Renesas M3T-MR100 User Manual

REJ10J1523-0100
M3T-MR100/4 V.1.00
User’s Manual
Real-time OS for R32C/100 Series
Rev.1.00 September 16, 2007
z Active X, Microsoft, MS-DOS, Visual Basic, Visual C++, Windows and Windows NT are either registered trademarks or trademarks of
z IBM and AT are registered trademarks of International Business Machines Corporation. z Intel and Pentium are registered trademarks of Intel Corporation. z Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated. z TRON is an abbreviation of "The Real-time Operating system Nucleus." z ITRON is an abbreviation of "Industrial TRON." z μITRON is an abbreviation of "Micro Industrial TRON." z TRON, ITRON, and μITRON do not refer to any specific product or products. z All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.
z Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appro­priate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Keep safety first in your circuit designs!
z These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited
to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation, Renesas Solutions Corporation or a third party.
z Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application exam­ples contained in these materials.
z All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Rene­sas Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical in­accuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home page (http://www.renesas.com).
z When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algo-
rithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the informa­tion and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, liability or other loss resulting from the information contained herein.
z Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under circum-
stances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any specific pur­poses, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
z The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or repro-
duce in whole or in part these materials.
z If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport con­trary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
z Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the prod-
ucts contained therein.
Notes regarding these materials
For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email to your local distributor.
\SUPPORT\Product-name\SUPPORT.TXT Renesas Tools Homepage http://www.renesas.com/en/tools
Preface
The M3T-MR100/4(abbreviated as MR100) is a real-time operating system1 for the R32C/100 series microcomputers. The MR100 conforms to the μITRON Specification.
This manual describes the procedures and precautions to observe when you use the MR100 for programming purposes. For the detailed information on individual service call procedures, refer to the MR100 Reference Manual.

Requirements for MR100 Use

Whe
n creating programs based on the MR100, it is necessary to purchase the following product of Renesas.
C-compiler package for R32C/100 series microcomputers (abbreviated as NC100)

Document List

The following sets of documents are supplied with the MR100.
Release Note
Presents a software overview and describes the corrections to the Users Manual and Reference Manual.
Users Manual (PDF file)
Describes the procedures and precautions to observe when using the MR100 for programming purposes.

Right of Software Use

e right of software use conforms to the software license agreement. You can use the MR100 for your product develop-
Th ment purposes only, and are not allowed to use it for the other purposes. You should also note that this manual does not guarantee or permit the exercise of the right of software use.
2
1
Hereinafter abbreviated "real-time OS"
2
μITRON4.0 Specification is the open real-time kernel specification upon which the TRON association decided
The specification document of μITRON4.0 specification can come to hand from a TRON association homepage
(http://www.assoc.tron.org/).
The copyright of μITRON4.0 specification belongs to the TRON association.
i
Contents
Requirements for MR100 Use ......................................................................................................................................i
Document List...............................................................................................................................................................i
Right of Software Use...................................................................................................................................................i
Contents.............................................................................................................................................................iii
List of Figures ................................................................................................................................................. viii
List of Tables ..................................................................................................................................................... xi
1. User’s Manual Organization................................................................................................................... - 1 -
2. General Information ...............................................................................................................................- 3 -
2.1 Objective of MR100 Development...................................................................................................... - 3 -
2.2 Relationship between TRON Specification and MR100................................................................... - 5 -
2.3 MR100 Features .................................................................................................................................- 6 -
3. Introduction to Kernel ............................................................................................................................- 7 -
3.1 Concept of Real-time OS .................................................................................................................... - 7 -
3.1.1 Why Real-time OS is Necessary .................................................................................................- 7 -
3.1.2 Operating Principles of Kernel ................................................................................................. - 10 -
3.2 Service Call ....................................................................................................................................... - 14 -
3.2.1 Service Call Processing ............................................................................................................. - 15 -
3.2.2 Processing Procedures for Service Calls from Handlers......................................................... - 16 -
Service Calls from a Handler That Caused an Interrupt during Task Execution............................................. - 17 -
Service Calls from a Handler That Caused an Interrupt during Service Call Processing................................ - 18 -
Service Calls from a Handler That Caused an Interrupt during Handler Execution....................................... - 19 -
3.3 Object................................................................................................................................................. - 20 -
3.3.1 The specification method of the object in a service call ..........................................................- 20 -
3.4 Task ................................................................................................................................................... - 21 -
3.4.1 Task Status................................................................................................................................ - 21 -
3.4.2 Task Priority and Ready Queue ............................................................................................... - 25 -
3.4.3 Task Priority and Waiting Queue............................................................................................. - 26 -
3.4.4 Task Control Block(TCB) ..........................................................................................................- 27 -
3.5 System States.................................................................................................................................... - 28 -
3.5.1 Task Context and Non-task Context........................................................................................ - 28 -
3.5.2 Dispatch Enabled/Disabled States ...........................................................................................- 30 -
3.5.3 CPU Locked/Unlocked States ...................................................................................................- 30 -
3.5.4 Dispatch Disabled and CPU Locked States............................................................................. - 30 -
3.6 Regarding Interrupts........................................................................................................................ - 31 -
3.6.1 Types of Interrupt Handlers..................................................................................................... - 31 -
3.6.2 The Use of Non-maskable Interrupt ........................................................................................- 31 -
3.6.3 Controlling Interrupts............................................................................................................... - 32 -
3.7 Stacks ................................................................................................................................................ - 34 -
3.7.1 System Stack and User Stack................................................................................................... - 34 -
4. Kernel ....................................................................................................................................................- 35 -
4.1.1 Module Structure....................................................................................................................... - 35 -
4.1.2 Module Overview....................................................................................................................... - 36 -
4.1.3 Task Management Function..................................................................................................... - 37 -
4.1.4 Synchronization functions attached to task ............................................................................- 39 -
4.1.5 Synchronization and Communication Function (Semaphore)................................................ - 43 -
4.1.6 Synchronization and Communication Function (Eventflag) .................................................. - 45 -
4.1.7 Synchronization and Communication Function (Data Queue) ..............................................- 47 -
iii
4.1.8 Synchronization and Communication Function (Mailbox)..................................................... - 48 -
4.1.9 Memory pool Management Function(Fixed-size Memory pool) .............................................- 50 -
4.1.10 Variable-size Memory Pool Management Function ................................................................ - 51 -
4.1.11 Time Management Function..................................................................................................... - 54 -
4.1.12 Cyclic Handler Function ........................................................................................................... - 56 -
4.1.13 Alarm Handler Function........................................................................................................... - 57 -
4.1.14 System Status Management Function..................................................................................... - 58 -
4.1.15 Interrupt Management Function ............................................................................................. - 59 -
4.1.16 System Configuration Management Function ........................................................................ - 60 -
4.1.17 Extended Function (Short Data Queue) ..................................................................................- 60 -
4.1.18 Extended Function (Reset Function) ....................................................................................... - 61 -
5. Service call reffernce............................................................................................................................. - 63 -
5.1 Task Management Function ............................................................................................................ - 63 -
act_tsk Activate task .......................................................................................................................... - 65 -
iact_tsk Activate task (handler only).................................................................................................. - 65 -
can_act Cancel task activation request.............................................................................................. - 67 -
ican_act Cancel task activation request (handler only) ..................................................................... - 67 -
sta_tsk Activate task with a start code ............................................................................................. - 69 -
ista_tsk Activate task with a start code (handler only)..................................................................... - 69 -
ext_tsk Terminate invoking task ....................................................................................................... - 71 -
ter_tsk Terminate task ....................................................................................................................... - 73 -
chg_pri Change task priority.............................................................................................................. - 75 -
ichg_pri Change task priority(handler only) ...................................................................................... - 75 -
get_pri Reference task priority.......................................................................................................... - 77 -
iget_pri Reference task priority(handler only) .................................................................................. - 77 -
ref_tsk Reference task status ............................................................................................................ - 79 -
iref_tsk Reference task status (handler only).................................................................................... - 79 -
ref_tst Reference task status (simplified version) ........................................................................... - 82 -
iref_tst Reference task status (simplified version, handler only) ....................................................- 82 -
5.2 Task Dependent Synchronization Function.................................................................................... - 84 -
slp_tsk Put task to sleep..................................................................................................................... - 85 -
tslp_tsk Put task to sleep (with timeout)............................................................................................ - 85 -
wup_tsk Wakeup task........................................................................................................................... - 88 -
iwup_tsk Wakeup task (handler only)............................................................................................... - 88 -
can_wup Cancel wakeup request...................................................................................................... - 90 -
ican_wup Cancel wakeup request (handler only) .............................................................................- 90 -
rel_wai Release task from waiting..................................................................................................... - 92 -
irel_wai Release task from waiting (handler only) ............................................................................ - 92 -
sus_tsk Suspend task .......................................................................................................................... - 94 -
isus_tsk Suspend task (handler only) ................................................................................................. - 94 -
rsm_tsk Resume suspended task ........................................................................................................- 96 -
irsm_tsk Resume suspended task(handler only) .............................................................................- 96 -
frsm_tsk Forcibly resume suspended task....................................................................................... - 96 -
ifrsm_tsk Forcibly resume suspended task(handler only) ............................................................... - 96 -
dly_tsk Delay task............................................................................................................................... - 98 -
5.3 Synchronization & Communication Function (Semaphore) ........................................................ - 100 -
sig_sem Release semaphore resource ...............................................................................................- 101 -
isig_sem Release semaphore resource (handler only) ................................................................... - 101 -
wai_sem Acquire semaphore resource............................................................................................ - 103 -
pol_sem Acquire semaphore resource (polling) ................................................................................- 103 -
ipol_sem Acquire semaphore resource (polling, handler only) .....................................................- 103 -
twai_sem Acquire semaphore resource(with timeout).................................................................... - 103 -
ref_sem Reference semaphore status ............................................................................................... - 106 -
iref_sem Reference semaphore status (handler only)....................................................................... - 106 -
5.4 Synchronization & Communication Function (Eventflag)........................................................... - 108 -
set_flg Set eventflag......................................................................................................................... - 109 -
iset_flg Set eventflag (handler only) ................................................................................................- 109 -
clr_flg Clear eventflag..........................................................................................................................- 111 -
iclr_flg Clear eventflag (handler only) .............................................................................................- 111 -
iv
wai_flg Wait for eventflag................................................................................................................. - 113 -
pol_flg Wait for eventflag(polling)................................................................................................... - 113 -
ipol_flg Wait for eventflag(polling, handler only)............................................................................ - 113 -
twai_flg Wait for eventflag(with timeout)......................................................................................... - 113 -
ref_flg Reference eventflag status .................................................................................................. - 116 -
iref_flg Reference eventflag status (handler only).......................................................................... - 116 -
5.5 Synchronization & Communication Function (Data Queue)....................................................... - 118 -
snd_dtq Send to data queue .............................................................................................................. - 119 -
psnd_dtq Send to data queue (polling)............................................................................................ - 119 -
ipsnd_dtq Send to data queue (polling, handler only)..................................................................... - 119 -
tsnd_dtq Send to data queue (with timeout).................................................................................. - 119 -
fsnd_dtq Forced send to data queue ............................................................................................... - 119 -
ifsnd_dtq Forced send to data queue (handler only) ...................................................................... - 119 -
rcv_dtq Receive from data queue .....................................................................................................- 122 -
prcv_dtq Receive from data queue (polling)................................................................................... - 122 -
iprcv_dtq Receive from data queue (polling, handler only)............................................................ - 122 -
trcv_dtq Receive from data queue (with timeout) ............................................................................ - 122 -
ref_dtq Reference data queue status ............................................................................................... - 125 -
iref_dtq Reference data queue status (handler only) ...................................................................... - 125 -
5.6 Synchronization & Communication Function (Mailbox).............................................................. - 127 -
snd_mbx Send to mailbox ................................................................................................................- 128 -
isnd_mbx Send to mailbox (handler only) ....................................................................................... - 128 -
rcv_mbx Receive from mailbox........................................................................................................... - 130 -
prcv_mbx Receive from mailbox (polling) ........................................................................................- 130 -
iprcv_mbx Receive from mailbox (polling, handler only) ................................................................. - 130 -
trcv_mbx Receive from mailbox (with timeout) .............................................................................. - 130 -
ref_mbx Reference mailbox status ....................................................................................................- 133 -
iref_mbx Reference mailbox status (handler only) ........................................................................- 133 -
5.7 Memory Pool Management Function (Fixed-size Memory Pool)................................................. - 135 -
get_mpf Aquire fixed-size memory block .......................................................................................... - 136 -
pget_mpf Aquire fixed-size memory block (polling)........................................................................ - 136 -
ipget_mpf Aquire fixed-size memory block (polling, handler only) ................................................ - 136 -
tget_mpf Aquire fixed-size memory block (with timeout) ............................................................. - 136 -
rel_mpf Release fixed-size memory block......................................................................................... - 139 -
irel_mpf Release fixed-size memory block (handler only) ................................................................- 139 -
ref_mpf Reference fixed-size memory pool status ........................................................................... - 141 -
iref_mpf Reference fixed-size memory pool status (handler only)................................................... - 141 -
5.8 Memory Pool Management Function (Variable-size Memory Pool) ............................................- 143 -
pget_mpl Aquire variable-size memory block (polling) .................................................................. - 144 -
rel_mpl Release variable-size memory block ...................................................................................- 146 -
ref_mpl Reference variable-size memory pool status ......................................................................- 148 -
iref_mpl Reference variable-size memory pool status (handler only) .............................................- 148 -
5.9 Time Management Function.......................................................................................................... - 150 -
set_tim Set system time .................................................................................................................... - 151 -
iset_tim Set system time (handler only) ........................................................................................... - 151 -
get_tim Reference system time......................................................................................................... - 153 -
iget_tim Reference system time (handler only) ................................................................................ - 153 -
isig_tim Supply a time tick................................................................................................................ - 155 -
5.10 Time Management Function (Cyclic Handler).............................................................................. - 156 -
sta_cyc Start cyclic handler operation............................................................................................. - 157 -
ista_cyc Start cyclic handler operation (handler only) .................................................................... - 157 -
stp_cyc Stops cyclic handler operation ............................................................................................- 159 -
istp_cyc Stops cyclic handler operation (handler only).................................................................... - 159 -
ref_cyc Reference cyclic handler status........................................................................................... - 160 -
iref_cyc Reference cyclic handler status (handler only) ..................................................................- 160 -
5.11 Time Management Function (Alarm Handler) .............................................................................- 162 -
sta_alm Start alarm handler operation............................................................................................ - 163 -
ista_alm Start alarm handler operation (handler only)................................................................ - 163 -
stp_alm Stop alarm handler operation .............................................................................................- 165 -
istp_alm Stop alarm handler operation (handler only)................................................................. - 165 -
v
ref_alm Reference alarm handler status.......................................................................................... - 166 -
iref_alm Reference alarm handler status (handler only) .................................................................- 166 -
5.12 System Status Management Function.......................................................................................... - 168 -
rot_rdq Rotate task precedence........................................................................................................ - 169 -
irot_rdq Rotate task precedence (handler only) ...............................................................................- 169 -
get_tid Reference task ID in the RUNNING state......................................................................... - 171 -
iget_tid Reference task ID in the RUNNING state (handler only) ................................................- 171 -
loc_cpu Lock the CPU .......................................................................................................................- 172 -
iloc_cpu Lock the CPU (handler only)............................................................................................... - 172 -
unl_cpu Unlock the CPU ................................................................................................................... - 174 -
iunl_cpu Unlock the CPU (handler only) ....................................................................................... - 174 -
dis_dsp Disable dispatching ............................................................................................................. - 175 -
ena_dsp Enables dispatching............................................................................................................. - 177 -
sns_ctx Reference context................................................................................................................. - 178 -
sns_loc Reference CPU state............................................................................................................ - 179 -
sns_dsp Reference dispatching state ................................................................................................- 180 -
sns_dpn Reference dispatching pending state.................................................................................. - 181 -
5.13 Interrupt Management Function................................................................................................... - 182 -
ret_int Returns from an interrupt handler (when written in assembly language).................. - 183 -
5.14 System Configuration Management Function.............................................................................. - 184 -
ref_ver Reference version information ............................................................................................- 185 -
iref_ver Reference version information (handler only) ................................................................... - 185 -
5.15 Extended Function (Short Data Queue)........................................................................................ - 187 -
vsnd_dtq Send to Short data queue ................................................................................................ - 188 -
vpsnd_dtq Send to Short data queue (polling).................................................................................. - 188 -
vipsnd_dtq Send to Short data queue (polling, handler only).......................................................... - 188 -
vtsnd_dtq Send to Short data queue (with timeout) .......................................................................- 188 -
vfsnd_dtq Forced send to Short data queue..................................................................................... - 188 -
vifsnd_dtq Forced send to Short data queue (handler only) ............................................................ - 188 -
vrcv_dtq Receive from Short data queue ....................................................................................... - 191 -
vprcv_dtq Receive from Short data queue (polling)......................................................................... - 191 -
viprcv_dtq Receive from Short data queue (polling,handler only) ..................................................- 191 -
vtrcv_dtq Receive from Short data queue (with timeout) .............................................................. - 191 -
vref_dtq Reference Short data queue status..................................................................................... - 194 -
viref_dtq Reference Short data queue status (handler only)......................................................... - 194 -
5.16 Extended Function (Reset Function)............................................................................................. - 196 -
vrst_dtq Clear data queue area .........................................................................................................- 197 -
vrst_vdtq Clear Short data queue area ...........................................................................................- 199 -
vrst_mbx Clear mailbox area ...........................................................................................................- 201 -
vrst_mpf Clear fixed-size memory pool area .................................................................................. - 203 -
vrst_mpl Clear variable-size memory pool area............................................................................. - 204 -
6. Applications Development Procedure Overview................................................................................ - 205 -
6.1 Overview.......................................................................................................................................... - 205 -
6.2 Development Procedure Example.................................................................................................. - 207 -
6.2.1 Applications Program Coding................................................................................................. - 207 -
6.2.2 Configuration File Preparation .............................................................................................. - 208 -
6.2.3 Configurator Execution........................................................................................................... - 209 -
6.2.4 System generation................................................................................................................... - 209 -
6.2.5 Writing ROM............................................................................................................................- 210 -
7. Detailed Applications.......................................................................................................................... - 211 -
7.1 Program Coding Procedure in C Language................................................................................... - 211 -
7.1.1 Task Description Procedure.................................................................................................... - 211 -
7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler ..........................................................- 212 -
7.1.3 Writing Non-kernel Interrupt Handler.................................................................................. - 213 -
7.1.4 Writing Cyclic Handler/Alarm Handler................................................................................. - 213 -
7.2 Program Coding Procedure in Assembly Language .....................................................................- 215 -
7.2.1 Writing Task ............................................................................................................................- 215 -
7.2.2 Writing Kernel Interrupt Handler .........................................................................................- 216 -
vi
7.2.3 Writing Non-kernel Interrupt Handler.................................................................................. - 216 -
7.2.4 Writing Cyclic Handler/Alarm Handler................................................................................. - 216 -
7.3 Modifying MR100 Startup Program.............................................................................................. - 218 -
7.3.1 C Language Startup Program (crt0mr.a30)........................................................................... - 219 -
7.4 Memory Allocation.......................................................................................................................... - 224 -
7.4.1 Section used by the MR100..................................................................................................... - 225 -
8. Using Configurator ................................................................................................................................. 227
8.1 Configuration File Creation Procedure ..............................................................................................227
8.1.1 Configuration File Data Entry Format.......................................................................................227
Operator ...................................................................................................................................................................228
Direction of computation .........................................................................................................................................228
8.1.2 Configuration File Definition Items............................................................................................229
[( System Definition Procedure )]............................................................................................................................229
[( System Clock Definition Procedure )]..................................................................................................................231
[( Definition respective maximum numbers of items )]..........................................................................................232
[( Task definition )]...................................................................................................................................................234
[( Eventflag definition )] ..........................................................................................................................................236
[( Semaphore definition )]........................................................................................................................................237
[(Data queue definition )] ........................................................................................................................................238
[( Short data queue definition )]..............................................................................................................................239
[( Mailbox definition )] .............................................................................................................................................240
[( Fixed-size memory pool definition )]....................................................................................................................241
[( Variable-size memory pool definition )]...............................................................................................................242
[( Cyclic handler definition )]...................................................................................................................................244
[( Alarm handler definition )] ..................................................................................................................................245
[( Interrupt vector definition )]................................................................................................................................246
[( Fixed interrupt vector definition )]......................................................................................................................247
8.1.3 Configuration File Example.........................................................................................................250
8.2 Configurator Execution Procedures ...................................................................................................254
8.2.1 Configurator Overview.................................................................................................................254
Executing the configurator requires the following input files:..............................................................................254
When the configurator is executed, the files listed below are output. ..................................................................254
8.2.2 Setting Configurator Environment .............................................................................................255
8.2.3 Configurator Start Procedure......................................................................................................256
8.2.4 Precautions on Executing Configurator......................................................................................256
8.2.5 Configurator Error Indications and Remedies ...........................................................................257
Error messages ........................................................................................................................................................257
Warning messages ...................................................................................................................................................259
9. Sample Program Description.................................................................................................................. 260
9.1 Overview of Sample Program .............................................................................................................260
9.2 Program Source Listing.......................................................................................................................261
9.3 Configuration File................................................................................................................................262
10. Stack Size Calculation Method ........................................................................................................... 264
10.1 Stack Size Calculation Method...........................................................................................................264
10.1.1 User Stack Calculation Method...................................................................................................266
10.1.2 System Stack Calculation Method ..............................................................................................268
10.2 Necessary Stack Size...........................................................................................................................272
11. Note.................................................................................................................................................. - 275 -
11.1 The Use of INT Instruction............................................................................................................ - 275 -
11.2 The Use of registers of bank .......................................................................................................... - 275 -
11.3 Regarding Delay Dispatching ........................................................................................................- 276 -
11.4 Regarding Initially Activated Task................................................................................................- 277 -
12. Appendix .......................................................................................................................................... - 279 -
12.1 Data Type........................................................................................................................................ - 279 -
12.2 Common Constants and Packet Format of Structure ..................................................................- 280 -
12.3 Assembly Language Interface........................................................................................................ - 282 -
vii
List of Figures
Figure 3.1 Relationship between Program Size and Development Period.....................................- 7 -
Figure 3.2 Microcomputer-based System Example(Audio Equipment) .........................................- 8 -
Figure 3.3 Example System Configuration with Real-time OS(Audio Equipment) ......................- 9 -
Figure 3.4 Time-division Task Operation .......................................................................................- 10 -
Figure 3.5 Task Execution Interruption and Resumption ............................................................- 11 -
Figure 3.6 Task Switching...............................................................................................................- 11 -
Figure 3.7 Task Register Area.........................................................................................................- 12 -
Figure 3.8 Actual Register and Stack Area Management .............................................................- 13 -
Figure 3.9 Service call......................................................................................................................- 14 -
Figure 3.10 Service Call Processing Flowchart..............................................................................- 15 -
Figure 3.11 Processing Procedure for a Service Call a Handler that caused an interrupt during Task
Execution - 17 -
Figure 3.12 Processing Procedure for a Service Call from a Handler that caused an interrupt during
Service Call Processing.............................................................................................................- 18 -
Figure 3.13 Processing Procedure for a service call from a Multiplex interrupt Handler ..........- 19 -
Figure 3.14 Task Identification.......................................................................................................- 20 -
Figure 3.15 Task Status...................................................................................................................- 21 -
Figure 3.16 MR100 Task Status Transition ...................................................................................- 22 -
Figure 3.17 Ready Queue (Execution Queue) ................................................................................- 25 -
Figure 3.18 Waiting queue of the TA_TPRI attribute ...................................................................- 26 -
Figure 3.19 Waiting queue of the TA_TFIFO attribute.................................................................- 26 -
Figure 3.20 Task control block ........................................................................................................- 27 -
Figure 3.21 Cyclic Handler/Alarm Handler Activation .................................................................- 29 -
Figure 3.22 Interrupt handler IPLs................................................................................................- 31 -
Figure 3.23 Interrupt control in a Service Call that can be Issued from only a Task.................- 32 -
Figure 3.24 Interrupt control in a Service Call that can be Issued from a Task-independent ...- 33 -
Figure 3.25 System Stack and User Stack .....................................................................................- 34 -
Figure 4.1 MR100 Structure............................................................................................................- 35 -
Figure 4.2 Task Resetting................................................................................................................- 37 -
Figure 4.3 Alteration of task priority..............................................................................................- 38 -
Figure 4.4 Task rearrangement in a waiting queue ......................................................................- 38 -
Figure 4.5 Wakeup Request Storage...............................................................................................- 39 -
Figure 4.6 Wakeup Request Cancellation.......................................................................................- 39 -
Figure 4.7 Forcible wait of a task and resume...............................................................................- 40 -
Figure 4.8 Forcible wait of a task and forcible resume..................................................................- 41 -
Figure 4.9 dly_tsk service call .........................................................................................................- 42 -
Figure 4.10 Exclusive Control by Semaphore ................................................................................- 43 -
Figure 4.11 Semaphore Counter .....................................................................................................- 43 -
Figure 4.12 Task Execution Control by Semaphore.......................................................................- 44 -
Figure 4.13 Task Execution Control by the Eventflag...................................................................- 46 -
Figure 4.14 Data queue ...................................................................................................................- 47 -
Figure 4.15 Mailbox .........................................................................................................................- 48 -
Figure 4.16 Message queue .............................................................................................................- 49 -
Figure 4.17 Memory Pool Management..........................................................................................- 50 -
Figure 4.18 pget_mpl processing.....................................................................................................- 52 -
Figure 4.19 rel_mpl processing .......................................................................................................- 53 -
Figure 4.20 Timeout Processing......................................................................................................- 54 -
Figure 4.21 Cyclic handler operation in cases where the activation phase is saved ...................- 56 -
Figure 4.22 Cyclic handler operation in cases where the activation phase is not saved.............- 56 -
Figure 4.23 Typical operation of the alarm handler......................................................................- 57 -
Figure 4.24 Ready Queue Management by rot_rdq Service Call ..................................................- 58 -
Figure 4.25 Interrupt process flow..................................................................................................- 59 -
Figure 6.1 MR100 System Generation Detail Flowchart ............................................................- 206 -
Figure 6.2 Program Example ........................................................................................................- 208 -
viii
Figure 6.3 Configuration File Example ........................................................................................- 209 -
Figure 6.4 Configurator Execution ...............................................................................................- 209 -
Figure 6.5 System Generation.......................................................................................................- 210 -
Figure 7.1 Example Infinite Loop Task Described in C Language.............................................- 211 -
Figure 7.2 Example Task Terminating with ext_tsk() Described in C Language......................- 212 -
Figure 7.3 Example of Kernel Interrupt Handler........................................................................- 213 -
Figure 7.4 Example of Non-kernel Interrupt Handler ................................................................- 213 -
Figure 7.5 Example Cyclic Handler Written in C Language ......................................................- 214 -
Figure 7.6 Example Infinite Loop Task Described in Assembly Language................................- 215 -
Figure 7.7 Example Task Terminating with ext_tsk Described in Assembly Language...........- 215 -
Figure 7.8 Example of kernel(OS-depend) interrupt handler.....................................................- 216 -
Figure 7.9 Example of Non-kernel Interrupt Handler of Specific Level ....................................- 216 -
Figure 7.10 Example Handler Written in Assembly Language ..................................................- 217 -
Figure 7.11 C Language Startup Program (crt0mr.a30) .............................................................- 222 -
Figure 8.1 The operation of the Configurator .................................................................................. 255
ix
List of Tables
Table 3.1 Task Context and Non-task Context ..............................................................................- 28 -
Table 3.2 Invocable Service Calls in a CPU Locked State.............................................................- 30 -
Table 3.3 CPU Locked and Dispatch Disabled State Transitions Relating to dis_dsp and loc_cpu- 30 -
Table 5.1 Specifications of the Task Management Function.........................................................- 63 -
Table 5.2 List of Task Management Function Service Call...........................................................- 63 -
Table 5.3 Specifications of the Task Dependent Synchronization Function ................................- 84 -
Table 5.4 List of Task Dependent Synchronization Service Call ..................................................- 84 -
Table 5.5 Specifications of the Semaphore Function ...................................................................- 100 -
Table 5.6 List of Semaphore Function Service Call.....................................................................- 100 -
Table 5.7 Specifications of the Eventflag Function......................................................................- 108 -
Table 5.8 List of Eventflag Function Service Call .....................................................................- 108 -
Table 5.9 Specifications of the Data Queue Function..................................................................- 118 -
Table 5.10 List of Dataqueue Function Service Call....................................................................- 118 -
Table 5.11 Specifications of the Mailbox Function.......................................................................- 127 -
Table 5.12 List of Mailbox Function Service Call ........................................................................- 127 -
Table 5.13 Specifications of the Fixed-size memory pool Function.............................................- 135 -
Table 5.14 List of Fixed-size memory pool Function Service Call ..............................................- 135 -
Table 5.15 Specifications of the Variable-size memory Pool Function........................................- 143 -
Table 5.16 List of Variable -size memory pool Function Service Call.........................................- 143 -
Table 5.17 Specifications of the Time Management Function ....................................................- 150 -
Table 5.18 List of Time Management Function Service Call ......................................................- 150 -
Table 5.19 Specifications of the Cyclic Handler Function.........................................................- 156 -
Table 5.20 List of Cyclic Handler Function Service Call.............................................................- 156 -
Table 5.21 Specifications of the Alarm Handler Function...........................................................- 162 -
Table 5.22 List of Alarm Handler Function Service Call.............................................................- 162 -
Table 5.23 List of System Status Management Function Service Call ......................................- 168 -
Table 5.24 List of Interrupt Management Function Service Call...............................................- 182 -
Table 5.25 List of System Configuration Management Function Service Call..........................- 184 -
Table 5.26 Specifications of the Short Data Queue Function......................................................- 187 -
Table 5.27 List of Long Dataqueue Function Service Call ..........................................................- 187 -
Table 5.28 List of Reset Function Service Call.............................................................................- 196 -
Table 7.1 C Language Variable Treatment...................................................................................- 212 -
Table 8.1 Numerical Value Entry Examples ....................................................................................227
Table 8.2 Operators............................................................................................................................ 228
Table 8.3 List of vector number and vector address ........................................................................ 248
Table 9.1 Functions in the Sample Program.................................................................................... 260
Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) .................................. 272
Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes) ............................ 273
Table 10.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes) ..........273
Table 11.1 Interrupt Number Assignment....................................................................................- 275 -
xi
xii

1. User’s Manual Organization

The MR100 User’s Manual consists of nine chapters and thee appendix.
2 General Information
Outlines the objective of MR100 development and the function and position of the MR100.
3 Introduction to Kernel
Explains about the ideas involved in MR100 operations and defines some relevant terms.
4 Kernel
Outlines the applications program development procedure for the MR100 .
5 Service call reffernce
Details MR100 service call API
6 Applications Development Procedure Overview
Details the applications program development procedure for the MR100.
7 Detailed Applications
Presents useful information and precautions concerning applications program development with MR100.
8 Using Configurator
Describes the method for writing a configuration file and the method for using the configurator in detail.
9 Sample Program Description
Describes the MR100 sample applications program which is included in the product in the form of a source file.
10 Stack Size Calculation Method
Describes the calculation method of the task stack size and the system stack size.
11 Note
Presents useful information and precautions concerning applications program development with MR100.
12 Appendix
Data type and assembly language interface.
- 1 -

2. General Information

2.1 Objective of MR100 Development

In line with recent rapid technological advances in microcomputers, the functions of microcomputer-based products have become complicated. In addition, the microcomputer program size has increased. Further, as product development competi­tion has been intensified, manufacturers are compelled to develop their microcomputer-based products within a short period of time.
In other words, engineers engaged in microcomputer software development are now required to develop larger-size pro­grams within a shorter period of time. To meet such stringent requirements, it is necessary to take the following considera­tions into account.
1. To enhance software recyclability to decrease the volume of software to be developed.
One way to provide for software recyclability is to divide software into a number of functional modules wherever possible. This may be accomplished by accumulating a number of general-purpose subroutines and other program segments and using them for program development. In this method, however, it is difficult to reuse programs that are dependent on time or timing. In reality, the greater part of application programs are dependent on time or ti m­ing. Therefore, the above recycling method is applicable to only a limited number of programs.
2. To promote team programming so that a number of engineers are engaged in the development of one software package
There are various problems with team programming. One major problem is that debugging can be initiated only when all the software program segments created individually by team members are ready for debugging. It is es­sential that communication be properly maintained among the team members.
3. To enhance software production efficiency so as to increase the volume of possible software development per engineer.
One way to achieve this target would be to educate engineers to raise their level of skill. Another way would be to make use of a structured descriptive assembler, C-compiler, or the like with a view toward facilitating program­ming. It is also possible to enhance debugging efficiency by promoting modular software development.
However, the conventional methods are not adequate for the purpose of solving the problems. Under these circumstances, it is necessary to introduce a new system named real-time OS
To answer the above-mentioned demand, Renesas has developed a real-time operating system, tradenamed MR100, for use with the R32C/100 series of 32-bit microcomputers .
When the MR100 is introduced, the following advantages are offered.
1. Software recycling is facilitated.
When the real-time OS is introduced, timing signals are furnished via the real-time OS so that programs depend­ent on timing can be reused. Further, as programs are divided into modules called tasks, structured programming will be spontaneously provided. That is, recyclable programs are automatically prepared.
2. Ease of team programming is provided.
When the real-time OS is put to use, programs are divided into functional modules called tasks. Therefore, engi­neers can be allocated to individual tasks so that all steps from development to debugging can be conducted inde ­pendently for each task. Further, the introduction of the real-time OS makes it easy to start debugging some already finished tasks even if the entire program is not completed yet. Since engineers can be allocated to individual tasks, work assignment is easy.
3
3. Software independence is enhanced to provide ease of progra m debugging.
As the use of the real-time OS makes it possible to divide programs into small independent modules called tasks,
3
OS:Operating System
- 3 -
the greater part of program debugging can be initiated simply by observing the small modules.
4. Timer control is made easier.
To perform processing at 10 ms intervals, the microcomputer timer function was formerly used to periodically in­itiate an interrupt. However, as the number of usable microcomputer timers was limited, timer insufficiency was compensated for by, for instance, using one timer for a number of different processing operations. When the real-time OS is introduced, however, it is possible to create programs for performing processing at fixed time intervals making use of the real-time OS time management function without paying special attention to the microcomputer timer function. At the same time, programming can also be done in such a manner as to let the programmer take that numerous timers are provided for the microcomputer.
5. Software maintainability is enhanced
When the real-time OS is put to use, the developed software consists of small program modules called tasks. Therefore, increased software maintainability is provided because developed software maintenance can be carried out simply by maintaining small tasks.
6. Increased software reliability is assured.
The introduction of the real-time OS makes it possible to carry out program evaluation and testing in the unit of a small module called task. This feature facilitates evaluation and testing and increases software reliability.
7. The microcomputer performance can be optimized to improve the performance of microcom­puter-based products.
With the real-time OS, it is possible to decrease the number of unnecessary microcomputer operations such as I/O waiting. It means that the optimum capabilities can be obtained from microcomputers, and this will lead to mi­crocomputer-based product p erf ormance improvement.
- 4 -

2.2 Relationship between TRON Specification and MR100

MR100 is the real-time operating system developed for use with the R32C/10 series of 32-bit microcomputers compliant with µITRON 4.0 Specification. µITRON 4.0 Specification stipulates standard profiles as an attempt to ensure software portability. Of these standard profiles, MR100 has implemented in it all service calls except for static APIs and task excep­tion APIs
- 5 -

2.3 MR100 Features

The MR100 offers the following features.
1. Real-time operating system conforming to the μITORN Specification.
The MR100 is designed in compliance with the μITRON Specification which incorporates a minimum of the ITRON Specification functions so that such functions can be incorporated into a one-chip microcomputer. As the μITRON Specification is a subset of the ITRON Specification, most of the knowledge obtained from published ITRON textbooks and ITRON seminars can be used as is. Further, the application programs developed using the real-time operating systems conforming to the ITRON Specification can be transferred to the MR100 with comparative ease.
2. High-speed processing is achieved.
MR100 enables high-speed processing by taking full advantage of the microcomputer architecture.
3. Only necessary modules are automatically selected to constantly build up a system of the minimum size.
MR100 is supplied in the object library format of the R32C/100 series. Therefore, the Linkage Editor functions are activated so that only necessary modules are automatically selected from numerous MR100 functional modules to generate a system. Thanks to this feature, a system of the minimum size is automatically generated at all times.
4. With the C-compiler NC100, it is possible to develop application programs in C language.
Application programs of MR100 can be developed in C language by using the C compiler NC100. Furthermore, the interface library necessary to call the MR100 functions from C language is included with the software pack­age.
5. An upstream process tool named "Configurator" is provided to simplify development proce­dures
A configurator is furnished so that various items including a ROM write form file can be created by giving simple definitions. Therefore, there is no particular need to care what libraries must be linked. In addition, a GUI version of the configurator is available. It helps the user to create a configuration file without the need to learn how to write it.
- 6 -

3. Introduction to Kernel

3.1 Concept of Real-time OS

This section explains the basic concept of real-time OS.

3.1.1 Why Real-time OS is Necessary

In line with the recent advances in semiconductor technologies, the single-chip microcomputer ROM capacity has in­creased. ROM capacity of 32K bytes.
As such large ROM capacity microcomputers are introduced, their program development is not easily carried out by con­ventional methods. Figure 3.1 shows the relationship between the program size and required development time (program
opment difficulty).
devel This figure is nothing more than a schematic diagram. However, it indicates that the development period increases expo-
nentially with an increase in program size. For example, the development of four 8K byte programs is easier than the development of one 32K byte program.
4
Development Period
4
8
16
Program Size
32
Kbyte
Figure 3.1 Relationship between Program Size and Development Period
Under these circumstances, it is necessary to adopt a method by which large-size programs can be developed within a short period of time. One way to achieve this purpose is to use a large number of microcomputers having a small ROM capacity. Figure 3.2 presents an example in which a number of microcomputers are used to build up an audio equipment system.
4
On condition that the ROM program burning step need not be performed.
- 7 -
p
Key input
microcomputer
Volume control microcomputer
Remote control microcomputer
Arbiter
microcomputer
Monitor
microcomputer
LED illumination
microcomputer
Mechanical
control
microcom
uter
Figure 3.2 Microcomputer-based System Example(Audio Equipment)
Using independent microcomputers for various functions as indicated in the above example offers the following advan­tages.
1. Individual programs are small so that program development is easy.
2. It is very easy to use previously developed software.
3. Completely independent programs are provided for various functions so that program devel­opment can easily be conducted by a number of engineers.
On the other hand, there are the following disadvantages.
1. The number of parts us ed increases, thereby raising the product cost.
2. Hardware design is complicated.
3. Product physical size is enlarged.
Therefore, if you employ the real-time OS in which a number of programs to be operated by a number of microcomputers are placed under software control of one microcomputer, making it appear that the programs run on separate microcomput­ers, you can obviate all the above disadvantages while retaining the above-mentioned advantages.
Figure 3.3 shows an example system that will be obtained if the real-time OS is incorporated in the system indicated in Figure 3.2.
- 8 -
Key input
Tas k
Remote control
Task
LED illumination
Task
real-time
OS
Volume control
Task
Monitor
Tas k
Mechanical
control
Task
Figure 3.3 Example System Configuration with Real-time OS(Audio Equipment)
In other words, the real-time OS is the software that makes a one-microcomputer system look like operating a number of microcomputers.
In the real-time OS, the individual programs, which correspond to a number of microcomputers used in a conventional sys­tem, are called tasks.
- 9 -

3.1.2 Operating Principles of Kernel

A kernel is the core program of real-time OS. The kernel is the software that makes a one-microcomputer system look like operating a number of microcomputers. You should be wondering how the kernel makes a one-microcomputer system function like a number of microcomputers.
As shown in Figure 3.4 the kernel runs a number of tasks according to the time-division system. That is, it changes the task
ute at fixed time intervals so that a number of tasks appear to be executed simultaneously.
to exec
Key input
Task
Remote control
Task
LED
illumination
Task
Volume control
Task
Monitor
Task
Mechanical
control
Task
Time
Figure 3.4 Time-division Task Operation
As indicated above, the kernel changes the task to execute at fixed time intervals. This task switching may also be referred to as dispatching. The factors causing task switching (dispatching) are as follows.
Task switching occurs upon request from a task.
Task switching occurs due to an external factor such as interrupt.
When a certain task is to be executed again upon task switching, the system resumes its execution at the po int of last inter­ruption (See Figure 3.5).
- 10 -
A
Program execution
interrupt
Program execution
resumed
Key input
Task
Remote control
Task
During this interval, it appears that the key input microcomputer is haled.
Figure 3.5 Task Execution Interruption and Resumption
In the state shown in Figure 3.5, it appears to the programmer that the key input task or its microcomputer is halted while anot
her task assumes execution control.
Task execution restarts at the point of last interruption as the register contents prevailing at the time of the last interruption are recovered. In other words, task switching refers to the action performed to save the currently executed task register contents into the associated task management memory area and recover the register contents for the task to switch to.
To establish the kernel, therefore, it is only necessary to manage the register for each task and change the register contents upon each task switching so that it looks as if a number of microcomputers exist (See Figure 3.6).
Key input
Task
R0
R1
PC
R0
R1
ctual
Register
PC
Kernel
Remote control
Task
R0
R1
PC
Register Register
Figure 3.6 Task Switching
The example presented in Figure 3.7
5
indicates how the individual task registers are managed. In reality, it is necessary
to provide not only a register but also a stack area for each task.
5
It is figure where all the stack areas of the task were arranged in the same section.
- 11 -
Memory map
Register
R0
Remote control
Task
PC
SP
R0
Key input
Tas k
PC
SP
R0
LED illumination
Task
Stack section
Real-time
OS
PC
SP
SP
Figure 3.7 Task Register Area
SFR
- 12 -
A0A
A3A
Figure 3.8 shows the register and stack area of one tas
k in detail. In the MR100, the register of each task is stored in a stack
area as shown in Figure 3.8. This figure shows the state prevailing after register storage.
Key input
Task
SP
Register not stored
SP
PC
FLG
FB
SB
2
1
R7R5
R6R4
R3R1
R2R0
Register stored
SFR
Key input task stack
Figure 3.8 Actual Register and Stack Area Management
- 13 -

3.2 Service Call

How does the programmer use the kernel functions in a program? First, it is necessary to call up kernel function from the program in some way or other. Calling a kernel function is referred
to as a service call. Task activation and other processing operations can be initiated by such a service call (See Figure 3.9).
Key input
Task
Service call Task switching
Kernel
Figure 3.9 Service call
This service call is realized by a function call when the application program is written in C language, as shown below.
act_tsk(ID_main,3);
Remote control
task
Furthermore, if the application program is written in assembly language, it is realized by an assembler macro call, as shown below.
act_tsk #ID_main
- 14 -

3.2.1 Service Call Processing

When a service call is issued, processing takes place in the following sequence.6
1. The current register contents are saved.
2. The stack pointer is changed from the task type to the real-time OS (system) type.
3. Processing is performed in compliance with the request made by the service call.
4. The task to be executed next is selected.
5. The stack pointer is changed to the task type.
6. The register contents are recovered to resume task execution.
The flowchart in Figure 3.10 shows the process between service call generation and task switching.
Key input Task
Service call issuance
Figure 3.10 Service Call Processing Flowchart
Register Save
<= OS
SP
Processing
Task S election
Task => S P
Register Restore
LED illumination Task
6
A different sequence is followed if the issued service call does not evoke task switching.
- 15 -

3.2.2 Processing Procedures for Service Calls from Handlers

When a service call is issued from a handler, task switching does not occur unlike in the case of a service call from a task. However, task switching occurs when a return from a handler
7
is made.
The processing procedures for service calls from handlers are roughly classified into the following three types.
1. A service call from a handler that caused an interrupt during task execution
2. A service call from a handler that caused an interrupt during service call processing
3. A service call from a handler that caused an interrupt (multiplex interrupt) during handler exe­cution
7
The service call can't be issued from non-kernel handler. Therefore, The handler described here does not include the non-kernel interrupt
handler.
- 16 -
Loading...
+ 274 hidden pages