855 886.804 897.752 mV 011 100%
900.880 911.828 922.776 mV 100 112.50%
925.904 936.852 947.801 mV 101 125%
950.929 961.877 972.825 mV 110 137.5%
975.953 986.901 997.849 mV
R2
R1 R2×+
DVID_WTH
<2:0>
000
001
010
011
100
RSET <2:0>
111
111
111
111
111
DVID_Width RSET % 130k R
48μs
No Use
72μs
No Use
96μs
No Use
120μs
No Use
144μs
No Use
TON
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
33
RT8884B
V = V
DVID_ W idth CC
Min Typical Max unit
1000.978 1011.926 1022.874 mV 000 No Use
1026.002 1036.950 1047.898 mV 001 75%
1051.026 1061.975 1072.923 mV 010 87.5%
1076.051 1086.999 1097.947 mV 011 100%
1101.075 1112.023 1122.972 mV 100 112.5%
1126.100 1137.048 1147.996 mV 101 125%
1151.124 1162.072 1173.021 mV 110 137.5%
1176.149 1187.097 1198.045 mV
1201.173 1212.121 1223.069 mV 000 No Use
1226.197 1237.146 1248.094 mV 001 75%
1251.222 1262.170 1273.118 mV 010 87.5%
1276.246 1287.195 1298.143 mV 011 100%
1301.271 1312.219 1323.167 mV 100 112.5%
1326.295 1337.243 1348.192 mV 101 125%
1351.320 1362.268 1373.216 mV 110 137.5%
1376.344 1387.292 1398.240 mV
1401.369 1412.317 1423.265 mV 000 No Use
1426.393 1437.341 1448.289 mV 001 75%
1451.417 1462.366 1473.314 mV 010 87.50%
1476.442 1487.390 1498.338 mV 011 100%
1501.466 1512.414 1523.363 mV 100 112.5%
1526.491 1537.439 1548.387 mV 101 125%
1551.515 1562.463 1573.412 mV 110 137.5%
1576.540 1587.488 1598.436 mV
R2
R1 R2×+
DVID_WTH
<2:0>
101
110
111
RSET <2:0>
111
111
111
DVID_Width RSET % 130k R
168μs
No Use
192μs
No Use
216μs
No Use
TON
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
34
©
DS8884B-01 September 2013www.richtek.com
RT8884B
Ramp Compensation
G-NAVPTM topology is one type of ripple based control
that has fast transient response, no beat frequency issue
in high repetitive load frequency operation and lower BOM
cost. However, ripple based control usually has no good
noise immunity. The RT8884B provides that the ramp
compensation to increase noise immunity and reduce jitter
at the switching node. Figure 16 shows the ramp
compensation.
Noise Margin
Noise Margin
w/o ramp compensation
IMON-VREF
VCOMP
w/ ramp compensation
IMON-VREF
VCOMP
Figure 16. Ramp Compensation
Current Monitor, IMON
RT8884B includes a current monitor (IMON) function which
can be used to detect over current protection and the
maximum processor current ICCMAX, and also sets a
part of current gain in the load-line setting. It produces an
analog voltage proportional to output current between the
IMON and VREF pins.
The calculation for IMON-VREF voltage is shown as
below :
+ I
L2
DCR
R
CS
+ I
+ IL4 are output current and the
L3
()
V V = R I + I + I + I
−××
IMON REF EQ L1 L2 L3 L4
Where I
L1
definitions of DCR, RCS and REQ can refer to Figure 6.
Maximum Processor Current Setting, ICCMAX
The maximum processor current ICCMAX can be set by
the SET2 pin. ICCMAX register is set by an external voltage
divider by the multi-function mechanism. The Table 7
shows the ICCMAX setting in SET2 pin. For example,
I
= 106A, the V
CCMAX
typically. Additionally, V
1.6V when I
L1
+ I
L2
+ I
L3
signal will be pulled to low level if V
needs to be set as 0.67
ICCMAX
V
IMON
needs to be set as
REF
+ IL4 = 106A. The ICCMAX alert
IMON
V
REF
= 1.6V.
For the RT8884B, the ramp compensation also needs to
be considered during mode transition from PS0/1 to PS2.
For achieving smooth mode transition into PS2, a proper
ramp compensation design is necessary. Since the ramp
compensation needs to be proportional to the on-time, in
others words, ramp compensation is dependent on R
design. The Table 6 shows the relationship between R
TON
TON
and ramp compensation. For example, when designed
R
is 100kΩ, the RAMP is set as .
TON
130k 100k
100%
×
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
35
RT8884B
Table 7 : SET2 Pin Setting for ICCMAX
V = V
ICCMAX CC
Min Typical Max Unit
0.000 3.128 6.256 mV 0 A
12.512 15.640 18.768 mV 2 A
25.024 28.152 31.281 mV 4 A
37.537 40.665 43.793 mV 6 A
50.049 53.177 56.305 mV 8 A
62.561 65.689 68.817 mV 10 A
75.073 78.201 81.329 mV 12 A
87.586 90.714 93.842 mV 14 A
100.098 103.226 106.354 mV 16 A
112.610 115.738 118.866 mV 18 A
125.122 128.250 131.378 mV 20 A
137.634 140.762 143.891 mV 22 A
150.147 153.275 156.403 mV 24 A
162.659 165.787 168.915 mV 26 A
175.171 178.299 181.427 mV 28 A
187.683 190.811 193.939 mV 30 A
200.196 203.324 206.452 mV 32 A
212.708 215.836 218.964 mV 34 A
225.220 228.348 231.476 mV 36 A
237.732 240.860 243.988 mV 38 A
250.244 253.372 256.500 mV 40 A
262.757 265.885 269.013 mV 42 A
275.269 278.397 281.525 mV 44 A
287.781 290.909 294.037 mV 46 A
300.293 303.421 306.549 mV 48 A
312.805 315.934 319.062 mV 50 A
325.318 328.446 331.574 mV 52 A
337.830 340.958 344.086 mV 54 A
350.342 353.470 356.598 mV 56 A
362.854 365.982 369.110 mV 58 A
375.367 378.495 381.623 mV 60 A
387.879 391.007 394.135 mV 62 A
400.391 403.519 406.647 mV 64 A
412.903 416.031 419.159 mV 66 A
425.415 428.543 431.672 mV 68 A
437.928 441.056 444.184 mV 70 A
450.440 453.568 456.696 mV 72 A
462.952 466.080 469.208 mV 74 A
475.464 478.592 481.720 mV 76 A
487.977 491.105 494.233 mV 78 A
500.489 503.617 506.745 mV 80 A
R2
R1 R2×+
ICCMAX Unit
V = V
ICCMAX CC
Min Typical Max Unit
513.001 516.129 519.257 mV 82 A
525.513 528.641 531.769 mV 84 A
538.025 541.153 544.282 mV 86 A
550.538 553.666 556.794 mV 88 A
563.050 566.178 569.306 mV 90 A
575.562 578.690 581.818 mV 92 A
588.074 591.202 594.330 mV 94 A
600.587 603.715 606.843 mV 96 A
613.099 616.227 619.355 mV 98 A
625.611 628.739 631.867 mV 100 A
638.123 641.251 644.379 mV 102 A
650.635 653.763 656.891 mV 104 A
663.148 666.276 669.404 mV 106 A
675.660 678.788 681.916 mV 108 A
688.172 691.300 694.428 mV 110 A
700.684 703.812 706.940 mV 112 A
713.196 716.325 719.453 mV 114 A
725.709 728.837 731.965 mV 116 A
738.221 741.349 744.477 mV 118 A
750.733 753.861 756.989 mV 120 A
763.245 766.373 769.501 mV 122 A
775.758 778.886 782.014 mV 124 A
788.270 791.398 794.526 mV 126 A
800.782 803.910 807.038 mV 128 A
813.294 816.422 819.550 mV 130 A
825.806 828.935 832.063 mV 132 A
838.319 841.447 844.575 mV 134 A
850.831 853.959 857.087 mV 136 A
863.343 866.471 869.599 mV 138 A
875.855 878.983 882.111 mV 140 A
888.368 891.496 894.624 mV 142 A
900.880 904.008 907.136 mV 144 A
913.392 916.520 919.648 mV 146 A
925.904 929.032 932.160 mV 148 A
938.416 941.544 944.673 mV 150 A
950.929 954.057 957.185 mV 152 A
963.441 966.569 969.697 mV 154 A
975.953 979.081 982.209 mV 156 A
988.465 991.593 994.721 mV 158 A
1000.978 1004.106 1007.234 mV 160 A
1013.490 1016.618 1019.746 mV 162 A
R2
R1 R2
+
×
ICCMAX Unit
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
36
©
DS8884B-01 September 2013www.richtek.com
RT8884B
V = V
ICCMAX CC
Min Typical Max Unit
1026.002 1029.13 1032.258 mV 164 A
1038.514 1041.642 1044.770 mV 166 A
1051.026 1054.154 1057.283 mV 168 A
1063.539 1066.667 1069.795 mV 170 A
1076.051 1079.179 1082.307 mV 172 A
1088.563 1091.691 1094.819 mV 174 A
1101.075 1104.203 1107.331 mV 176 A
1113.587 1116.716 1119.844 mV 178 A
1126.100 1129.228 1132.356 mV 180 A
1138.612 1141.740 1144.868 mV 182 A
1151.124 1154.252 1157.380 mV 184 A
1163.636 1166.764 1169.892 mV 186 A
1176.149 1179.277 1182.405 mV 188 A
1188.661 1191.789 1194.917 mV 190 A
1201.173 1204.301 1207.429 mV 192 A
1213.685 1216.813 1219.941 mV 194 A
1226.197 1229.326 1232.454 mV 196 A
1238.710 1241.838 1244.966 mV 198 A
1251.222 1254.350 1257.478 mV 200 A
1263.734 1266.862 1269.990 mV 202 A
1276.246 1279.374 1282.502 mV 204 A
1288.759 1291.887 1295.015 mV 206 A
1301.271 1304.399 1307.527 mV 208 A
R2
R1 R2×+
ICCMAX Unit
V = V
ICCMAX CC
Min Typical Max Unit
1313.783 1316.911 1320.039 mV 210 A
1326.295 1329.423 1332.551 mV 212 A
1338.807 1341.935 1345.064 mV 214 A
1351.320 1354.448 1357.576 mV 216 A
1363.832 1366.960 1370.088 mV 218 A
1376.344 1379.472 1382.600 mV 220 A
1388.856 1391.984 1395.112 mV 222 A
1401.369 1404.497 1407.625 mV 224 A
1413.881 1417.009 1420.137 mV 226 A
1426.393 1429.521 1432.649 mV 228 A
1438.905 1442.033 1445.161 mV 230 A
1451.417 1454.545 1457.674 mV 232 A
1463.930 1467.058 1470.186 mV 234 A
1476.442 1479.570 1482.698 mV 236 A
1488.954 1492.082 1495.210 mV 238 A
1501.466 1504.594 1507.722 mV 240 A
1513.978 1517.107 1520.235 mV 242 A
1526.491 1529.619 1532.747 mV 244 A
1539.003 1542.131 1545.259 mV 246 A
1551.515 1554.643 1557.771 mV 248 A
1564.027 1567.155 1570.283 mV 250 A
1576.540 1579.668 1582.796 mV 252 A
1589.052 1592.180 1595.308 mV 254 A
R1 R2×+
R2
ICCMAX Unit
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
37
RT8884B
Over Current Protection
RT8884B provides Over Current Protection (OCP) which
is set by the SET1 pin. The OCP threshold setting can
refer to ICCMAX current in the Table 7. For example, if
ICCMAX is set as 120A, user can set voltage by using
the external voltage divider in SET1 pin as 0.466V typically
if DVID_Threshold = 35mV, then 144A OCP (120% x
ICCMAX) threshold will be set. When output current is
higher than the OCP threshold, OCP is latched with a
40μs delay time to prevent false trigger. Besides, the OCP
function is masked when dynamic VID transient occurs
and after dynamic VID transition, OCP is masked for 80μs.
Over Output Voltage Protection
An OVP condition is detected when the VSEN pin is
350mV more than VID. When OVP is detected, the upper
gate voltage UGATEx is pulled-low and the lower gate
voltage LGATEx is pulled-high, OVP is latched with a
0.5μs delay time to prevent false trigger.
Negative Voltage Protection
Since the OVP latch continuously turns on all low side
MOSFETs of the VR, the VR will suffer negative output
voltage. When the VSEN detects a voltage below −0.05V
after triggering OVP, the VR will trigger NVP to turn off all
low side MOSFETs of the VR while the high side MOSFETs
remains off. After triggering NVP, if the output voltage rises
above 0V, the OVP latch will restart to turn on all low side
MOSFETs. Therefore, the output voltage may bounce
between 0V and 0.05V due to OVP latch and NVP
triggering. The NVP function will be active only after OVP
is triggered.
Under Voltage Protection
When the VSEN pin voltage is 350mV less than VID, a
UVP will be latched. When UVP latched, both the UGATEx
and LGATEx will be pulled-low. A 3μs delay is used in
UVP detection circuit to prevent false trigger. Besides,
the UVP function is masked when dynamic VID transient
occurs and after dynamic VID transition, UVP is masked
for 80μs.
Under Voltage Lock Out (UVLO)
During normal operation, if the voltage at the VCC or DVD
pin drops below POR threshold 4.1V (min), the VR will
trigger UVLO. The UVLO protection forces all high side
MOSFETs and low side MOSFETs off by shutting down
internal PWM logic drivers.
Power Ready (POR) Detection
During start-up, the RT8884B will detect the voltage at
the voltage input pins : VCC, EN and DVD. When V
4.45V and V
> 2V, the RT8884B will recognize the
DVD
power state of system to be ready (POR = high) and wait
for enable command at the EN pin. After POR = high and
V
> 0.7V, the RT8884B will enter start-up sequence. If
EN
the voltage at any voltage pin drops below low threshold
(POR = low), the RT8884B will enter power down
sequence and all the functions will be disabled. Normally,
connecting system voltage VTT (1.05V) to the EN pin and
power stage VIN (12V, through a voltage divider) to the
DVD pin is recommended. 1ms (max) after the chip has
been enabled, the SVID circuitry will be ready. All the
protection latches (OVP, OCP, UVP) will be cleared only
by VCC. The condition of VEN = low will not clear these
latches. Figure 17 and Figure 18 show the POR detection
and the timing chart for POR process, respectively.
5V
CP
+
-
CP
+
-
CP
+
-
POR
Enable
V
1.05V
VCC
4.45V
R1
DVD
R2
TT
2V
EN
0.7V
Figure 17. POR Detection
VCC
DVD
POR
EN
Invalid Invalid
SVID
1ms
Valid
CC
>
Figure 18. Timing Chart for POR Process
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
38
©
DS8884B-01 September 2013www.richtek.com
RT8884B
Precise Reference Current Generation, IBIAS
Analog circuits need very precise reference voltage/current
to drive/set these analog devices. The RT8884B provides
a 2V voltage source at the IBIAS pin, and a 100kΩ resistor
is required to be connected between the IBIAS pin and
analog ground to generate a very precise reference current.
Through this connection, the RT8884B will generate a
20μA current from the IBIAS pin to analog ground, and
this 20μA current will be mirrored inside the RT8884B for
internal use. The IBIAS pin can only be connected with a
100kΩ resistor to GND for internal analog circuit use. The
resistance accuracy of this resistor is recommended to
be 1% or higher. Figure 19 shows the IBIAS setting circuit.
Current Mirror
2V
+
-
IBIAS
20µA
100k
Figure 19. IBIAS Setting Circuit
TSEN and VR_HOT
The VR_HOT signal is an open-drain signal which is used
for VR thermal protection. When the sensed voltage in
TSEN pin is over 1.887V, the VR_HOT signal will be pulled-
low to notify CPU that the thermal protection needs to
work. According to Intel VR definition, VR_HOT signal
needs acting if VR power chain temperature exceeds
100°C. Placing an NTC thermistor at the hottest area in
the VR power chain and its connection is shown in Figure
20, to design the voltage divider elements (R1, R2 and
NTC) so that VTSEN = 1.887V at 100°C. The resistance
accuracy of TSEN network is recommended to be 1% or
higher.
V = V = 1.887V
TSEN CC
×
R2 + R1//R
R2
⎡⎤
NTC(100 C)
⎣⎦
°
VDDIO
VR_HOT
VCC
TSEN
+
-
1.887V
R1
NTC
R2
Figure 20. VR_HOT Circuit
Differential Remote Sense Setting
The VR provides differential remote sense inputs to
eliminate the effects of voltage drops along the PC board
traces, CPU internal power routes and socket contacts.
The CPU contains on-die sense pins, V
V
SS_SENSE
V
CC_SENSE
of the error amplifier. The V
. Connecting RGND to V
SS_SENSE
with a resistor to build the negative input path
and the precision voltage
DAC
CC_SENSE
and
and FB to
reference are referred to RGND for accurate remote
sensing.
CPU V
CC_SENSE
V
OUT
R1
R2
SS_SENSE
C
OUT
EA
­+
VID
FB
+
-
RGND
CPU V
Figure 21. Remote Sensing Circuit
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
39
RT8884B
NO Load Offset (Platform)
RT8884B provides no load offset for platform users. Users
can disable this function by pulling the SET3 pin to ground.
Figure 22 shows a voltage divider used to set no load
offset voltage. No load offset voltage setting is :
V = V 1.2
OFS SET3
The range of V
For example, a 100mV no load offset requirement, V
1
×−
()
2
is 250mV < V
OFS
< 600mV.
OFS
SET3
needs to be set as 1.4V.
From gm
DAC
+
-
COMP
FB
R1
R2
V
CC
SET3
gm
Phase Disa ble (Before POR)
The number of active phases is determined by the internal
circuitry that monitors the ISENxN voltages during start-
up. Normally, the VR operates as a 4-phase PWM
controller. Pulling ISEN4N to VCC programs a 3-phase
operation, pulling ISEN3N and ISEN4N to VCC programs
a 2-phase operation, and pulling ISEN2N, ISEN3N and
ISEN4N to VCC programs a 1-phase operation. Before
POR, VR detects whether the voltages of ISEN2N,
ISEN3N and ISEN4N are higher than“VCC−1V
respectively to decide how many phases should be active.
Phase selection is only active during POR. When POR =
high, the number of active phases is determined and
latched. The unused ISENxP pins are recommended to
be connected to VCC and unused PWM pins can be left
floating.
Figure 22. No Load Offset Circuit
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
40
©
DS8884B-01 September 2013www.richtek.com
Current Loop Design in Details
V
REF
R
IMON3
R
IMON2
0.6V
COMP
+
R
-
1/2
-
R
NTC
+
EQ
+
R
IMON1
IMON
I
SEN1N
I
SEN2N
+
-
+
-
ISEN1P
ISEN1N
ISEN2P
ISEN2N
L1
R1
L2
R2
L3
I
L1
680
I
L2
680
I
L3
DCR1
C1
DCR2
C2
DCR3
RT8884B
V
CORE
Figure 23. Current Loop Structure
Figure 23 shows the whole current loop structure. The
current loop plays an important role in RT8884B that can
decide ACLL performance, DCLL accuracy and ICCMAX
accuracy. For ACLL performance, the correct compensator
design is assumed, if RC network time constant matches
inductor time constant LX/DCRX, an expected load transient
waveform can be designed. If RXCX network time constant
is larger than inductor time constant LX/DCRX, V
CORE
waveform has a sluggish droop during load transient. If
680
I
L4
680
C3
DCR4
C4
I
SEN3N
I
SEN4N
+
-
+
-
R3
ISEN3P
ISEN3N
L4
R4
ISEN4P
ISEN4N
RXCX network is smaller than inductor time constant
LX/DCRX, a worst V
waveform will sag to create an
CORE
undershoot to fail the specification. Figure 24 shows the
variety of RXCX constant corresponding to the output
waveforms.
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
©
DS8884B-01 September 2013 www.richtek.com
41
RT8884B
]
}
V
CORE
I
OUT
Expected load transient waveform
RC =
×
xx
L
DCR
x
x
I x RΔ
OUT LL
IΔ
OUT
Where :
(1) The relationship between DCR and temperature is as
follows :
°× DCR (T) = DCR (25 C) 1+ 0.00393 (T 25)
[
(2) REQ(T) is the equivalent resistor of the resistor network
with a NTC thermistor
R(T)=R +R //R +R (T)
EQ IMON1 IMON2 IMON3 NTC
{
⎡⎤
⎣⎦
L
V
CORE
RC <
×
xx
DCR
x
x
I x RΔ
OUT LL
follows :
β( )
R (T)=R (25C)e
NTC NTC
°×
11
T+273 298
β is in the NTC thermistor datasheet.
And the relationship between NTC and temperature is as
IΔ
OUT
I
OUT
V
CORE
I
OUT
Undershoot created in V
RC >
×
xx
Sluggish droop
L
DCR
CORE
x
x
I x RΔ
OUT LL
IΔ
OUT
Figure 24. All Kind of RxCx Constants
For DCLL performance and ICCMAX accuracy, since the
copper wire of inductor has a positive temperature
coefficient, hence when temperature goes high in the heavy
load condition then DCR value goes large simultaneously.
A resistor network with NTC thermistor compensation
connecting between IMON pin and REF pin is necessary,
to compensate the positive temperature coefficient of
inductor DCR. The design flow is as follows:
Step3 : Three equations and three unknowns, R
R
and R
IMON2
R=K
IMON1 TR
R=
IMON2
R=-R+K
IMON3 IMON2 R3
can be found out unique solution.
IMON3
R(R+R)
R+R +R
2
[K +K (R +R )
R3 R3 NTCTL NTCTR
+R R
NTCTL NTCTR TL
×
IMON2 NTCTR IMON3
IMON2 NTCTR IMON3
Where :
KK
α=
TH
α=
TL
K=
R3
K=
TL
K=
TR
TH TR
RR
RR
/ α )R R
NTCTH NTCTR
KK
TL TR
NTCTL NTCTR
TH TL NTCTH NTCTL
1(α /α )
TH TL
1.6
GI
×
CS(TL) CC-MAX
1.6
GI
×
CS(TR) CC-MAX
Step1 : Given the three system temperature TL, TR and
TH, at which are compensated.
K=
TH
GI
1.6
×
CS(TH) CC-MAX
Step2 : Three equations can be listed as
DCR (T )
680
DCR (T )
680
DCR (T )
680
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
42
4
L
××
i R (T ) = 1.6
Li EQ L
i=1
4
R
××
i R (T ) = 1.6
Li EQ R
i=1
4
H
××
iR(T)=1.6
Li EQ H
i=1
©
DS8884B-01 September 2013www.richtek.com
IMON1
,
RT8884B
Design Step :
RT8884B Excel based design tool is available. Users can
contact your Richtek representative to get the
spreadsheet. Three main design procedures for RT8884B
design, first step is initial settings, second step is loop
design and the last step is protection settings. The
following design example is to explain RT8884B design
procedure :
V
Specification
CORE
Input Voltage 12V
No. of Phases 3
Vboot 1.7V
V
DAC(MAX)
1.85V
ICCMAX 90A
ICC-DY 60A
ICC-TDC 55A
Load-Line 1.5mΩ
Fast Slew Rate 12.5mV/μs
Max Switching
Frequency
300kHz
In Shark Bay VRTB Guideline, the output filter
requirements of VRTB specification for desktop platform
are as follows :
Output Inductor : 360nH/0.72mΩ
Output Bulk Capacitor : 560μF/2.5V/5mΩ (max) 4 to 5pcs
Output Ceramic Capacitor : 22μF/0805 (18pcs max sites
on top side)
(1)Initial Settings :
RT8884B initial voltage is 1.7V
IBIASE needs to connect a 100kΩ resistor to ground.
A voltage divider for setting DVD can choose R
510kΩ and R
= 125kΩ to set V
DVD_L
> 2V, RT8884B
DVD
enabled.
(2)Loop Design :
On time setting : Using the specification, T
t = = 514n(s)
ON
1
fV
SW(MAX) IN
The on time setting resistor R
V
DAC(MAX)
×
= 130kΩ
TON
ON
DVD_U
is
=
Current sensor adopts lossless RC filter to sense current
signal in DCR. For getting an expected load transient
waveform, RxCx time constant needs to match Lx/DCR
per phase. Cx = 1μF is set, then
L
R= =500
X
IMON resistor network design : T
X
μ×
1 DCR
F
X
Ω
= 25°C, TR = 50°C
L
and TH = 100°C are decided, NTC thermistor = 100kΩ
@25°C, β = 4485 and ICCMAX = 90A. According to the
sub-section Current Loop Design in Details”,
R
= 5.43kΩ, R
IMON1
can be decided. The R
Load-line design : 1.5mΩ droop is required, because
R
(25°C) is decided, the voltage loop Av gain is also
EQ
= 12.6kΩ and R
IMON2
(25°C) = 16.8kΩ.
EQ
IMON3
= 13.9kΩ
decided by the following equation :
1 DCR
××
2R
A
LL
V
A
I
R= = (m)
CS
R2
R
EQ
Ω
R1
Where DCR(25°C) = 0.72mΩ, RCS = 680Ω and
R
(25°C) = 16.8kΩ. Hence the A
EQ
obtained. R
Typical compensator design can use the following
= 10kΩ usually is decided, so R2 = 59.2kΩ.
1
= R2 / R
V
= 5.92 can be
1
equations to design the C1 and C2 values
C = 106pF
1
C = 79pF
2
1
×π×
Rf
1SW
CESR
OUT
R
×
2
For Intel platform, in order to induce the band width to
enhance transient performance to meet Intel's criterion,
the compensator of Zero can be designed close to 1/10 of
switching frequency.
SET1 resistor network design : First the DVID
compensation parameters need to be decided. The
DVID_TH can be calculated as the following equation :
V=LLC
DVID_TH OUT
××
Where LL is load-line, C
and dVID/dt is DVID fast slew rate. Thus V
dVID
dt
is total output capacitance
OUT
DVID_TH
= 45mV
is needed in this case. And DVID_Width is chosen as
72μs typically. Next, OCP threshold is designed as 1.4 x
ICCMAX. Last, RAMP = R
/ 130kΩ = 100%, 100% is
TON
x
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
43
RT8884B
)
set. By using above information, the two equations can
be listed by using multi-function pin setting mechanism
R2
0.286 = 5 R1 R2
0.737 = 80μA
×
+
×
R1 R2
×
()
+
R1 R2
R1 = 160kΩ, R2 = 9.77kΩ.
SET2 resistor network design : the QR mechanism
parameters need to be designed first. Initial QR_TH is
designed as 0.4 x LL x ICC-DY = 36mV and QR_Width
is designed as 1.11 x TON. The ICCMAX is designed as
90A. By using the information, the two equations can
be listed by using multi-function pin setting mechanism
0.566 = 5
0.686 = 80 A
R2
R1 R2
μ×
×
+
R1 R2
⎛⎞ ⎜⎟
R1 R2
⎝⎠
× +
R1 = 75.8kΩ, R2 = 9.68kΩ.
No load offset function disabled. Just connect a 0Ω
resistor from SET3 pin to ground.
(3) Protection Settings :
OVP/UVP protections : When VSEN pin voltage is
350mV more than VID, the OVP will be latched. When
V
pin voltage is 350mV less than VID, the UVP will
SEN
be latched.
TSEN and VR_HOT design : Using the following equation
to calculate related resistances for VR_HOT setting.
V = V = 1.887V
TSEN CC
×
+
R2 R // R1
Choosing R1 = 100kΩ and an NTC thermistor R
R2
⎡⎤
NTC(100 C)
⎣⎦
°
(25°C)
NTC
= 100kΩ which its β =4485. When temperature is 100°C,
the R
(100°C) = 4.85kΩ.Then R
NTC
= 2.8kΩ can be
2
calculated.
Thermal Considerations
For continuous operation, do not exceed absolute
maximum junction temperature. The maximum power
dissipation depends on the thermal resistance of the IC
package, PCB layout, rate of surrounding airflow, and
difference between junction and ambient temperature. The
maximum power dissipation can be calculated by the
following formula :
P
where T
the ambient temperature, and θ
D(MAX)
= (T
J(MAX)
TA) / θ
J(MAX)
JA
is the maximum junction temperature, TA is
is the junction to ambient
JA
thermal resistance.
For recommended operating condition specifications, the
maximum junction temperature is 125°C. The junction to
ambient thermal resistance, θJA, is layout dependent. For
WQFN-32L 4x4 package, the thermal resistance, θJA, is
27.8°C/W on a standard JEDEC 51-7 four-layer thermal
test board. The maximum power dissipation at TA = 25°C
can be calculated by the following formula :
P
= (125°C − 25°C) / (27.8°C/W) = 3.6W for
D(MAX)
WQFN-32L 4x4 package
The maximum power dissipation depends on the operating
ambient temperature for fixed T
and thermal
J(MAX)
resistance, θJA. The derating curve in Figure 25 allows
the designer to see the effect of rising ambient temperature
on the maximum power dissipation.
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
Maximum Power Dissipation (W
0.0 0255075100125
Ambient Temperature (°C)
Four-Layer PCB
Figure 25. Derating Curve of Maximum Power
Dissipation
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
44
©
DS8884B-01 September 2013www.richtek.com
Layout Considerations
Careful PC board layout is critical to achieve low switching
losses and clean, stable operation. The switching power
stage requires particular attention. If possible, mount all
of the power components on the top side of the board
with their ground terminals flushed against one another.
Follow these guidelines for optimum PC board layout :
` Keep the high current paths short, especially at the
ground terminals.
` Keep the power traces and load connections short. This
is essential for high efficiency.
` When trade-offs in trace lengths must be made, it's
preferable to let the inductor charging path be longer
than the discharging path.
` Place the current sense component close to the
controller. ISENxP and ISENxN connections for current
limit and voltage positioning must be made using Kelvin
sense connections to guarantee current sense accuracy.
The PCB trace from the sense nodes should be
paralleled back to the controller.
RT8884B
` Route high speed switching nodes away from sensitive
analog areas (COMP, FB, ISENxP, ISENxN, etc...)
` User need to connect exposed pad to the ground plane
through low impedance path. Recommend use of at
least 5 vias to connect to ground planes in PCB internal
layers.
Copyright 2013 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.
DS8884B-01 September 2013 www.richtek.com
©
45
RT8884B
Outline Dimension
1
2
DETAIL A
Pin #1 ID and Tie Bar Mark Options
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Dimensions In Millimeters Dimensions In Inches
Symbol
Min Max Min Max
A 0.700 0.800 0.028 0.031
A1 0.000 0.050 0.000 0.002
A3 0.175 0.250 0.007 0.010
b 0.150 0.250 0.006 0.010
D 3.900 4.100 0.154 0.161
D2 2.650 2.750 0.104 0.108
E 3.900 4.100 0.154 0.161
1 2
E2 2.650 2.750 0.104 0.108
e 0.400 0.016
L 0.300 0.400
0.012 0.016
W-Type 32L QFN 4x4 Package
Richtek Technology Corporation
14F, No. 8, Tai Yuen 1st Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.
DS8884B-01 September 2013www.richtek.com
46
Loading...