Rainbow Electronics MAX5499 User Manual

General Description
The MAX5494–MAX5499 10-bit (1024-tap), dual, non­volatile, linear-taper, programmable voltage-dividers and variable resistors perform the function of a mechanical potentiometer, but replace the mechanics with a 3-wire SPI™-compatible serial interface. The MAX5494/MAX5495 are dual, 3-terminal, programma­ble voltage-dividers; the MAX5496/MAX5497 are dual, 2-terminal variable resistors; and the MAX5498/ MAX5499 include one 2-terminal variable resistor and one 3-terminal programmable voltage-divider.
The MAX5494–MAX5499 feature an internal, nonvolatile, electrically erasable programmable read-only memory (EEPROM) that stores the wiper position for initialization during power-up. The 3-wire SPI-compatible serial inter­face allows communication at data rates up to 7MHz.
The MAX5494–MAX5499 are ideal for applications requir­ing digitally controlled potentiometers. End-to-end resis­tance values of 10kand 50kare available with a 35ppm/°C end-to-end temperature coefficient. The ratio­metric temperature coefficient is 5ppm/°C for each chan­nel, making these devices ideal for applications requiring low-temperature-coefficient programmable voltage­dividers such as low-drift, programmable-gain amplifiers.
The MAX5494–MAX5499 operate with either a single power supply (+2.7V to +5.25V) or dual power supplies (±2.5V). The devices consume 400µA (max) of supply current when writing data to the nonvolatile memory and 1.5µA (max) of standby supply current. The devices are available in space-saving (5mm x 5mm x
0.8mm), 16-pin TQFN package and are specified over the extended (-40°C to +85°C) temperature range.
Applications
Gain and Offset Adjustment LCD Contrast Adjustment Pressure Sensors Low-Drift Programmable-Gain Amplifiers Mechanical Potentiometer Replacement Volume Control
Features
Wiper Position Stored in Nonvolatile Memory and
Recalled Upon Power-Up
16-Pin, 5mm x 5mm x 0.8mm TQFN Package
35ppm/°C End-to-End Resistance Temperature
Coefficient
5ppm/°C Ratiometric Temperature Coefficient10kand 50kEnd-to-End Resistor Values
3-Wire SPI-Compatible Serial Interface
Reliability (TA= +85°C)
50,000 Wiper Store Cycles 50 Years Wiper Data Retention
1.5µA (max) Standby Current
Single +2.7V to +5.25V Supply Operation
Dual ±2.5V Supply Operation
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper
Digital Potentiometers
________________________________________________________________ Maxim Integrated Products 1
16
1234
12 11 10 9
15
14
13
5
6
7
8
SCLK
N.C.
N.C.
DIN
GNDINTERFACE
W1
L1
H1
W2
L2
H2
V
DD
N.C.
N.C.
V
SS
TOP VIEW
MAX5494 MAX5495
CS
5mm × 5mm × 0.8mm TQFN
16
1234
12 11 10 9
15
14
13
5
6
7
8
SCLK
N.C.
N.C.
DIN
GNDINTERFACE
W1
L1
D.N.C.
W2
L2
D.N.C.
V
DD
N.C.
N.C.
V
SS
MAX5496 MAX5497
CS
5mm × 5mm × 0.8mm TQFN
Pin Configurations
Ordering Information
19-3562; Rev 1; 6/05
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
*EP = Exposed pad.
Ordering Information continued at end of data sheet. Selector Guide appears at end of data sheet.
Pin Configurations continued at end of data sheet.
SPI is a trademark of Motorola, Inc.
MAX5494ETE -40°C to +85°C 16 TQFN-EP* T1655-2
MAX5495ETE -40°C to +85°C 16 TQFN-EP* T1655-2
PART TEMP RANGE
PIN­PACKAGE
PKG CODE
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(VDD= +2.7V to +5.25V, VSS= GND = 0, VH_= VDD, VL_= 0, TA= -40°C to +85°C, unless otherwise noted. Typical values are at V
DD
= +5.0V, TA= +25°C.) (Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VDDto GND...........................................................-0.3V to +6.0V
V
SS
to GND............................................................-6.0V to +0.3V
V
DD
to VSS.............................................................-0.3V to +6.0V
H1, H2, L1, L2, W1, W2 to V
SS
.........(VSS- 0.3V) to (VDD+ 0.3V)
CS, SCLK, DIN to GND ..............................-0.3V to (VDD+ 0.3V)
Maximum Continuous Current into H_, L_, and W_
MAX5494/MAX5496/MAX5498 ....................................±5.0mA
MAX5495/MAX5497/MAX5499 ....................................±1.0mA
Maximum Current Into Other Pins .................................±50.0mA
Continuous Power Dissipation (T
A
= +70°C)
16-Pin TQFN (derate 20.8mW/°C above +70°C) ....1666.7mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-60°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
PARAMETER
CONDITIONS
UNITS
DC PERFORMANCE (MAX5494/MAX5495/MAX5498/MAX5499 Programmable Voltage-Divider)
Resolution N 10 Bits
VDD = 2.7V ±2
Integral Nonlinearity (Note 2) INL
V
DD
= 5V ±2
LSB
VDD = 2.7V ±1
Differential Nonlinearity (Note 2) DNL
V
DD
= 5V ±1
LSB
End-to-End Resistance Temperature Coefficient
TC
R
35
ppm/°C
Ratiometric Temperature Coefficient
5
ppm/°C
MAX5494/MAX5498 -4 -2.5 0
Full-Scale Error FSE
MAX5495/MAX5499 -4
0
LSB
MAX5494/MAX5498 0 3.3 5
Zero-Scale Error ZSE
MAX5495/MAX5499 0
5
LSB
Wiper Capacitance C
W
60 pF
MAX5494/MAX5498 7.5 10
End-to-End Resistance R
HL
MAX5495/MAX5499
50
k
MAX5494
Channel-to-Channel Division Ratio Matching
MAX5495
%
MAX5494/MAX5498, W_ at 15 code, H_ and L_ shorted to V
SS
, measure resistance from
W_ to H_ (Figures 4 and 5)
6.3
Resistance from W_ to L_ and H_
MAX5495/MAX5499, W_ at 15 code, H_ and L_ shorted to V
SS
, measure resistance from
W_ to H_ (Figures 4 and 5)
25
k
SYMBOL
MIN TYP MAX
VDD = 3V, midcode: 512
-0.75
1.45
37.5
0.05
0.15
12.5
62.5
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper
Digital Potentiometers
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS (continued)
(VDD= +2.7V to +5.25V, VSS= GND = 0, VH_= VDD, VL_= 0, TA= -40°C to +85°C, unless otherwise noted. Typical values are at V
DD
= +5.0V, TA= +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
DC PERFORMANCE (MAX5496–MAX5499 Variable Resistor)
Resolution N 10 Bits
VDD = 2.7V -1.6
VDD = 3V -4 -1.4 +4Integral Nonlinearity (Note 3) INL_R
V
DD
= 5V -4 -1.3 +4
LSB
VDD = 2.7V
VDD = 3V -1
+1Differential Nonlinearity (Note 3) DNL_R
V
DD
= 5V -1
+1
LSB
Variable-Resistor Temperature Coefficient
TC
VR
VDD = 3V to 5.25V; code = 128 to 1024 35
ppm/°C
Wiper Resistance R
W
VDD 3V (Note 4) 50
Wiper Capacitance C
WR
60 pF
MAX5496/MAX5498 7.5 10
Full-Scale Wiper-to-End Resistance
R
W-L
MAX5497/MAX5499
50
k
70
Zero-Scale Resistor Error R
Z
Code = 0
110
MAX5496/MAX5498, Code >128
0.1
Two-Channel Resistance Matching
V
DD
= 3V to 5.25V
MAX5497/MAX5499, Code >200
%
DIGITAL INPUTS (CS, SCLK, DIN) (Note 5)
2.4
Single-supply operation
V
DD
= 2.7V to 3.6V
0.7 x
Input High Voltage V
IH
Dual-supply operation
With respect to GND, V
DD
= 2.5V,
V
SS
= -2.5V
2.0
V
Single-supply operation
0.8
Input Low Voltage V
IL
Dual-supply operation
With respect to GND, V
DD
= 2.5V,
V
SS
= -2.5V
0.6
V
Input Leakage Current I
IN
±1 µA
Input Capacitance C
IN
5pF
DYNAMIC CHARACTERISTICS
250
Wiper -3dB Bandwidth BW
Wiper at code 495 (01111 01111), 10pF load at wiper
50
kHz
+0.45
MAX5494/MAX5498
MAX5495/MAX5499
VDD = 3.6V to 5.25V
+0.4
+0.35
37.5
V
DD
0.15
12.5
62.5
VDD = 2.7V to 5.25V
MAX5494/MAX5498
MAX5495/MAX5499
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS (continued)
(VDD= +2.7V to +5.25V, VSS= GND = 0, VH_= VDD, VL_= 0, TA= -40°C to +85°C, unless otherwise noted. Typical values are at V
DD
= +5.0V, TA= +25°C.) (Note 1)
PARAMETER
CONDITIONS
UNITS
MAX5494/MAX5498; VDD = 3V; wiper at code 495; 10kHz, 1V
RMS
signal is applied
at H_; 10pF load at wiper
Total Harmonic Distortion THD
MAX5495/MAX5499; V
DD
= 3V; wiper at
code 495; 10kHz, 1V
RMS
signal is applied
at H_;
10pF load at wiper
%
Analog Crosstalk
CH2 = 11111 11111, CH1 = 01111 01111, C
W_
= 10pF, VH1 = VDD = +2.5V,
V
L1
= VSS = -2.5V, measure VW1 with
V
W2
= 5V
P-P
at f = 1kHz
-93 dB
NONVOLATILE MEMORY RELIABILITY
Data Retention TA = +85°C 50
Years
TA = +25°C
Endurance
T
A
= +85°C
Stores
POWER SUPPLIES
Single-Supply Voltage V
DD
VSS = GND = 0
V
V
DD
GND = 0
Dual-Supply Voltage
V
SS
(VDD - VSS) 5.25V
V
Average Programming Current I
PG
During nonvolatile write only; digital inputs = V
DD
or GND
220
µA
Peak Programming Current
During nonvolatile write only; digital inputs = V
DD
or GND
4mA
Standby Current I
DD
Digital inputs = VDD or GND, TA = +25°C 0.6 1.5 µA
SYMBOL
MIN TYP MAX
0.026
0.03
200,000
50,000
2.70 5.25
2.50 5.25
-2.5 -0.2
400
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper
Digital Potentiometers
_______________________________________________________________________________________ 5
TIMING CHARACTERISTICS
(VDD= +2.7V to +5.25V, VSS= GND = 0, VH_= VDD, VL_= 0, TA= -40°C to +85°C, unless otherwise noted. Typical values are at V
DD
= +5.0V, TA= +25°C.) (Note 1)
PARAMETER
CONDITIONS
UNITS
ANALOG SECTION
MAX5494/MAX5498 5
Wiper Settling Time (Note 6) t
S
MAX5495/MAX5499 22
µs
SPI-COMPATIBLE SERIAL INTERFACE (Figure 6)
SCLK Frequency f
SCLK
7 MHz
SCLK Clock Period t
CP
ns
SCLK Pulse-Width High t
CH
60 ns
SCLK Pulse-Width Low t
CL
60 ns
CS Fall to SCLK Rise Setup t
CSS
60 ns
SCLK Rise to CS Rise Hold t
CSH
0ns
DIN to SCLK Setup t
DS
40 ns
DIN Hold After SCLK t
DH
0ns
SCLK Rise to CS Fall Delay t
CS0
15 ns
CS Rise to SCLK Rise Hold t
CS1
60 ns
CS Pulse-Width High t
CSW
ns
Write NV Register Busy Time t
BUSY
12 ms
Note 1: 100% production tested at TA= +25°C and TA= +85°C. Guaranteed by design to TA= -40°C. Note 2: The DNL and INL are measured for the voltage-divider with H_ = V
DD
and L_ = VSS. The wiper terminal (W_) is unloaded
and measured with a high-input-impedance voltmeter.
Note 3: The DNL and INL are measured with L_ = V
SS
= 0. For VDD= 5V, the wiper terminal is driven with a current source of IW=
80µA for the 50kdevice and I
W
= 400µA for the 10kdevice. For VDD= 3V, the wiper terminal is driven with a current
source of IW= 40µA for the 50kdevice and IW= 200µA for the 10kdevice.
Note 4: The wiper resistance is measured using the source currents given in Note 3. Note 5: The device draws higher supply current when the digital inputs are driven with voltages between (V
DD
- 0.5V) and (GND +
0.5V). See the Supply Current vs. Digital Input Voltage graph in the Typical Operating Characteristics.
Note 6: Wiper settling test condition uses the voltage-divider with a 10pF load on W_. Transition code from 0 to 495 and measure
the time from CS going high to the wiper voltage settling to within 0.5% of its final value.
SYMBOL
MIN TYP MAX
140
150
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
6 _______________________________________________________________________________________
Typical Operating Characteristics
(VDD= +5.0V, VSS= 0, TA= +25°C, unless otherwise noted.)
DIFFERENTIAL NONLINEARITY
vs. CODE (VARIABLE RESISTOR)
MAX5494 toc01
CODE
DNL (LSB)
896768512 640256 384128
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1.0
-1.0 01024
VDD = 3V
INTEGRAL NONLINEARITY
vs. CODE (VARIABLE RESISTOR)
MAX5494 toc02
CODE
INL (LSB)
896768512 640256 384128
-1.0
-0.5
0
0.5
1.0
1.5
-1.5 0 1024
VDD = 3V
MAXIMUM DIFFERENTIAL NONLINEARITY
vs. SUPPLY VOLTAGE (VARIABLE RESISTOR)
MAX5494 toc03
VDD (V)
DNL (LSB)
4.54.03.53.0
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1.0
-1.0
2.5 5.0
MAXIMUM INTEGRAL NONLINEARITY
vs. SUPPLY VOLTAGE (VARIABLE RESISTOR)
MAX5494 toc04
VDD (V)
INL (LSB)
4.54.03.53.0
-1.5
-1.0
-0.5
0
0.5
1.0
-2.0
2.5 5.0
DIFFERENTIAL NONLINEARITY
vs. CODE (VOLTAGE-DIVIDER)
MAX5494 toc05
CODE
DNL (LSB)
896768512 640256 384128
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1.0
-1.0 0 1024
VDD = 3V
INTEGRAL NONLINEARITY
vs. CODE (VOLTAGE-DIVIDER)
MAX5494 toc06
CODE
INL (LSB)
896768512 640256 384128
-1.0
-0.5
0
0.5
1.0
1.5
-1.5 01024
VDD = 3V
WIPER RESISTANCE vs. CODE
(VARIABLE RESISTOR)
MAX5494 toc07
CODE
R
W
()
896768512 640256 384128
10
20
40
30
50
60
70
80
0
01024
0
10
20
30
40
50
60
0256128 384 512 640 768 896 1024
END-TO-END RESISTANCE
vs. CODE (MAX5497/MAX5499)
MAX5494 toc08
CODE
R
WL
(k)
END-TO-END RESISTANCE vs. CODE
(MAX5496/MAX5498)
MAX5494 toc09
CODE
R
WL
(k)
896768512 640256 384128
2
4
6
8
10
12
0
01024
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper
Digital Potentiometers
_______________________________________________________________________________________ 7
Typical Operating Characteristics (continued)
(VDD= +5.0V, VSS= 0, TA= +25°C, unless otherwise noted.)
WIPER RESISTANCE vs. WIPER VOLTAGE
(VARIABLE RESISTOR)
MAX5494 toc10
WIPER VOLTAGE (V)
R
W
()
4321
17
19
20
21
22
16
05
CODE IS 00 0000 0000
VDD = 5V
18
END-TO-END RESISTANCE (RHL)
% CHANGE vs. TEMPERATURE
(VOLTAGE-DIVIDER)
MAX5494 toc11
TEMPERATURE (°C)
END-TO-END RESISTANCE CHANGE (%)
603510-15
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1.0
-1.0
-40 85
WIPER-TO-END RESISTANCE (RWL)
% CHANGE vs. TEMPERATURE
(VARIABLE RESISTOR)
MAX5494 toc12
TEMPERATURE (°C)
WIPER-TO-END RESISTANCE CHANGE (%)
603510-15
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1.0
-1.0
-40 85
CODE IS 11 1111 1111
STANDBY SUPPLY CURRENT
vs. TEMPERATURE
MAX5494 toc13
TEMPERATURE (°C)
I
DD
(µA)
603510-15
0.3
0.6
0.9
1.2
1.5
0
-40 85
VDD = 5.25V
DIGITAL SUPPLY CURRENT
vs. DIGITAL INPUT VOLTAGE
MAX5494 toc14
DIGITAL INPUT VOLTAGE (V)
I
DD
(µA)
4321
1
10
100
1000
10,000
0.1 05
VDD = 5V
RATIOMETRIC TEMPERATURE
COEFFICIENT vs. CODE
MAX5494 toc15
CODE
RATIOMETRIC TEMPCO (ppm/°C)
896768512 640256 384128
20
40
60
80
100
120
140
160
180
200
0
01024
VOLTAGE-DIVIDER V
DD
= 3V
T
A
= -40°C TO +85°C
10k
50k
VARIABLE RESISTOR TEMPERATURE
COEFFICIENT vs. CODE
MAX5494 toc16
CODE
TC
VR
(ppm/°C)
896768512 640256 384128
100
200
300
400
500
600
700
0
01024
VDD = 3V T
A
= -40°C TO +85°C
10k
50k
TAP-TO-TAP SWITCHING TRANSIENT
(MAX5494/MAX5498)
MAX5494 toc17
V
W_
20mV/div
1µs/div
CS 2V/div
H_ = V
DD
L_ = GND FROM CODE 01111 11111 TO CODE 10000 00000 C
W_
= 10pF
TAP-TO-TAP SWITCHING TRANSIENT
(MAX5495/MAX5499)
MAX5494 toc18
V
W_
20mV/div
4µs/div
H_ = V
DD
L_ = GND FROM CODE 01111 11111 TO CODE 10000 00000 C
W_
= 10pF
CS 2V/div
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
8 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VDD= +5.0V, VSS= 0, TA= +25°C, unless otherwise noted.)
CROSSTALK
MAX5494 toc19
V
W1
20mV/div
400ns/div
V
W2
2V/div
VH2 = V
DD
VL2 = VL1 = VH1 = GND C
W_
= 10pF
CROSSTALK vs. FREQUENCY
MAX5494 toc20
FREQUENCY (kHz)
CROSSTALK (dB)
1010.1
-40
-20
0
0.01 100
CW_ = 10pF CODE = 01111 01111
-60
-80
-100
-120 1000
MAX5494/MAX5498
MAX5495/MAX5499
THD+N vs. FREQUENCY
(MAX5494/MAX5498)
MAX5494 toc21
FREQUENCY (kHz)
THD+N (%)
1010.1
0.001
0.01
0.1
1
10
0.0001
0.01 100
CW_ = 10pF CODE = 01111 01111
THD+N vs. FREQUENCY
(MAX5495/MAX5499)
MAX5494 toc22
FREQUENCY (kHz)
THD+N (%)
1010.1
0.001
0.01
0.1
1
10
0.0001
0.01 100
CW_ = 10pF CODE = 01111 01111
WIPER RESPONSE vs. FREQUENCY
(MAX5494/MAX5498)
MAX5494 toc23
FREQUENCY (kHz)
GAIN (dB)
100101
-20
-15
-10
-5
0
-25
0.1 1000
CODE = 01111 01111
CW_ = 10pF
CW_ = 30pF
WIPER RESPONSE vs. FREQUENCY
(MAX5495/MAX5499)
MAX5494 toc24
FREQUENCY (kHz)
GAIN (dB)
100101
-20
-15
-10
-5
0
-25
0.1 1000
CODE = 01111 01111
CW_ = 10pF
CW_ = 30pF
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper
Digital Potentiometers
_______________________________________________________________________________________ 9
Pin Descriptions
PIN
MAX5494/
MAX5495
NAME FUNCTION
111CS
Active-Low Chip-Select Input. Drive CS low to enable the serial interface. Drive CS high to disable the serial interface and put the device in standby mode.
222W2Wiper Terminal 2
333L2Low Terminal 2
4——H2High Terminal 2
555V
DD
Positive Power-Supply Input. 2.7V ≤ V
DD
5.25V. Bypass with a 0.1µF
capacitor from V
DD
to GND as close to the device as possible
6, 7,14,15
N.C. No Connection. Not internally connected.
888V
SS
Negative Power-Supply Input. Single-supply operation: V
SS
= GND = 0.
Dual-supply operation: -2.5V ≤ V
SS
-0.2V (VSS can vary as long as
(V
DD
- VSS) ≤ 5.25V).
Bypass with a 0.1µF capacitor from V
SS
to GND as close to the device
as possible.
9—9H1High Terminal 1
10 10 10 L1 Low Terminal 1
11 11 11 W1 Wiper Terminal 1
12 12 12 GND Ground
13 13 13 DIN
Serial-Data Input. The data at DIN synchronously loads into the serial shift register on each SCLK rising edge.
16 16 16 SCLK Serial-Clock Input . SCLK clocks in the data when CS is low.
4, 9 4 D.N.C Do Not Connect. Leave unconnected for proper operation.
EP EP EP
Exposed
Pad
Exposed Pad. Externally connect EP to V
SS
to provide a low thermal resistance
path from the IC junction to the PC board or leave unconnected.
MAX5496/
MAX5497
6, 7,14,15 6, 7,14,15
MAX5498/
MAX5499
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
10 ______________________________________________________________________________________
Functional Diagrams
MAX5494 MAX5495
POR
10-BIT LATCH
2 x 10
BIT
NVM
SCLK
DIN
CS
DECODER
10
10
1024
TAPS
H1
W1
L1
V
DD
GND
V
SS
SPI
INTERFACE
DECODER
10-BIT LATCH
H2
W2
NOTE: THE PROGRAMMABLE VOLTAGE-DIVIDER IS NOT INTENDED FOR CURRENT TO FLOW THROUGH THE WIPER.
NOTE: SEE THE MAX5494/MAX5495/MAX5498/MAX5499 PROGRAMMABLE VOLTAGE-DIVIDERS SECTION.
L2
1024
TAPS
Figure 1. MAX5494/MAX5495 Functional Diagram
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper
Digital Potentiometers
______________________________________________________________________________________ 11
Functional Diagrams (continued)
MAX5496 MAX5497
POR
10-BIT
LATCH
2 x 10
BIT
NVM
SCLK
DIN
CS
DECODER
10
10
W1
L1
V
DD
GND
V
SS
SPI
INTERFACE
DECODER
10-BIT LATCH
W2
L2
1024
TAPS
1024
TAPS
Figure 2. MAX5496/MAX5497 Functional Diagram
MAX5498 MAX5499
POR
10-BIT LATCH
2 x 10
BIT
NVM
SCLK
DIN
CS
DECODER
10
10
H1
W1
L1
V
DD
GND
V
SS
SPI
INTERFACE
10-BIT LATCH
DECODER
W2
L2
NOTE: THE PROGRAMMABLE VOLTAGE-DIVIDER IS NOT INTENDED FOR CURRENT TO FLOW THROUGH THE WIPER.
NOTE: SEE THE MAX5494/MAX5495/MAX5498/MAX5499 PROGRAMMABLE VOLTAGE-DIVIDERS SECTION.
1024
TAPS
1024
TAPS
Figure 3. MAX5498/MAX5499 Functional Diagram
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
12 ______________________________________________________________________________________
CODE (DECIMAL)
R
W_H_
(k)
896768512 640256 384128
2
4
6
8
10
12
14
16
18
0
0 1024
50k SCALES BY A FACTOR OF FIVE
Figure 4. Resistance from W_ to H_ vs. Code (10kVoltage­Divider)
CODE (DECIMAL)
R
W_L_
(k)
896768512 640256 384128
2
4
6
8
10
12
14
16
18
0
0 1024
50k SCALES BY A FACTOR OF FIVE
Figure 5. Resistance from W_ to L_ vs. Code (10kVoltage­Divider)
Detailed Description
The MAX5494–MAX5499 dual, nonvolatile, linear-taper, programmable voltage-dividers and variable resistors feature 1024 tap points (10-bit resolution) (see the Functional Diagrams). These devices consist of multi­ple strings of equal resistor segments with a wiper con­tact that moves among the 1024 effective tap points by a 3-wire SPI-compatible serial interface. The MAX5494/MAX5496/MAX5498 provide a total 10k end-to-end resistance, and the MAX5495/MAX5497/ MAX5499 feature a 50kend-to-end resistance. The MAX5494/MAX5495/MAX5498/MAX5499 allow access to the high, low, and wiper terminals for a standard volt­age-divider configuration. Ensure that the terminal volt­ages fall between VSSand VDD.
MAX5494/MAX5495/MAX5498/MAX5499
Programmable Voltage-Dividers
The MAX5494/MAX5495/MAX5498/MAX5499 program­mable voltage-dividers provide a weighted average of the voltage between the H_ and L_ inputs at the W_ output.
The MAX5494/MAX5495/MAX5498/MAX5499 program­mable voltage-divider network provides up to 1024 division ratios between the H_ and L_ voltage. Ideally, the VLvoltage occurs at the wiper terminal when all data bits are zeros and the VHvoltage occurs at the wiper terminal when all data bits are one (see the wiper voltage equation). The step-size voltage (1 LSB) is equal to the voltage applied across terminals H and L divided by 210. Calculate the wiper voltage VWas fol­lows:
where D is the decimal equivalent of the 10 data bits
written (0 to 1023), VHLis the voltage difference between
the H_ and L_ terminals, and:
The MAX5494/MAX5498 provide a 10kend-to-end resistance value, while the MAX5495/MAX5499 feature a 50kend-to-end resistance value. Note that the pro-
grammable voltage-divider is not intended to be used as a variable resistor. Wiper current creates a nonlinear
voltage drop in series with the wiper. To ensure tempera­ture drift remains within specifications, do not pull current through the voltage-divider wiper. Connect the wiper to a high-impedance node. Figures 4 and 5 show the behav­ior of the programmable voltage-divider resistance from W_ to H_ and W_ to L_, respectively. This does not apply to the variable-resistor devices.
MAX5496–MAX5499 Variable Resistors
The MAX5496–MAX5499 provide a programmable resis­tance from W_ to L_. The MAX5496/MAX5498 provide a 10kend-to-end resistance value, while the MAX5497/MAX5499 feature a 50kend-to-end resis­tance value. The programmable resolution of this
V FSE
V
V ZSE
V
FSE
HL
ZSE
HL
=
 
 
=
 
 
1024
1024
D
VV V
VV
HL FSE ZSE
L ZSE
−+
()
 
 
++
||||
||
1023
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper
Digital Potentiometers
______________________________________________________________________________________ 13
resistance is equal to the nominal end-to-end resis­tance divided by 1024 (10-bit resolution). For example, the programmable resolution is 9.8and 48.8for the MAX5496/MAX5498 and the MAX5497/MAX5499, respectively.
The 10-bit data in the 10-bit latch register selects the wiper position from the 1024 possible positions, result­ing in 1024 values for the resistance from W_ to L_. Calculate the resistance from W_ to L_ (RWL) from the formula below:
where D is decimal equivalent of the 10 data bits writ­ten, R
W-L
is the nominal end-to-end resistance, and R
Z
is the zero-scale error. Table 1 shows RWLat selected codes.
SPI-Compatible Serial Interface
The MAX5494–MAX5499 use a 3-wire, SPI-compatible, serial data interface (Figure 6). This write-only interface contains three inputs: chip-select (CS), data input (DIN), and data clock (SCLK). Drive CS low to enable the serial interface and clock data synchronously into the shift register on each SCLK rising edge.
The WRITE commands (C1, C0 = 00 or 01) require 24 clock cycles to transfer the command and data (Figure 7a). The COPY commands (C1, C0 = 10 or 11) use
either eight clock cycles to transfer the command bits (Figure 7b) or 24 clock cycles with 16 bits disregarded by the device (Figure 7a).
After the loading of data into the shift register, drive CS high to latch the data into the appropriate control regis­ter (specified by RA1 and RA0) and disable the serial interface. Keep CS low during the entire serial data stream to avoid corruption of the data. Table 2 shows the register map.
Write Wiper Register
The “write wiper register” command (C1, C0 = 00) con­trols the wiper positions. The 10 data bits (D9–D0) indi­cate the position of the wiper. For example, if DIN = 000000 0000, the wiper moves to the position closest to L_. If DIN = 11 1111 1111, the wiper moves closest to H_.
RD
D
RR
WL W L Z
()
=×+
1023
END-TO-END RESISTANCE VALUE
10k 50k
CODE (DECIMAL)
RWL ()R
WL
()
070110
180160
512 5,070 25,110
1023 10,070 50,110
Table 1. RWLat Selected Codes
CS
t
CSO
t
CSS
t
CL
t
CH
t
DH
t
DS
t
CP
t
CSH
t
CSW
t
CS1
SCLK
DIN
Figure 6. SPI-Interface Timing Diagram
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
14 ______________________________________________________________________________________
1 2 3 4 5 6 7 8 9
10
D9 D8 D7 D6 D5 D4 D3 D2
a) 24-BIT COMMAND/DATA WORD
1 2 3 4 5 6 7 8
C1 C0
b) 8-BIT COMMAND WORD
D1 D0
SCLK
SCLK
DIN
DIN
CS
11 12
13 14 15 16
17
18 19 20 21 22
23 24
CS
C1 C0
RA0RA1
RA0RA1
Figure 7. SPI-Compatible Serial-Interface Format
Table 2. Register Map*
CLOCK EDGE
24
Bit Name
Write Wiper Register 1
Write Wiper Register 2
Write NV Register 1
Write NV Register 2
Copy Wiper Register 1 to NV Register 1
Copy Wiper Register 2 to NV Register 2
Copy Wiper Register 1 to NV Register 1 and Copy Wiper Register 2 to NV Register 2 Simultaneously
Copy NV Register 1 to Wiper Register 1
Copy NV Register 2 to Wiper Register 2
Copy NV Register 1 to Wiper Register 1 and Copy NV Register 2 to Wiper Register 2 Simultaneously
*D9 is the MSB and D0 is the LSB of the data bits.
12 3 4 56 7 8 9101112131415161718…
——C1C0——RA1 RA0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
00 0 0 00 0 1D9D8 D7 D6 D5 D4 D3 D2 D1 D0
00 0 0 00 1 0D9D8 D7 D6 D5 D4 D3 D2 D1 D0
00 0 1 00 0 1D9D8 D7 D6 D5 D4 D3 D2 D1 D0
00 0 1 00 1 0D9D8 D7 D6 D5 D4 D3 D2 D1 D0
00 1 0 00 0 1———————————
00 1 0 00 1 0———————————
00 1 0 00 1 1———————————
00 1 1 00 0 1———————————
00 1 1 00 1 0———————————
00 1 1 00 1 1———————————
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper
Digital Potentiometers
______________________________________________________________________________________ 15
ACTION
WIPER
REGISTER 1
UPDATED
000 000 01 D9D8 D7 D6 D5 D4 D3 D2 D1 D0
12345678 910111213141516 1718192021222324
SCLK
DIN
XXXXXX
CS
C1 C0 RA1 RA0
Figure 8. Write Wiper Register 1
Figure 9. Write NV Register 1
The “write wiper register” command writes data to the volatile random access memory (RAM), leaving the NV registers unchanged. When the device powers up, the data stored in the NV registers transfers to the wiper register, moving the wiper to the stored position. Figure 8 shows how to write data to wiper register 1.
Write NV Register
The “write NV register” command (C1, C0 = 01) stores the position of the wiper to the NV registers for use at power-up. Alternatively, the “copy wiper register to NV register” command writes to the NV register. Writing to
the NV register does not affect the position of the wipers. The operation takes up to 12ms (max) after CS goes high to complete and no other operation should be performed until completion. Figure 9 shows how to write data to the NV register 1.
Copy Wiper Register to NV Register
The “copy wiper register to NV register” command (C1, C0 = 10) stores the current position of the wiper to the NV register for use at power-up. Figure 10 shows how to copy data from wiper register 1 to NV register 1.
CS
12345678 910111213141516 1718192021222324
SCLK
DIN
ACTION
000 100 01 D9D8 D7 D6 D5 D4 D3 D2 D1 D0
C1 C0 RA1 RA0
XXXXXX
t
BUSY
WRITE NV
REGISTER 1
(DEVICE IS BUSY)
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
16 ______________________________________________________________________________________
Copy NV Register to Wiper Register
The “copy NV register to wiper register” (C1, C0 = 11) restores the wiper position to the current value stored in the NV register. Figure 11 shows how to copy data from NV register 1 to wiper register 1.
Standby Mode
The MAX5494–MAX5499 feature a low-power standby mode. When the device is not being programmed, it enters into standby mode and supply current drops to
0.6µA (typ).
Nonvolatile Memory
The internal EEPROM consists of a nonvolatile register that retains the last value stored prior to power-down. The nonvolatile register is programmed to midscale at
the factory. The nonvolatile memory is guaranteed for 50 years for wiper data retention and up to 200,000 wiper write cycles.
Power-Up
Upon power-up, the MAX5494–MAX5499 load the data stored in the nonvolatile wiper register into the wiper register, updating the wiper position with the data stored in the nonvolatile wiper register.
Applications Information
The MAX5494–MAX5499 are intended for circuits requiring digitally controlled adjustable resistance, such as LCD contrast control (where voltage biasing adjusts the display contrast), or programmable filters with adjustable gain and/or cutoff frequency.
ACTION
00100001
12345678
SCLK
DIN
CS
C1 C0 RA1 RA0
WRITE NV
REGISTER 1
(DEVICE IS BUSY)
t
BUSY
Figure 10. Copy Wiper Register 1 to NV Register 1
ACTION
00110001
12345678
SCLK
DIN
CS
C1 C0 RA1 RA0
WIPER REGISTER
1 UPDATED
Figure 11. Copy NV Register 1 to Wiper Register 1
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper
Digital Potentiometers
______________________________________________________________________________________ 17
Positive LCD Bias Control
Figures 12 and 13 show an application where the volt­age-divider or variable resistor is used to make an adjustable, positive LCD-bias voltage. The op amp pro­vides buffering and gain to the resistor-divider network.
Programmable Filter
Figure 14 shows the configuration for a 1st-order pro­grammable filter. The gain of the filter is adjusted by R2, and the cutoff frequency is adjusted by R3. Use the following equations to calculate the gain (G) and the 3dB cutoff frequency (f
C
).
Gain and Offset Voltage Adjustment
Figure 15 shows an application using the MAX5498/ MAX5499 to adjust the gain and nullify the offset voltage.
G
R
R
f
RC
C
=+
=
××
1
1
2
1
23π
V
OUT
30V
5V
W_
H_
L_
1/2 MAX5494/MAX5495 1/2 MAX5498/MAX5499
MAX480
Figure 12. Positive LCD Bias Control Using a Voltage-Divider
V
OUT
30V
5V
W_
L_
1/2 MAX5496–MAX5499
MAX480
Figure 13. Positive LCD Bias Control Using a Variable Resistor
V
OUT
V
IN
R1
R2
R3
C
W_
L_
W_
L_
1/2 MAX5496–MAX5499
1/2 MAX5496–MAX5499
Figure 14. Programmable Filter
V
OUT
W_
L_
1/2 MAX5498/MAX5499
1/2 MAX5498/MAX5499
V
REF
W_
H_
L_
V
IN
Figure 15. Gain- and Offset-Voltage Adjustment Circuit
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
18 ______________________________________________________________________________________
16
1234
12 11 10 9
15
14
13
5
6
7
8
SCLK
N.C.
N.C.
DIN
GNDINTERFACE
W1
L1
H1
W2
L2
D.N.C.
V
DD
N.C.
N.C.
V
SS
TOP VIEW
MAX5498 MAX5499
CS
5mm × 5mm × 0.8mm TQFN
Pin Configurations (continued)
Ordering Information (continued)
PART CONFIGURATION
END-TO-END
RESISTANCE
(k)
MAX5494ETE
Two programmable voltage­dividers
10
MAX5495ETE
Two programmable voltage­dividers
50
MAX5496ETE
Two variable resistors 10
MAX5497ETE
Two variable resistors 50
MAX5498ETE
One p r og r amm ab le vol tage-
10
MAX5499ETE
One p r og r amm ab le vol tage-
50
Selector Guide
Chip Information
TRANSISTOR COUNT: 32,262
PROCESS: BiCMOS
*EP = Exposed pad.
d i vi d er and one vari ab le r esi stor
d i vi d er and one vari ab le r esi stor
PART TEMP RANGE
MAX5496ETE -40°C to +85°C 16 TQFN-EP* T1655-2
MAX5497ETE -40°C to +85°C 16 TQFN-EP* T1655-2
MAX5498ETE -40°C to +85°C 16 TQFN-EP* T1655-2
MAX5499ETE -40°C to +85°C 16 TQFN-EP* T1655-2
PIN­PACKAGE
PKG CODE
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper
Digital Potentiometers
______________________________________________________________________________________ 19
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages
.)
QFN THIN.EPS
D2
(ND-1) X e
e
D
C
PIN # 1
I.D.
(NE-1) X e
E/2
E
0.08 C
0.10 C
A
A1
A3
DETAIL A
E2/2
E2
0.10 M C A B
PIN # 1 I.D.
b
0.35x45°
D/2
D2/2
L
C
L
C
e e
L
CC
L
k
LL
DETAIL B
L
L1
e
XXXXX
MARKING
H
1
2
21-0140
PACKAGE OUTLINE, 16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm
-DRAWING NOT TO SCALE-
L
e/2
MAX5494–MAX5499
10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2005 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages
.)
COMMON DIMENSIONS
3.353.15T2855-1 3.25 3.353.15 3.25
MAX.
3.20
EXPOSED PAD VARIATIONS
3.00T2055-2 3.10
D2
NOM.MIN.
3.203.00 3.10
MIN.E2NOM. MAX.
NE
ND
PKG.
CODES
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN
0.25 mm AND 0.30 mm FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1, T2855-3, AND T2855-6.
NOTES:
SYMBOL
PKG.
N
L1
e
E
D
b
A3
A
A1
k
10. WARPAGE SHALL NOT EXCEED 0.10 mm.
JEDEC
T1655-1 3.203.00 3.10 3.00 3.10 3.20
0.70 0.800.75
4.90
4.90
0.25
0.250--
4
WHHB
4
16
0.350.30
5.10
5.105.00
0.80 BSC.
5.00
0.05
0.20 REF.
0.02
MIN. MAX.NOM.
16L 5x5
3.10
T3255-2
3.00
3.20
3.00 3.10 3.20
2.70
T2855-2 2.60 2.602.80 2.70 2.80
L
0.30 0.500.40
---
---
WHHC
20
5
5
5.00
5.00
0.30
0.55
0.65 BSC.
0.45
0.25
4.90
4.90
0.25
0.65
--
5.10
5.10
0.35
20L 5x5
0.20 REF.
0.75
0.02
NOM.
0
0.70
MIN.
0.05
0.80
MAX.
---
WHHD-1
28
7
7
5.00
5.00
0.25
0.55
0.50 BSC.
0.45
0.25
4.90
4.90
0.20
0.65
--
5.10
5.10
0.30
28L 5x5
0.20 REF.
0.75
0.02
NOM.
0
0.70
MIN.
0.05
0.80
MAX.
---
WHHD-2
32
8
8
5.00
5.00
0.40
0.50 BSC.
0.30
0.25
4.90
4.90
0.50
--
5.10
5.10
32L 5x5
0.20 REF.
0.75
0.02
NOM.
0
0.70
MIN.
0.05
0.80
MAX.
0.20 0.25 0.30
DOWN BONDS ALLOWED
NO
YES3.103.00 3.203.103.00 3.20T2055-3
3.103.00 3.203.103.00 3.20T2055-4
T2855-3 3.15 3.25 3.35 3.15 3.25 3.35
T2855-6 3.15 3.25 3.35 3.15 3.25 3.35
T2855-4 2.60 2.70 2.80 2.60 2.70 2.80
T2855-5 2.60 2.70 2.80 2.60 2.70 2.80
T2855-7 2.60 2.70
2.80
2.60 2.70 2.80
3.203.00 3.10T3255-3 3.203.00 3.10
3.203.00 3.10T3255-4 3.203.00 3.10
NO
NO NO
NO
NO
NO
NO
NO
YES YES
YES
YES
3.203.00T1655-2 3.10 3.00 3.10 3.20 YES NO3.203.103.003.10T1655N-1 3.00 3.20
3.353.15T2055-5 3.25 3.15 3.25 3.35
YES
3.35
3.15T2855N-1 3.25 3.15 3.25 3.35
NO
3.35
3.15T2855-8 3.25 3.15 3.25 3.35
YES
3.203.10T3255N-1 3.00
NO
3.203.103.00
L
0.40
0.40
**
** ** **
**
**
** ** ** **
**
** **
** ** **
**
**
**
SEE COMMON DIMENSIONS TABLE
±0.15
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
H
2
2
21-0140
PACKAGE OUTLINE, 16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm
-DRAWING NOT TO SCALE-
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
3.30T4055-1 3.20 3.40 3.20 3.30 3.40
**
YES
0.0500.02
0.600.40 0.50
10
-----
0.30
40 10
0.40 0.50
5.10
4.90 5.00
0.25 0.35 0.45
0.40 BSC.
0.15
4.90
0.250.20
5.00 5.10
0.20 REF.
0.70
MIN.
0.75 0.80
NOM.
40L 5x5
MAX.
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.
Loading...