Rainbow Electronics MAX5295 User Manual

General Description
The MAX5290–MAX5295 dual, 12-/10-/8-bit, voltage­output digital-to-analog converters (DACs) offer buffered outputs and a 3µs maximum settling time at the 12-bit level. The DACs operate from a 2.7V to 3.6V analog supply and a separate 1.8V to 3.6V digital sup­ply. The 20MHz 3-wire serial interface is compatible with SPI™, QSPI™, MICROWIRE™, and digital signal processor (DSP) protocol applications. Multiple devices can share a common serial interface in direct access or daisy-chained configuration. The MAX5290–MAX5295 provide two multifunctional, user-programmable, digital I/O ports. The externally selectable power-up states of the DAC outputs are either zero scale, midscale, or full scale. Software-selectable FAST and SLOW settling modes decrease settling time in FAST mode, or reduce supply current in SLOW mode.
The MAX5290/MAX5291 are 12-bit DACs, the MAX5292/ MAX5293 are 10-bit DACs, and the MAX5294/MAX5295 are 8-bit DACs. The MAX5290/ MAX5292/MAX5294 pro­vide unity-gain-configured output buffers, while the MAX5291/MAX5293/MAX5295 provide force-sense-con­figured output buffers. The MAX5290– MAX5295 are specified over the extended -40°C to +85°C temperature range, and are available in space-saving 4mm x 4mm, 16-pin thin QFN and 6.5mm x 5mm, 14-pin and 16-pin TSSOP packages.
Applications
Portable Instrumentation
Automatic Test Equipment (ATE)
Digital Offset and Gain Adjustment
Automatic Tuning
Programmable Voltage and Current Sources
Programmable Attenuators
Industrial Process Controls
Motion Control
Microprocessor (µP)-Controlled Systems
Power Amplifier Control
Fast Parallel-DAC to Serial-DAC Upgrades
Features
Dual, 12-/10-/8-Bit Serial DACs in 4mm x 4mm
Thin QFN and TSSOP Packages
3µs (max) 12-Bit Settling Time to 1/2 LSB
Integral Nonlinearity
1 LSB (max) MAX5290/MAX5291 A-Grade (12-Bit) 1 LSB (max) MAX5292/MAX5293 (10-Bit) 1/2 LSB (max) MAX5294/MAX5295 (8-Bit)
Guaranteed Monotonic, ±1 LSB (max) DNL
Two User-Programmable Digital I/O Ports
Single +2.7V to +3.6V Analog Supply
+1.8V to AV
DD
Digital Supply
20MHz 3-Wire SPI-/QSPI-/MICROWIRE- and
DSP-Compatible Serial Interface
Glitch-Free Outputs Power Up to Zero Scale,
Midscale or Full Scale
Unity-Gain- or Force-Sense-Configured Output
Buffers
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
________________________________________________________________ Maxim Integrated Products 1
Ordering Information
19-3005; Rev 0; 11/03
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
*Future product—contact factory for availability. Specifications are preliminary.
**EP = Exposed paddle.
Selector Guide and Pin Configurations appear at end of data sheet.
SPI/QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.
PART TEMP RANGE PIN-PACKAGE
MAX5290AEUD* -40°C to +85°C 14 TSSOP
MAX5290BEUD -40°C to +85°C 14 TSSOP
MAX5290AETE* -40°C to +85°C 16 Thin QFN-EP**
MAX5290BETE* -40°C to +85°C 16 Thin QFN-EP**
MAX5291AEUE* -40°C to +85°C 16 TSSOP
MAX5291BEUE -40°C to +85°C 16 TSSOP
MAX5291AETE* -40°C to +85°C 16 Thin QFN-EP**
MAX5291BETE* -40°C to +85°C 16 Thin QFN-EP**
MAX5292EUD -40°C to +85°C 14 TSSOP
MAX5292ETE* -40°C to +85°C 16 Thin QFN-EP**
MAX5293EUE -40°C to +85°C 16 TSSOP
MAX5293ETE* -40°C to +85°C 16 Thin QFN-EP**
MAX5294EUD -40°C to +85°C 14 TSSOP
MAX5294ETE* -40°C to +85°C 16 Thin QFN-EP**
MAX5295EUE -40°C to +85°C 16 TSSOP
MAX5295ETE* -40°C to +85°C 16 Thin QFN-EP**
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(AVDD= 2.7V to 3.6V, DVDD= 1.8V to AVDD, AGND = 0, DGND = 0, V
REF
= 2.5V, RL= 10k, CL= 100pF, TA= T
MIN
to T
MAX
, unless
otherwise noted. Typical values are at T
A
= +25°C.) (Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
AVDDto DVDD........................................................................±6V
AGND to DGND ..................................................................±0.3V
AV
DD
to AGND, DGND.............................................-0.3V to +6V
DV
DD
to AGND, DGND ............................................-0.3V to +6V
FB_, OUT_,
REF to AGND........-0.3V to the lower of (AV
DD
+ 0.3V) or +6V
SCLK, DIN, CS, PU,
DSP to DGND .......-0.3V to the lower of (DV
DD
+ 0.3V) or +6V
UPIO1, UPIO2
to DGND ...............-0.3V to the lower of (DV
DD
+ 0.3V) or +6V
Maximum Current into Any Pin .........................................±50mA
Continuous Power Dissipation (T
A
= +70°C)
14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW
16-Pin TSSOP (derate 9.4mW/°C above +70°C) .........755mW
16-Pin Thin QFN (derate 16.9mW/°C above +70°C) .1349mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Maximum Junction Temperature .....................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
STATIC ACCURACY
Integral Nonlinearity INL
Differential Nonlinearity DNL Guaranteed monotonic (Note 2) ±1 LSB
Offset Error V
Offset-Error Drift 5
Gain Error GE Full-scale output
Gain-Error Drift 1
OS
MAX5290/MAX5291 12
MAX5292/MAX5293 10Resolution N
MAX5294/MAX5295 8
MAX5290A/MAX5291A (12-bit) ±1
V
= 2.5V at
REF
= 2.7V
AV
DD
(Note 2)
MAX5290A/MAX5291A (12-bit), decimal code = 40 ±5
MAX5290B/MAX5291B (12-bit), decimal code = 82 ±5 ±25
MAX5292/MAX5293 (10-bit), decimal code = 21 ±5 ±25
MAX5294/MAX5295 (8-bit), decimal code = 5 ±5 ±25
MAX5290B/MAX5291B (12-bit) ±2 ±4
MAX5292/MAX5293 (10-bit) ±0.5 ±1
MAX5294/MAX5295 (8-bit) ±0.125 ±0.5
MAX5290A/MAX5291A (12-bit) ±4
MAX5290B/MAX5291B (12-bit) ±10 ±20
MAX5292/MAX5293 (10-bit) ±3 ±5
MAX5294/MAX5295 (8-bit) ±0.5 ±2
Bits
LSB
mV
ppm of
FS/°C
LSB
ppm of
FS/°C
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS (continued)
(AVDD= 2.7V to 3.6V, DVDD= 1.8V to AVDD, AGND = 0, DGND = 0, V
REF
= 2.5V, RL= 10k, CL= 100pF, TA= T
MIN
to T
MAX
, unless
otherwise noted. Typical values are at T
A
= +25°C.) (Note 1)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Power-Supply Rejection Ratio
REFERENCE INPUT
Reference Input Range V
Reference Input Resistance
Reference Leakage Current
DAC OUTPUT CHARACTERISTICS
Output Voltage Noise
Output Voltage Range (Note 4)
DC Output Impedance 38
Short-Circuit Current AVDD = 3V, OUT_ to AGND, full scale, FAST mode 45 mA
Power-Up Time From DVDD applied, interface is functional 30 60 µs
Wake-Up Time Coming out of shutdown, outputs settled 40 µs
Output OUT_ and FB_ Open-Circuit Leakage Current
DIGITAL OUTPUTS (UPIO_)
Output High Voltage V
Output Low Voltage V
DIGITAL INPUTS (SCLK, CS, DIN, DSP, UPIO_)
Input High Voltage V
Input Low Voltage V
Input Leakage Current I
Input Capacitance C
PSRR Full-scale output, AV
REF
R
REF
I
REF
OH
OL
IH
IL
IN
IN
= 2.7V to 3.6V 200 µV/V
DD
Normal operation (no code dependence) 145 200 k
Shutdown mode 0.5 1 µA
SLOW mode, full scale
FAST mode, full scale
Unity-gain output 0 AV
Force-sense output 0 AV
Programmed in shutdown mode, force-sense outputs only
I
I
2.7V DVDD 3.6V 2.4
DVDD < 2.7V
2.7V DVDD 3.6V 0.6
DVDD < 2.7V 0.2
= 2mA
SOURCE
= 2mA 0.4 V
SINK
Unity gain 85
Force sense 67
Unity gain 140
Force sense 110
0.25 AV
-
DV
DD
0.5
0.7 x
DV
DD
DD
DD
/ 2
µV
DD
0.01 µA
±0.1 ±1 µA
10 pF
V
RMS
V
V
V
V
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS (continued)
(AVDD= 2.7V to 3.6V, DVDD= 1.8V to AVDD, AGND = 0, DGND = 0, V
REF
= 2.5V, RL= 10k, CL= 100pF, TA= T
MIN
to T
MAX
, unless
otherwise noted. Typical values are at T
A
= +25°C.) (Note 1)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
PU INPUT
Input High Voltage V
Input Low Voltage V
Input Leakage Current I
DYNAMIC PERFORMANCE
Voltage-Output Slew Rate
IH-PU
IL-PU
IN-PU
SR
Voltage-Output Settling Time (Note 5)
FB_ Input Voltage 0V
FB_ Input Current 0.1 µA
Reference -3dB Bandwidth (Note 6)
Digital Feedthrough
Digital-to-Analog Glitch Impulse
DAC-to-DAC Crosstalk (Note 3) 15 nV-s
PU still considered floating when connected to a tri-state bus
Fast mode 3.6
Slow mode 1.6
M AX 5290/M AX 5291 fr om cod e 322 to cod e 4095 to 1/2 LS B
FAST mode
SLOW mode
Unity gain 200
Force sense 150
CS = DV from 0 to DV
Major carry transition 2 nV-s
M AX 5292/M AX 5293 fr om cod e 82 to cod e 1023 to 1/2 LS B
MAX5294/MAX5295 from code 21 to code 255 to 1/2 LSB
M AX 5290/M AX 5291 fr om cod e 322 to cod e 4095 to 1/2 LS B
MAX5292/MAX5293 from code 82 to code 1023 to 1/2 LSB
MAX5294/MAX5295 from code 21 to code 255 to 1/2 LSB
, code = zero scale, any digital input
DD
and DVDD to 0, f = 100kHz
DD
DVDD ­200mV
200 mV
±200 nA
23
1.5 3
12
36
2.5 6
24
REF
0.1 nV-s
V/µs
/ 2 V
kHz
V
µs
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
_______________________________________________________________________________________ 5
ELECTRICAL CHARACTERISTICS (continued)
(AVDD= 2.7V to 3.6V, DVDD= 1.8V to AVDD, AGND = 0, DGND = 0, V
REF
= 2.5V, RL= 10k, CL= 100pF, TA= T
MIN
to T
MAX
, unless
otherwise noted. Typical values are at T
A
= +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
POWER REQUIREMENTS
Analog Supply Voltage Range
AV
DD
2.7 3.6 V
Digital Supply Voltage Range
DV
DD
1.8
V
Unity gain
0.8 µA
SLOW mode, all digital inputs at DGND or DV
DD
, no load,
V
REF
= 2.5V
Force sense 0.9 1.2 mA
Unity gain
2
Operating Supply Current
I
AVDD
+
I
DVDD
FAST mode, all digital inputs at DGND or DV
DD
, no load,
V
REF
= 2.5V
Force sense 1.2 2
mA
Shutdown Supply Current
I
AV D D ( S H D N )
+
No clocks, all digital inputs at DGND or DVDD, all DACs in shutdown mode
2.5 µA
TIMING CHARACTERISTICS—DSP Mode Disabled (3V, 3.3V Logic) (Figure 1)
(DVDD= 2.7V to 3.6V, DGND = 0, TA= T
MIN
to T
MAX
, unless otherwise noted.)
I
D V D D ( S H D N )
0.55
0.85
AV
DD
SCLK Frequency f
SCLK Pulse-Width High t
SCLK Pulse-Width Low t CS Fall to SCLK Rise Setup Time t SCLK Rise to CS Rise Hold Time t SCLK Rise to CS Fall Setup Time t
DIN to SCLK Rise Setup Time t
DIN to SCLK Rise Hold Time t
SCLK Rise to DOUTDC1 Valid Propagation Delay
SCLK Fall to DOUT_ Valid Propagation Delay
CS Rise to SCLK Rise Hold Time t CS Pulse-Width High t
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
SCLK
CH
CL
CSS
CSH
CS0
DS
DH
t
DO1
t
DO2
CS1
CSW
2.7V < DVDD < 3.6V 20 MHz
(Note 7) 20 ns
(Note 7) 20 ns
10 ns
5ns
10 ns
12 ns
CL = 20pF, UPIO_ = DOUTDC1 mode 30 ns
CL = 20pF, UPIO_ = DOUTDC0 or DOUTRB mode
MICROWIRE and SPI modes 0 and 3 10 ns
5ns
30 ns
45 ns
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
6 _______________________________________________________________________________________
TIMING CHARACTERISTICSDSP Mode Disabled (3V, 3.3V Logic) (Figure 1) (continued)
(DVDD= 2.7V to 3.6V, DGND = 0, TA= T
MIN
to T
MAX
, unless otherwise noted.)
TIMING CHARACTERISTICSDSP Mode Disabled (1.8V Logic) (Figure 1)
(DVDD= 1.8V to 3.6V, DGND = 0, TA= T
MIN
to T
MAX
, unless otherwise noted.)
UPIO TIMING CHARACTERISTICS
DOUT Tri-State Time when Exiting DOUTDC0, DOUTDC1, or DOUTRB UPIO Modes
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
t
DOZ
CL = 20pF, from end of write cycle to UPIO_ in high impedance
100 ns
DOUTRB Tri-State Time from CS Rise
DOUTRB Tri-State Enable Time from 8th SCLK Rise
LDAC Pulse-Width Low t LDAC Effective Delay t CLR, MID, SET Pulse-Width Low t
GPO Output Settling Time t
GPO Output High-Impedance Time
t
DRBZ
t
ZEN
LDL
LDS
CMS
GP
t
GPZ
CL = 20pF, from rising edge of CS to UPIO_ in high impedance
CL = 20pF, from 8th rising edge of SCLK to UPIO_ driven out of tri-state
Figure 5 20 ns
Figure 6 100 ns
Figure 5 20 ns
Figure 6 100 ns
SCLK Frequency f
SCLK Pulse-Width High t
SCLK Pulse-Width Low t CS Fall to SCLK Rise Setup Time t SCLK Rise to CS Rise Hold Time t SCLK Rise to CS Fall Setup Time t
DIN to SCLK Rise Setup Time t
DIN to SCLK Rise Hold Time t
SCLK Rise to DOUTDC1 Valid Propagation Delay
SCLK Fall to DOUT_ Valid Propagation Delay
CS Rise to SCLK Rise Hold Time t CS Pulse-Width High t
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
SCLK
CH
CL
CSS
CSH
CS0
DS
DH
t
DO1
t
DO2
CS1
CSW
1.8V < DVDD < 3.6V 10 MHz
(Note 7) 40 ns
(Note 7) 40 ns
20 ns
0ns
10 ns
20 ns
5ns
CL = 20pF, UPIO_ = DOUTDC1 mode 60 ns
CL = 20pF, UPIO_ = DOUTDC0 or DOUTRB mode
MICROWIRE and SPI modes 0 and 3 20 ns
90 ns
20 ns
20 ns
100 ns
60 ns
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
_______________________________________________________________________________________ 7
TIMING CHARACTERISTICSDSP Mode Disabled (1.8V Logic) (Figure 1) (continued)
(DVDD= 1.8V to 3.6V, DGND = 0, TA= T
MIN
to T
MAX
, unless otherwise noted.)
TIMING CHARACTERISTICSDSP Mode Enabled (3V, 3.3V Logic) (Figure 2)
(DVDD= 2.7V to 3.6V, DGND = 0, TA= T
MIN
to T
MAX
, unless otherwise noted.)
UPIO_ TIMING CHARACTERISTICS
DOUT Tri-State Time when Exiting DOUTDC0, DOUTDC1, or DOUTRB UPIO Modes
DOUTRB Tri-State Time from CS Rise
DOUTRB Tri-State Enable Time from 8th SCLK Rise
LDAC Pulse-Width Low t LDAC Effective Delay t CLR, MID, SET Pulse-Width Low t
GPO Output Settling Time t
GPO Output High-Impedance Time
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
t
DOZ
t
DRBZ
t
ZEN
LDL
LDS
CMS
GP
t
GPZ
CL = 20pF, from end of write cycle to UPIO_ in high impedance
CL = 20pF, from rising edge of CS to UPIO_ in high impedance
CL = 20pF, from 8th rising edge of SCLK to UPIO_ driven out of tri-state
Figure 5 40 ns
Figure 6 200 ns
Figure 5 40 ns
Figure 6 200 ns
200 ns
40 ns
40 ns
200 ns
SCLK Frequency f
SCLK Pulse-Width High t
SCLK Pulse-Width Low t
CS Fall to SCLK Fall Setup Time t DSP Fall to SCLK Fall Setup Time t
SCLK Fall to CS Rise Hold Time t SCLK Fall to CS Fall Delay t SCLK Fall to DSP Fall Delay t
DIN to SCLK Fall Setup Time t
DIN to SCLK Fall Hold Time t
SCLK Rise to DOUT_ Valid Propagation Delay
SCLK Fall to DOUTDC0 Valid Propagation Delay
CS Rise to SCLK Fall Hold Time t CS Pulse-Width High t DSP Pulse-Width High t DSP Pulse-Width Low t
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
SCLK
CH
CL
CSS
DSS
CSH
CS0
DS0
DS
DH
t
DO1
t
DO2
CS1
CSW
DSW
DSPWL
2.7V < DVDD < 3.6V 20 MHz
(Note 7) 20 ns
(Note 7) 20 ns
10 ns
10 ns
5ns
10 ns
10 ns
12 ns
5ns
CL = 20pF, UPIO_ = DOUTDC1 or DOUTRB mode
CL = 20pF, UPIO_ = DOUTDC0 mode 30 ns
MICROWIRE and SPI modes 0 and 3 10 ns
45 ns
20 ns
(Note 8) 20 ns
30 ns
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
8 _______________________________________________________________________________________
TIMING CHARACTERISTICS—DSP Mode Enabled (3V, 3.3V Logic) (Figure 2) (continued)
(DVDD= 2.7V to 3.6V, DGND = 0, TA= T
MIN
to T
MAX
, unless otherwise noted.)
TIMING CHARACTERISTICSDSP Mode Enabled (1.8V Logic) (Figure 2)
(DVDD= 1.8V to 3.6V, DGND = 0, TA= T
MIN
to T
MAX
, unless otherwise noted.)
UPIO_ TIMING CHARACTERISTICS
DOUT Tri-State Time when Exiting DOUTDC0, DOUTDC1, or DOUTRB UPIO Modes
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
t
DOZ
CL = 20pF, from end of write cycle to UPIO_ in high impedance
100 ns
DOUTRB Tri-State Time from CS Rise
DOUTRB Tri-State Enable Time from 8th SCLK Fall
LDAC Pulse-Width Low t LDAC Effective Delay t CLR, MID, SET Pulse-Width Low t
GPO Output Settling Time t
GPO Output High-Impedance Time
t
DRBZ
t
ZEN
LDL
LDS
CMS
GP
t
GPZ
CL = 20pF, from rising edge of CS to UPIO_ in high impedance
CL = 20pF, from 8th falling edge of SCLK to UPIO_ driven out of tri-state
Figure 5 20 ns
Figure 6 100 ns
Figure 5 20 ns
Figure 6 100 ns
SCLK Frequency f
SCLK Pulse-Width High t
SCLK Pulse-Width Low t
CS Fall to SCLK Fall Setup Time t DSP Fall to SCLK Fall Setup Time t
SCLK Fall to CS Rise Hold Time t SCLK Fall to CS Fall Delay t SCLK Fall to DSP Fall Delay t
DIN to SCLK Fall Setup Time t
DIN to SCLK Fall Hold Time t
SCLK Rise to DOUT_ Valid Propagation Delay
SCLK Fall to DOUTDC0 Valid Propagation Delay
CS Rise to SCLK Fall Hold Time t CS Pulse-Width High t DSP Pulse-Width High t DSP Pulse-Width Low
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
SCLK
CH
CL
CSS
DSS
CSH
CS0
DS0
DS
DH
t
DO1
t
DO2
CS1
CSW
DSW
t
DSPWL (Note 8)
1.8V < DVDD < 3.6V 10 MHz
(Note 7) 40 ns
(Note 7) 40 ns
CL = 20pF, UPIO_ = DOUTDC1 or DOUTRB mode
CL = 20pF, UPIO_ = DOUTDC0 mode 60 ns
MICROWIRE and SPI modes 0 and 3 20 ns
20 ns
20 ns
10 ns
15 ns
20 ns
90 ns
40 ns
40 ns
20 ns
20 ns
100 ns
0ns
5ns
60 ns
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
_______________________________________________________________________________________ 9
TIMING CHARACTERISTICSDSP Mode Enabled (1.8V Logic) (Figure 2) (continued)
(DVDD= 1.8V to 3.6V, DGND = 0, TA= T
MIN
to T
MAX
, unless otherwise noted.)
Note 1: For the force-sense versions, FB_ is connected to its respective OUT_. V
OUT
(max) = V
REF
/ 2, unless otherwise noted.
Note 2: Linearity guaranteed from decimal code 82 to 4095 for the MAX5290B/MAX5291B (12-bit, B-grade), code 21 to 1023 for the
MAX5292/MAX5293 (10-bit), and code 5 to 255 for the MAX5294/MAX5295 (8-bit).
Note 3: DAC-to-DAC crosstalk is measured as follows: outputs of DACA and DACB are set to full scale and the output of DACB is
measured. While keeping DACB unchanged, the output of DACA is transitioned to zero scale and the ∆V
OUT
of DACB is
measured. The procedure is repeated with DACA and DACB interchanged. DAC-to-DAC crosstalk is the maximum ∆V
OUT
measured.
Note 4: Represents the functional range. The linearity is guaranteed at V
REF
= 2.5V. See the Typical Operating Characteristics sec-
tion for linearity at other voltages.
Note 5: Guaranteed by design. Note 6: The reference -3dB bandwidth is measured with a 0.1V
P-P
sine wave on V
REF
and with the input code at full scale.
Note 7: In some daisy-chain modes, data is required to be clocked in on one clock edge and the shifted data clocked out on the fol-
lowing edge. In the case of a 1/2 clock-period delay, it is necessary to increase the minimum high/low clock times to 25ns (2.7V) or 50ns (1.8V).
Note 8: The falling edge of DSP starts a DSP-type bus cycle, provided that CS is also active low to select the device. DSP active low
and CS active low must overlap by a minimum of 10ns (2.7V) or 20ns (1.8V). CS can be permanently low in this mode of operation.
UPIO_ TIMING CHARACTERISTICS
DOUT Tri-State Time when Exiting DOUTDC0, DOUTDC1, or DOUTRB UPIO_ Modes
DOUTRB Tri-State Time from CS Rise
DOUTRB Tri-State Enable Time from 8th SCLK Fall
LDAC Pulse-Width Low t LDAC Effective Delay t CLR, MID, SET Pulse-Width Low t
GPO Output Settling Time t
GPO Output High-Impedance Time
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
t
DOZ
t
DRBZ
t
ZEN
LDL
LDS
CMS
GP
t
GPZ
CL = 20pF, from end of write cycle to UPIO_ in high impedance
CL = 20pF, from rising edge of CS to UPIO_ in high impedance
CL = 20pF, from 8th falling edge of SCLK to UPIO_ driven out of tri-state
Figure 5 40 ns
Figure 6 200 ns
Figure 5 40 ns
Figure 6 200 ns
200 ns
40 ns
40 ns
200 ns
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
10 ______________________________________________________________________________________
Typical Operating Characteristics
(AVDD= DVDD= 3V, V
REF
= 2.5V, RL= 10k, CL= 100pF, speed mode = FAST, PU = floating, TA= +25°C, unless otherwise noted.)
INTEGRAL NONLINEARITY
vs. DIGITAL INPUT CODE (12-BIT)
4
UNITY GAIN B-GRADE
3
2
1
0
INL (LSB)
-1
-2
-3
-4 0 4096
DIGITAL INPUT CODE
307220481024
INTEGRAL NONLINEARITY
vs. DIGITAL INPUT CODE (8-BIT)
0.50
UNITY GAIN
0.25
0
INL (LSB)
-0.25
MAX5290 toc01
MAX5290 toc03
INTEGRAL NONLINEARITY
vs. DIGITAL INPUT CODE (10-BIT)
1.00
UNITY GAIN
0.75
0.50
0.25
0
INL (LSB)
-0.25
-0.50
-0.75
-1.00 0 1024
DIGITAL INPUT CODE
DIFFERENTIAL NONLINEARITY
vs. DIGITAL INPUT CODE (12-BIT)
0.2
UNITY GAIN B-GRADE
0.1
0
DNL (LSB)
-0.1
MAX5290 toc02
768512256
MAX5290 toc04
-0.50 0 256
DIGITAL INPUT CODE
DIFFERENTIAL NONLINEARITY
vs. DIGITAL INPUT CODE (10-BIT)
0.050
UNITY GAIN
0.025
0
DNL (LSB)
-0.025
-0.050 0 1024
DIGITAL INPUT CODE
19212864
MAX5290 toc05
768512256
-0.2 0 4096
DIGITAL INPUT CODE
DIFFERENTIAL NONLINEARITY
vs. DIGITAL INPUT CODE (8-BIT)
0.02
UNITY GAIN
0.01
0
DNL (LSB)
-0.01
-0.02 0 256
DIGITAL INPUT CODE
307220481024
19212864
MAX5290 toc06
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 11
Typical Operating Characteristics (continued)
(AVDD= DVDD= 3V, V
REF
= 2.5V, RL= 10k, CL= 100pF, speed mode = FAST, PU = floating, TA= +25°C, unless otherwise noted.)
REFERENCE INPUT BANDWIDTH
MAX5290 toc11
FREQUENCY (Hz)
GAIN (dB)
1M100k10k1k
-25
-20
-15
-10
-5
0
5
-30 0 10M
V
REF
= 0.1V
P-P
AT 2.5V
DC
INL (LSB)
INTEGRAL NONLINEARITY
vs. TEMPERATURE (12-BIT)
4
UNITY GAIN B-GRADE
2
0
-2
-4
-40 85 TEMPERATURE (°C)
603510-15
OFFSET ERROR vs. TEMPERATURE
0
-2
-4
FORCE SENSE
UNITY GAIN
MAX5290 toc07
DNL (LSB)
MAX5290 toc09
DIFFERENTIAL NONLINEARITY
vs. TEMPERATURE (12-BIT)
0.2
UNITY GAIN B-GRADE
0.1
0
-0.1
-0.2
-40 85 TEMPERATURE (°C)
GAIN ERROR vs. TEMPERATURE
0
UNITY GAIN: 1 LSB = 0.6mV FORCE SENSE: 1 LSB = 0.3mV
-2
-4
FORCE SENSE
MAX5290 toc08
603510-15
MAX5290 toc10
-6
OFFSET ERROR (LSB)
-8
UNITY GAIN: 1 LSB = 0.6mV FORCE SENSE: 1 LSB = 0.3mV
-10
-40 85 TEMPERATURE (°C)
603510-15
-6
GAIN ERROR (LSB)
-8
-10
-40 85 TEMPERATURE (°C)
UNITY GAIN
603510-15
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
12 ______________________________________________________________________________________
Pin Description
PIN
MAX5290 MAX5292 MAX5294
THIN QFN TSSOP THIN QFN TSSOP
1213DSP
2 3 2 4 DIN Serial Data Input 3435CS Active-Low Chip-Select Input
4 5 4 6 SCLK Serial Clock Input
5657DVDDDigital Supply
6 7 6 8 DGND Digital Ground
7 8 7 9 AGND Analog Ground
89810AVDDAnalog Supply
9 10 9 11 OUTB DACB Output
——10 12 FBB Feedback for DACB Output Buffer
10 11 11 13 REF Reference Input
——12 14 FBA Feedback for DACA Output Buffer
11, 13 ———N.C. No Connection. Not internally connected.
12 12 13 15 OUTA DACA Output
14 13 14 16 PU
15 14 15 1 UPIO2 User-Programmable Input/Output 2
16 1 16 2 UPIO1 User-Programmable Input/Output 1
————EP
MAX5291 MAX5293 MAX5295
NAME FUNCTION
Clock Enable. Connect DSP to DV data on the rising edge of SCLK. Connect DSP to DGND at power-up to transfer data on the falling edge of SCLK.
Power-Up State Select Input. Connect PU to DV and OUTB to full scale upon power-up. Connect PU to DGND to set OUTA and OUTB to zero upon power-up. Leave PU floating to set OUTA and OUTB to midscale upon power-up.
Exposed Paddle (QFN Only). Not internally connected. Do not connect to circuitry.
at power-up to transfer
DD
to set OUTA
DD
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 13
Functional Diagrams
SCLK
DIN
DSP
UPIO1 UPIO2
AV
DD
CS
SERIAL
INTERFACE
CONTROL
DV
DD
AGND DGND
MAX5290 MAX5292 MAX5294
16-BIT SHIFT
REGISTER
MUX
UPIO1 AND
UPIO2
LOGIC
DECODE
PU
CONTROL
INPUT
REGISTER
POWER-DOWN
LOGIC AND
REGISTER
DAC
REGISTER
DAC A
DOUT
REGISTER
OUTA
REF
OUTB
INPUT
REGISTER
DAC
REGISTER
DAC B
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
14 ______________________________________________________________________________________
Functional Diagrams (continued)
AV
DD
CS
SCLK
DIN
DSP
UPIO1 UPIO2
PU
SERIAL
INTERFACE
CONTROL
16-BIT SHIFT
REGISTER
UPIO1 AND
UPIO2
LOGIC
DECODE
CONTROL
INPUT
REGISTER
DV
DD
POWER-DOWN
LOGIC AND
REGISTER
AGND DGND
DAC
REGISTER
DAC A
MUX
DOUT
REGISTER
MAX5291 MAX5293 MAX5295
FBA
OUTA
REF
INPUT
REGISTER
DAC
REGISTER
DAC B
FBB
OUTB
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 15
Detailed Description
The MAX5290–MAX5295 dual, 12-/10-/8-bit, voltage­output digital-to-analog converters (DACs) offer buffered outputs and a 3µs maximum settling time at the 12-bit level. The DACs operate from a single 2.7V to
3.6V analog supply and a separate 1.8V to AV
DD
digi­tal supply. The MAX5290–MAX5295 include an input register and DAC register for each channel and a 16-bit data-in/data-out shift register. The 3-wire serial interface is compatible with SPI, QSPI, MICROWIRE, and DSP applications. The MAX5290–MAX5295 pro­vide two user-programmable digital I/O ports, which are programmed through the serial interface. The exter­nally selectable power-up states of the DAC outputs are either zero scale, midscale, or full scale.
Reference Input
The reference input, REF, accepts both AC and DC val­ues with a voltage range extending from 0.25V to AVDD. The voltage at REF (V
REF
) sets the full-scale out­put of the DACs. Determine the output voltage using the following equation:
Unity-gain versions:
V
OUT_
= (V
REF
x CODE) / 2
N
Force-sense versions (FB_ connected to OUT_):
V
OUT
= 0.5 x (V
REF
x CODE) / 2
N
where CODE is the numeric value of the DACs binary input code and N is the bits of resolution. For the MAX5290/MAX5291, N = 12 and CODE ranges from 0 to 4095. For the MAX5292/MAX5293, N = 10 and CODE ranges from 0 to 1023. For the MAX5294/ MAX5295, N = 8 and CODE ranges from 0 to 255.
Output Buffers
The DACA and DACB output-buffer amplifiers of the MAX5290–MAX5295 are unity-gain stable with Rail-to­Rail®output voltage swings and a typical slew rate of
5.7V/µs. The MAX5290/MAX5292/MAX5294 provide unity-gain outputs, while the MAX5291/MAX5293/ MAX5295 provide force-sense outputs. For the MAX5291/MAX5293/MAX5295, access to the output amplifiers inverting input provides flexibility in output gain setting and signal conditioning (see the Applications Information section).
The MAX5290–MAX5295 offer FAST and SLOW-settling time modes. In the FAST mode, the settling time is 3µs (max), and the supply current is 2mA (max). In the SLOW mode, the settling time is 6µs (max), and the supply cur­rent drops to 0.8mA (max). See the Digital Interface sec­tion for settling-time mode programming details.
Use the serial interface to set the shutdown output impedance of the amplifiers to 1kor 100kfor the MAX5290/MAX5292/MAX5294 and 1kor high imped­ance for the MAX5291/MAX5293/MAX5295. The DAC outputs can drive a 2k(typ) load and are stable with up to 500pF (typ) of capacitive load.
Power-On Reset
At power-up, all DAC outputs power up to full scale, midscale, or zero scale, depending on the configuration of the PU input. Connect PU to DVDDto set OUT_ to full scale upon power-up. Connect PU to DGND to set OUT_ to zero scale upon power-up. Leave PU floating to set OUT_ to midscale.
Digital Interface
The MAX5290–MAX5295 use a 3-wire serial interface that is compatible with SPI, QSPI, MICROWIRE, and DSPs (Figures 1 and 2). Connect DSP to DV
DD
before
power-up to clock data in on the rising edge of SCLK. Connect DSP to DGND before power-up to clock data in on the falling edge of SCLK. After power-up, the device enters DSP frame sync mode on the first rising edge of DSP. Refer to the Programmer’s Handbook for details.
Each MAX5290–MAX5295 includes a 16-bit input shift register. The data is loaded into the input shift register through the serial interface. The 16 bits can be sent in two serial 8-bit packets or one 16-bit word (CS must remain low until all 16 bits are transferred). The data is loaded MSB first. For the MAX5290/MAX5291, the 16 bits consist of 4 control bits (C3–C0) and 12 data bits (D11–D0) (see Table 1). For the 10-bit MAX5292/ MAX5293 devices, D11–D2 are the data bits and D1 and D0 are sub-bits. For the 8-bit MAX5294/ MAX5295 devices, D11–D4 are the data bits and D3–D0 are sub-bits. Set all sub-bits to zero for optimum performance.
Each DAC channel includes two registers: an input reg­ister and the DAC register. At power-up, the DAC out­put is set according to the state of PU. The DACs are double-buffered, which allows any of the following for each channel:
Loading the input register without updating the DAC register
Loading the DAC register without updating the input register
Updating the DAC register from the input register
Updating the input and DAC registers simultaneously
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
16 ______________________________________________________________________________________
Table 1. Serial Write Data Format
MSB 16 BITS OF SERIAL DATA
LSB
CONTROL BITS DATA BITS
C3
D0
Figure 1. Serial-Interface Timing Diagram (DSP Mode Disabled)
Figure 2. Serial-Interface Timing Diagram (DSP Mode Enabled)
C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1
t
CH
SCLK
t
CL
t
CSH
t
CS1
t
DO1
DIN
t
DS
C2C3 C1 D0
t
CS0
CS
t
CSW
t
DH
t
CSS
DOUTDC1*
DOUTDC0
OR
DOUTRB*
*UPIO1/UPIO2 CONFIGURED AS DOUTDC_ (DAISY-CHAIN DATA OUTPUT, MODE 0 OR 1) OR DOUTRB (READ-BACK DATA OUTPUT). SEE THE DATA OUTPUT SECTION FOR DETAILS.
SCLK
t
DS
DIN
t
CS0
CS
DSP
DOUTDC0*
DOUTDC1
OR
DOUTRB*
*UPIO1/UPIO2 CONFIGURED AS DOUTDC_ (DAISY-CHAIN DATA OUTPUT, MODE 0 OR 1) OR DOUTRB (READ-BACK DATA OUTPUT). SEE THE DATA OUTPUT SECTION FOR DETAILS.
t
CSW
t
DSWtDSPWL
C3 C2 C1 D0
t
DH
t
CSS
t
DSS
t
DS0
DOUT VALID
t
DO2
DOUT VALID
t
CL
t
CH
t
CSH
t
CS1
t
D02
DOUT VALID
t
D01
DOUT VALID
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 17
Figure 3. MICROWIRE and SPI (CPOL = 0, CPHA = 0 or CPOL = 1, CPHA = 1) DAC Writes
Figure 4. DSP and SPI (CPOL = 0, CPHA = 1 or CPOL = 1, CPHA = 0) DAC Writes
Serial-Interface Programming Commands
Tables 2a, 2b, and 2c provide all of the serial-interface programming commands for the MAX5290–MAX5295. Table 2a shows the basic DAC programming com­mands, Table 2b gives the advanced-feature program­ming commands, and Table 2c provides the 24-bit read commands. Figures 3 and 4 illustrate the serial­interface diagrams for read and write operations.
Loading Input and DAC Registers
The MAX5290–MAX5295 contain a 16-bit shift register that is followed by a 12-bit input register and a 12-bit DAC register for each channel (see the Functional Diagrams). Tables 3, 4, and 5 highlight a few of the com­mands for the loading of the input and DAC registers. See Table 2a for all DAC programming commands.
MICROWIRE
MICROWIRE OR SPI (CPOL = 0, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:
CS
SCLK
DIN
SPI (CPOL = 1, CPHA = 1) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:
CS
SCLK
DIN
C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
V
DD
MAX5290–
V
DD
SK
SO
I/O
DV
MAX5295
DD
SCLK DIN
CS
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION
V
SPI OR QSPI
SS OR I/O
DD
V
DD
SCK
MOSI
COMMAND TAKES EFFECT HERE
ONLY IF SCLK COUNT = N
COMMAND TAKES EFFECT HERE
ONLY IF SCLK COUNT = N
DV
DSPDSP SCLK
DIN CS
MAX5290–
DD
MAX5295
16
16
DSP
MAX5290–
V
SS
TCLK, SCLK, OR CLKX
DT OR DX
TFS OR FSX
DSP OR SPI (CPOL = 0, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:
CS
SCLK
DIN
DSP OR SPI (CPOL = 1, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:
CS
SCLK
DIN
C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
DGND
MAX5295
SCLK DIN
CS
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION
SPI OR QSPI
SS OR I/O
V
SS
SCK
MOSI
COMMAND TAKES EFFECT HERE
ONLY IF SCLK COUNT = N
COMMAND TAKES EFFECT HERE
ONLY IF SCLK COUNT = N
DGND
DSPDSP SCLK
DIN
CS
MAX5290–
MAX5295
16
16
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
18 ______________________________________________________________________________________
Table 2a. DAC Programming Commands
X = Don’t care.
*For the MAX5292/MAX5293 (10-bit version), D11–D2 are the significant bits and D1 and D0 are sub-bits. For the MAX5294/MAX5295 (8-bit version),
D11–D4 are the significant bits and D3–D0 are sub-bits. Set all sub-bits to zero during the write commands.
FUNCTION
Load input register A from shift register; DAC
registers are unchanged. DAC outputs are
unchanged.*
Load DAC register A from shift register; input
registers are unchanged. DAC outputs are
updated.*
Load input register A and DAC register A from
shift register. DAC outputs are updated.*
Load input register B; DAC registers are
unchanged. DAC outputs are unchanged.*
Load DAC register B from shift register; input
registers are unchanged. DAC outputs are
updated.*
Load input register B and DAC register B from
shift register. DAC outputs are updated.*
Load all input registers from the shift register; all
DAC registers are unchanged. All DAC outputs
are unchanged.*
Load all input and DAC registers from shift
register. DAC outputs are updated.*
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
D1 D1
CONTROL BITS DATA BITS
C3 C2 C1 C0
DIN 0 0 0 0 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
LOADING INPUT AND DAC REGISTERS A AND B
DATA
DIN 0 0 0 1 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
DIN 0 0 1 0 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
DIN 0 0 1 1 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
DIN 0 1 0 0 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
DIN 0 1 0 1 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
DIN 0 1 1 0 X X X X X X X X X X X X Command is ignored.
DIN 0 1 1 1 X X X X X X X X X X X X Command is ignored.
DIN 1 0 0 0 X X X X X X X X X X X X Command is ignored.
DIN 1 0 0 1 X X X X X X X X X X X X Command is ignored.
DIN 1 0 1 0 X X X X X X X X X X X X Command is ignored.
DIN 1 0 1 1 X X X X X X X X X X X X Command is ignored.
DIN 1 1 0 0 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
DIN 1 1 0 1 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 19
Table 2b. Advanced-Feature Programming Commands
X = Don’t care.
FUNCTION
Load DAC register A from
input register A when MA
is 1. DAC register A is
unchanged if MA is 0.
Load DAC register B from
input register B when MB
is 1. DAC register B is
unchanged if MB is 0.
Write DACA and DACB
shutdown mode bits. See
Table 8.
Read DACA and DACB
shutdown mode bits.
Write UPIO configuration
bits. See Tables 19 and
22.
Read UPIO configuration
Write DACA and DACB
bits.
settling-time mode bits.
Read DACA and DACB
Write CPOL, CPHA control
settling-time mode bits.
bits. See Table 15.
Read CPOL, CPHA control
bits.
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
D1 D1
CONTROL BITS DATA BITS
C3 C2 C1 C0
DATA
SELECT BITS
DIN 111000XX X X X X X X MB MA
DIN 1 1 1 0 0 1 0 X X X X X PDB1 PDB0 PDA1 PDA0
DIN1110011XXXXXXXXX
SHUTDOWN-MODE BITS
DOUTRB X X X X X X X X X X X X PDB1 PDB0 PDA1 PDA0
UPIO CONFIGURATION BITS
DIN 1 1 1 0 1 0 0 X UPSL2 UPSL1 UP3 UP2 UP1 UP0 X X
DIN1110101XXXXXXXXX
DOUTRB X X X X X X X X UP3-2 UP2-2 UP1-2 UP0-2 UP3-1 UP2-1 UP1-1 UP0-1
DIN 1 1 1 0 1 1 0 X X X X X X X SPDB SPDA
DIN1110111XXXXXXXXX
SETTLING-TIME-MODE BITS
DOUTRB X X X X X X X X X X X X X X SPDB SPDA
DIN 1 1 1 1 0 0 0 0 X X X X X X CPOL CPHA
CPOL AND CPHA CONTROL BITS
DIN 11110001 X X X X X X X X
DOUTRB X X X X X X X X X X X X X X CPOL CPHA
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
20 ______________________________________________________________________________________
Table 2c. 24-Bit Read Commands
X = Don’t care.
**D23–D12 represent the 12-bit data from the corresponding DAC register. D11–D0 represent the 12-bit data from the corresponding input register. For
the MAX5292/MAX5293, bits D13, D12, D1, and D0 are don’t-care bits. For the MAX5294/MAX5295, bits D15–D12 and D3–D0 are don’t-care bits.
During readback, all ones (code FF) must be clocked into DIN for all 24 bits. No command may be issued before all 24 bits have been clocked out.
CS
must be kept low while all 24 bits are clocked out.
Table 2b. Advanced-Feature Programming Commands (continued)
X = Don’t care.
FUNCTION
Read UPIO_ inputs. (Valid
only when UPIO1 or
UPIO2 is configured as a
general-purpose input.)
See GPI, GPOL, GPOH
section.
16-bit no-op command. All
DACs are unaffected.
FUNCTION
Read i np ut
r eg i ster A
and D AC
r eg i ster A
D0/
D1/
D2/
D3/
D11 D10 D9 D8 D7 D6 D5 D4
D12/
D13/
D14/
D15/
Read i np ut
r eg i ster B
and D AC
( al l 24
X
X
X
X
X
X
X
X
r eg i ster B
D0/
D1/
D2/
D3/
D11 D10 D9 D8 D7 D6 D5 D4
D12/
D13/
D14/
D15/
( al l 24
b i ts) .**
X
X
X
X
X
X
X
X
b i ts) .**
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
D1 D1
CONTROL BITS DATA BITS
C3 C2 C1 C0
CONTROL BITS DATA BITS
C3 C2 C1 C0 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
DATA
DIN1111001XXXXXXXXX
UPIO_ AS GPI (GENERAL-PURPOSE INPUT)
DOUTRB X X X X X X X X X X RTP2 LF2 LR2 RTP1 LF1 LR1
DIN 1 1 1 1 1 0 0 X X X X X X X X X Command is ignored.
DIN 1 1 1 1 1 0 1 X X X X X X X X X Command is ignored.
DIN 1 1 1 1 1 1 0 X X X X X X X X X Command is ignored.
DIN 1 1 1 1 1 1 1 0 X X X X X X X X Command is ignored.
DIN 11111111 1 1 1 1 1 1 1 1
OTHER COMMANDS
DIN 1 1 1 1 0 1 0 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X
DATA
READ INPUT AND DAC REGISTERS A AND B
D OU TRB X X X X X X X X D23 D22 D21 D20 D19 D18 D17 D16
DIN 1 1 1 1 0 1 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X
D OU TRB X X X X X X X X D23 D22 D21 D20 D19 D18 D17 D16
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 21
Default register values at power-up correspond to the state of PU, e.g. input and DAC registers are set to 800hex if PU is floating, FFFhex if PU = DVDD, and 000hex if PU= DGND.
DAC Programming Examples:
To load input register A from the shift register, leaving DAC register A unchanged (DAC output unchanged), use the command in Table 3.
The MAX5290–MAX5295 can load DAC register A from the shift register, leaving input register A unchanged, by using the command in Table 4.
To load input register A and DAC register A simultane­ously from the shift register, use the command in Table 5.
For the 10-bit and 8-bit versions, set sub-bits = 0 for best performance.
Advanced Feature
Programming Commands
Refer to the Programmer’s Handbook for details.
Select Bits (MA, MB)
The select bits allow synchronous updating of any com­bination of channels. The select bits command the loading of the DAC register from the input register of each channel. Set the select bit M_ = 1 to load the DAC register “_” with data from the input register “_”, where _ is replaced with A or B depending on the selected channel. Setting the select bit to M_ = 0 results in no action for that channel (Table 6).
Table 3. Load Input Register A from Shift Register
Table 4. Load DAC Register A from Shift Register
Table 5. Load Input Register A and DAC Register A from Shift Register
Table 6. Select Command
Table 7. Select Bits Programming Example
X = Don’t care.
X = Don’t care.
DATA CONTROL BITS DATA BITS
DIN 0 0 0 0 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
DATA CONTROL BITS DATA BITS
DIN 0 0 0 1 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
DATA CONTROL BITS DATA BITS
DIN 0 0 1 0 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0
DATA CONTROL BITS DATA BITS
DIN 1 1 1 0 0 0 X X X X X X X X MB MA
DATA CONTROL BITS DATA BITS
DIN111000XXXXXXXX1 0
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
22 ______________________________________________________________________________________
Table 9. Shutdown-Mode Write Command
Table 10. Shutdown-Mode Bits Write Example
Table 11. Shutdown-Mode Read Command
X = Don’t care.
X = Don’t care.
Table 12. Settling-Time-Mode Write Command
X = Don’t care.
X = Don’t care.
Select Bits Programming Example:
To load DAC register B from input register B while keeping channel A unchanged, set MB = 1 and MA = 0, as in the command in Table 7.
Shutdown-Mode Bits (PDA0, PDA1, PDB0, PDB1)
Use the shutdown-mode bits to shut down each DAC independently. Set PD_0 and PD_1 according to Table 8 to select the shutdown mode for DAC_, where “_” is replaced with A or B depending on the selected chan­nel. The three possible states for unity-gain versions are 1) normal operation, 2) shutdown with 1kΩ output impedance, and 3) shutdown with 100koutput imped­ance. The three possible states for force-sense ver­sions are 1) normal operation, 2) shutdown with 1k output impedance, and 3) shutdown with high-imped­ance output. Table 9 shows the command for writing to the shutdown mode bits.
Shutdown-Mode Bits Write Example:
To put a unity-gain versions DACA into shutdown mode with internal 1ktermination to ground and DACB into the shutdown mode with the internal 100k termination to ground, use the command in Table 10 (applicable to unity-gain output only).
To read back the shutdown-mode bits, use the com­mand in Table 11.
Table 8. Shutdown-Mode Bits
PD_1 PD_0 DESCRIPTIONS
00
01
1 0 Ignored.
11
Shutdown with 1k termination to ground on DAC_ output.
Shutdown with 100k termination to ground on DAC_ output for unity-gain versions. Shutdown with high-impedance output for force-sense versions.
DAC_ is powered up in its normal operating mode.
DATA CONTROL BITS DATA BITS
DIN 1 1 1 0 0 1 0 X X X X X PDB1 PDB0 PDA1 PDA0
DATA CONTROL BITS DATA BITS
DIN 1 1 1 0 0 1 0 X X X X X 0 1 0 0
DATA CONTROL BITS DATA BITS
DIN 1110011XXXXXXXXX
DOUTRB X X X XXXXXXXXXPDB1 PDB0 PDA1 PDA0
DATA CONTROL BITS DATA BITS
DIN 1 1 1 0 1 1 0 X X X X X X X SPDB SPDA
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 23
Settling-Time-Mode Bits (SPDA, SPDB)
The settling-time-mode bits select the settling time (FAST mode or SLOW mode) of the MAX5290– MAX5295. Set SPD_ = 1 to select FAST mode or set SPD_ = 0 to select SLOW mode, where “_” is replaced by A or B, depending on the selected channel (see Table 12). FAST mode provides a 3µs maximum set­tling time and SLOW mode provides a 10µs maximum settling time. Default settling-time mode bits are [0, 0] (SLOW mode for both DACs).
Settling-Time-Mode Write Example:
To configure DACA into FAST mode and DACB into SLOW mode, use the command in Table 13.
To read back the settling-time-mode bits, use the com­mand in Table 14.
CPOL and CPHA Control Bits
The CPOL and CPHA control bits of the MAX5290–MAX5295 are defined the same as the CPOL and CPHA bits in the SPI standard. Set the CPOL = 0 and CPHA = 0 or set CPOL = 1 and CPHA = 1 for MICROWIRE and SPI applications requiring the clocking of data in on the rising edge of SCLK. Set the CPOL = 0
Table 13. Settling-Time-Mode Write Example
X = Don’t care.
Table 14. Settling-Time-Mode Read Command
Table 17. CPOL and CPHA Read Command
Table 15. CPOL and CPHA Bits
Table 16. CPOL and CPHA Write Command
X = Don’t care.
X = Don’t care.
X = Don’t care.
DATA CONTROL BITS DATA BITS
DIN 1 1 1 0 1 1 0 X X X X X X X 0 1
DATA CONTROL BITS DATA BITS
DIN 1110111XXXXXXXX X
DOUTRB X XXXXXXXXXXXXXSPDB SPDA
CPOL CPHA DESCRIPTION
00
01
1 0 Data is clocked in on the falling edge of SCLK.
1 1 Data is clocked in on the rising edge of SCLK.
DATA CONTROL BITS DATA BITS
DIN 1 1 1 1 0 0 0 0 X X X X X X CPOL CPHA
DATA CONTROL BITS DATA BITS
DIN 1111 0 0 0 1 X X X X X X X X
DOUTRB XXXX X X X X X X X X X XCPOL CPHA
Default values at power-up when DSP is connected to DV of SCLK.
Default values at power-up when DSP is connected to DGND. Data is clocked in on the falling edge of SCLK.
. Data is clocked in on the rising edge
DD
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
24 ______________________________________________________________________________________
Table 20. UPIO Programming Example
X = Don’t care.
Table 21. UPIO Read Command
X = Don’t care.
and CPHA = 1 or set CPOL = 1 and CPHA = 0 for DSP and SPI applications requiring the clocking of data in on the falling edge of SCLK (refer to the Programmer’s Handbook and see Table 15 for details). At power-up, if
DSP = DVDD, the default value of CPHA is zero and if DSP = DGND, the default value of CPHA is one. The
default value of CPOL is zero at power-up.
To write to the CPOL and CPHA bits, use the command in Table 16.
To read back the devices CPOL and CPHA bits, use the command in Table 17.
UPIO Bits (UPSL1, UPSL2, UP0–UP3)
The MAX5290–MAX5295 provide two user-programma­ble input/output (UPIO) ports: UPIO1 and UPIO2. These ports have 15 possible configurations, as shown in Table 22. UPIO1 and UPIO2 can be programmed inde­pendently or simultaneously by writing to the UPSL1, UPSL2, and UP0–UP3 bits (see Table 18).
Table 19 shows how UPIO1 and UPIO2 are selected for configuration. The UP0–UP3 bits select the desired functions for UPIO1 and/or UPIO2 (see Table 22).
Default states of UP10_ are high impedance. If using UP10_, connect 10kpullup resistors from each UPIO pin to DVDD.
UPIO Programming Example:
To set only UPIO1 as LDAC and leave UPIO2 unchanged, write the command in Table 20.
The UPIO selection and configuration bits can be read back from the MAX5290–MAX5295 when UPIO1 or UPIO2 is configured as a DOUTRB output. Table 21 shows the read-back data format for the UPIO bits. Writing a 1110 101X XXXX XXXX initiates a read operation of the UPIO bits. The data is clocked out starting on the 9th clock cycle of the sequence. UP3-2 through UP0-2 provide the UP3–UP0 configuration bits for UPIO2 (see Table 22), and UP3-1 through UP0-1 provide the UP3–UP0 configuration bits for UPIO1.
Table 18. UPIO Write Command
X = Don’t care.
Table 19. UPIO Selection Bits (UPSL1 and UPSL2)
DATA CONTROL BITS DATA BITS
DIN 1 1 1 0 1 0 0 X UPSL2 UPSL1 UP3 UP2 UP1 UP0 X X
DATA CONTROL BITS DATA BITS
DIN1110100X010000XX
DATA CONTROL BITS DATA BITS
DIN 11 101 01XXXXXXXXX
DOUTRB X X X X X X X X UP3-2 UP2-2 UP1-2 UP0-2 UP3-1 UP2-1 UP1-1 UP0-1
UPSL2 UPSL1 UPIO PORT SELECTED
0 0 None selected
0 1 UPIO1 selected
1 0 UPIO2 selected
1 1 Both UPIO1 and UPIO2 selected
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 25
User-Programmable Input/Output (UPIO)
Configuration
Table 22 lists the possible configurations for UPIO1 and UPIO2. UPIO1 and UPIO2 use the selected function when configured by the UP3–UP0 configuration bits.
LDAC
LDAC controls loading of the DAC registers. When LDAC is high, the DAC registers are latched, and any
change in the input registers does not affect the con­tents of the DAC registers or the DAC outputs. When LDAC is low, the DAC registers are transparent, and the values stored in the input registers are fed directly to the DAC registers, and the DAC outputs are updated.
Drive LDAC low to asynchronously load the DAC regis­ters from their corresponding input registers (DACs that are in shutdown remain shut down). The LDAC function does not require any activity on CS, SCLK, or DIN. If
LDAC is brought low coincident with a rising edge of CS, (which executes a serial command modifying the
value of either DAC input register), then LDAC must remain asserted for at least 120ns following the CS ris­ing edge. This requirement applies only to serial com­mands that modify the value of the DAC input registers. See Figures 5 and 6 for timing details.
Table 22. UPIO Configuration Register Bits (UP3–UP0)
UPIO CONFIGURATION BITS
UP3 UP2 UP1 UP0
0000 LDAC
0001 SET Active-Low Input. Drive low to set all input and DAC registers to full scale. 0010 MID Active-Low Input. Drive low to set all input and DAC registers to midscale. 0011 CLR Active-Low Input. Drive low to set all input and DAC registers to zero scale. 0100 PDL Active-Low Power-Down Lockout Input. Drive low to disable software shutdown.
0101Reserved This mode is reserved. Do not use.
0110SHDN1K
FUNCTION DESCRIPTION
Active-Low Load DAC Input. Drive low to asynchronously load all DAC registers with data from input registers.
Active-Low 1k Shutdown Input. Overrides PD_1 and PD_0 settings. Drive SHDN1K low to pull OUTA and OUTB to AGND with 1kΩ.
Active-Low 100k Shutdown Input. Overrides PD_1 and PD_0 settings. For the
0111SHDN100K
1000DOUTRB Data Read-Back Output
1001DOUTDC0 Mode 0 Daisy-Chain Data Output. Data is clocked out on the falling edge of SCLK.
1010DOUTDC1 Mode 1 Daisy-Chain Data Output. Data is clocked out on the rising edge of SCLK.
1011 GPIGeneral-Purpose Logic Input
1100GPOL General-Purpose Logic-Low Output
1101GPOH General-Purpose Logic-High Output
1110TOGG
1111 FAST
MAX5290/MAX5292/MAX5294, drive SHDN100K low to pull OUTA and OUTB to AGND with 100k. For the MAX5291/MAX5293/MAX5295, drive SHDN100K low to leave OUTA and OUTB high impedance.
Toggle Input. Toggles DAC outputs between data in input registers and data in DAC registers. Drive low to set all DAC outputs to values stored in input registers. Drive high to set all DAC outputs to values stored in DAC registers.
FAST/SLOW Settling-Time Mode Input. Drive low to select FAST mode (3µs) or drive high to select SLOW settling mode (10µs). Overrides the SPDA and SPDB settings.
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
26 ______________________________________________________________________________________
SET, MID, CLR
The SET, MID, and CLR signals force the DAC outputs to full scale, midscale, or zero scale (Figure 5). These signals cannot be active at the same time.
The active-low SET input forces the DAC outputs to full scale when SET is low. When SET is high, the DAC out­puts follow the data in the DAC registers.
The active-low MID input forces the DAC outputs to mid­scale when MID is low. When MID is high, the DAC out­puts follow the data in the DAC registers.
The active-low CLR input forces the DAC outputs to zero scale when CLR is low. When CLR is high, the DAC out­puts follow the data in the DAC registers.
If CLR, MID, or SET signals go low in the middle of a write command, reload the data to ensure accurate results.
Power-Down Lockout (
PDL
)
The PDL active-low software-shutdown lockout input overrides (not overwrites), the PD_0 and PD_1 shut­down mode bits. PDL cannot be active at the same time as SHDN1K or SHDN100K (see the Shutdown
Mode (
SHDN1K, SHDN100K
) section).
If the PD_0 and PD_1 bits command the DAC to shut down prior to PDL going low, the DAC returns to shut­down mode immediately after PDL goes high, unless the PD_0 and PD_1 bits are changed in the meantime.
Shutdown Mode (
SSHHDDNN11KK, SSHHDDNN110000KK
)
The SHDN1K and SHDN100K are active-low signals that override (not overwrite) the PD_1 and PD_0 bit set­tings. For the MAX5290/MAX5292/MAX5294, drive SHDN1K low to select shutdown mode with OUTA and OUTB internally terminated with 1kto ground, or drive SHDN100K low to select shutdown with an internal 100ktermination. For the MAX5291/MAX5293/ MAX5295, drive SHDN1K low for shutdown with 1k output termination, or drive SHDN100K low for shut­down with high-impedance outputs.
Data Output (DOUTRB, DOUTDC0, DOUTDC1)
UPIO1 and UPIO2 can be configured as serial data outputs, DOUTRB (data out for read back), DOUTDC0 (data out for daisy-chaining, mode 0), and DOUTDC1 (data out for daisy-chaining, mode 1). The differences between DOUTRB and DOUTDC0 (or DOUTDC1) are as follows:
The source of read-back data on DOUTRB is the
DOUT register. Daisy-chain DOUTDC_ data comes directly from the shift register.
Read-back data on DOUTRB is only present after a
DAC read command. Daisy-chain data is present on DOUTDC_ for any DAC write after the first 16 bits are written.
The DOUTRB idle state (CS = high) for read back is
high impedance. Daisy-chain DOUTDC_ idles high when inactive to avoid floating the data input in the next device in the daisy-chain.
See Figures 1 and 2 for timing details.
Figure 5. Asynchronous Signal Timing
Figure 6. GPO_ and
LDAC
Signal Timing
t
LDAC
TOGG
PDL
CLR,
MID, OR
SET
V
OUT_
PDL AFFECTS DAC OUPTUTS (V
END OF
CYCLE*
GPO_
LDAC
*END-OF-CYCLE REPRESENTS THE RISING EDGE OF CS OR THE 16TH ACTIVE CLOCK EDGE, DEPENDING ON THE MODE OF OPERATION.
LDL
t
CMS
t
S
) ONLY IF DACS WERE PREVIOUSLY SHUT DOWN.
OUT_
t
GP
t
LDS
±0.5 LSB
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 27
GPI, GPOL, GPOH
UPIO1 and UPIO2 can each be configured as a gener­al-purpose logic input (GPI), a general-purpose logic­low output (GPOL), or general-purpose logic-high output (GPOH).
The GPI can detect interrupts from µPs or microcon­trollers. It provides three functions:
1) Sample the signal at GPI at the time of the read (RTP1 and RTP2).
2) Detect whether or not a falling edge has occurred since the last read or reset (LF1 and LF2).
3) Detect whether or not a rising edge has occurred since the last read or reset (LR1 and LR2).
RTP1, LF1, and LR1 represent the data read from UPIO1. RTP2, LF2, and LR2 represent the data read from UPIO2.
To issue a read command for the UPIO configured as GPI, use the command in Table 23.
Once the command is issued, RTP1 and RTP2 provide the real-time status (0 or 1) of the inputs at UPIO1 or UPIO2, respectively, at the time of the read. If LF2 or
LF1 is one, then a falling edge has occurred on the UPIO1 or UPIO2 input since the last read or reset. If LR2 or LR1 is one, then a rising edge has occurred since the last read or reset.
GPOL outputs a constant logic low, and GPOH outputs a constant logic high (see Figure 6).
TOGG
Use the TOGG input to toggle a DAC output between the values in the input register and DAC register. A delay of greater than 100ns from the end of the previ­ous write command is required before the TOGG signal can be correctly switched between the new value and the previously stored value. When TOGG = 0, the out­put follows the information in the input registers. When TOGG = 1, the output follows the information in the DAC register (Figure 5).
FAST
The MAX5290–MAX5295 have two settling-time-mode options: FAST (3µs max at 12 bits) and SLOW (6µs max at 12 bits). To select the FAST mode, drive FAST low, and to select SLOW mode, drive FAST high. This over­rides (not overwrites) the SPDA and SPDB bit settings.
Table 23. GPI Read Command
Table 24. Unipolar Code Table (Gain = +1)
Figure 7. Unipolar Output Circuit
X = Don’t care.
DATA CONTROL BITS DATA BITS
DIN 1111 0 0 1 X X X X X X X X X
DOUTRB X X X X X X X X X X RTP2 LF2 LR2 RTP1 LF1 LR1
DAC CONTENTS
MSB LSB
1111 1111 1111 +V
1000 0000 0001 +V
1000 0000 0000 +V
0111 1111 1111 +V
0000 0000 0001 +V
0000 0000 0000 0
ANALOG OUTPUT
(4095 / 4096)
REF
(2049 / 4096)
REF
(2048 / 4096) = V
REF
(2047 / 4096)
REF
(1 / 4096)
REF
REF
/ 2
REF
DAC_
MAX5290
OUT_
V
= V
OUT_
CODE IS THE DAC_ INPUT CODE (0 TO 4095 DECIMAL).
x CODE / 4096
REF
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
28 ______________________________________________________________________________________
Applications Information
Unipolar Output
Figure 7 shows the unity gain of the MAX5290 in a unipolar output configuration. Table 24 lists the unipolar output codes.
Bipolar Output
The MAX5290 outputs can be configured for bipolar operation, as shown in Figure 8. The output voltage is given by the following equation:
V
OUT_
= V
REF
x (CODE - 2048) / 2048
where CODE represents the numeric value of the DACs binary input code (0 to 4095 decimal). Table 25 shows digital codes and the corresponding output volt­age for the Figure 8 circuit.
Configurable Output Gain
The MAX5291/MAX5293/MAX5295 have force-sense out­puts, which provide a connection directly to the inverting terminal of the output op amp, yielding the most flexibility. The advantage of the force-sense output is that specific gains can be set externally for a given application. The gain error for the MAX5291/MAX5293/MAX5295 is speci­fied in a unity-gain configuration (op-amp output and inverting terminals connected) and additional gain error results from external resistor tolerances. The force-sense DACs allow many useful circuits to be created with only a few simple external components.
An example of a custom, fixed gain using the MAX5291s force-sense output is shown in Figure 9. In this example, the external reference is set to 1.25V, and the gain is set to +1.1V/V with external discrete resis­tors to provide an approximate 0 to 1.375V DAC output voltage range.
V
OUT_
= [(0.5 x V
REF
x CODE) / 4096] x [1 + (R2 / R1)]
where CODE represents the numeric value of the DACs binary input code (0 to 4095 decimal).
In this example, if R2 = 12kand R1 = 10k, set the gain = 1.1V/V:
V
OUT_
= [(0.5 x 1.25V x CODE) / 4096] x 2.2
Table 25. Bipolar Code Table (Gain = +1)
Figure 8. Bipolar Output Circuit
Figure 9. Configurable Output Gain
DAC CONTENTS
MSB LSB
1111 1111 1111 +V
1000 0000 0001 +V
1000 0000 0000 0
0111 1111 1111 +V
0000 0000 0001 -V
0000 0000 0000 -V
ANALOG OUTPUT
REF
REF
REF
REF
(2048 / 2048) = -V
REF
(2047 / 2048)
(1 / 2048)
(1 / 2048)
(2047 / 2048)
REF
10k 10k
V+
V
REF
DAC_
OUT_
V-
MAX5290
OUT_
REF
DAC_
MAX5291
OUT_
R2 = 12k
0.1% 25ppm
FB_
R1 = 10k
0.1% 25ppm
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 29
Power-Supply and Layout Considerations
Bypass the analog and digital power supplies with a 10µF capacitor in parallel with a 0.1µF capacitor to ana­log ground (AGND) and digital ground (DGND) (see Figure 10). Minimize lead lengths to reduce lead induc­tance. If noise is an issue, use shielding and/or ferrite beads to increase isolation.
Digital and AC transient signals coupling to AGND cre­ate noise at the output. Connect AGND to the highest quality ground available. Use proper grounding tech-
niques, such as a multilayer board with a low-induc­tance ground plane. Wire-wrapped boards and sockets are not recommended. For optimum system perfor­mance, use printed circuit (PC) boards with separate analog and digital ground planes. Connect the two ground planes together at the low-impedance power­supply source.
Using separate power supplies for AV
DD
and DV
DD
improves noise immunity. Connect AGND and DGND at the low-impedance power-supply source (see Figure 11).
Figure 10. Bypassing Power Supplies and Reference
Figure 11. Separate Analog and Digital Power Supplies
AV
DD
V
REF
10µF* 0.1µF*
UPIO1
UPIO2
*REMOVE BYPASS CAPACITORS ON REF FOR AC-REFERENCE INPUTS. **CONNECT ANALOG AND DIGITAL GROUND PLANES AT THE LOW-IMPEDANCE POWER-SUPPLY SOURCE.
SCLK
DIN
DSP
AV
DD
REF
CS
PU
MAX5290–MAX5295
AGND** DGND**
DV
DV
DD
DD
MAX5291/ MAX5293/
MAX5295
10µF0.1µF0.1µF10µF
OUTA
FBA
FBB
ONLY
OUTB
ANALOG SUPPLY DIGITAL SUPPLY
AV
DD
10µF
0.1µF
AV
DD
MAX5290–MAX5295
AGND
AGND
DV
DV
DGND
DD
10µF
0.1µF
DV
DGND
DD
DD
DIGITAL
CIRCUITRY
DGND
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
30 ______________________________________________________________________________________
Chip Information
TRANSISTOR COUNT: 16,758
PROCESS: BiCMOS
Pin Configurations
Selector Guide
*Future product—contact factory for availability. Specifications are preliminary.
TOP VIEW
UPIO1
DSP
DIN
SCLK
DV
1
2
3
4
MAX5290 MAX5292
5
MAX5294
6
DD
7
14
UPIO2
13
PU
12
OUTA
11
REFCS
OUTB
10
9
AV
DD
AGNDDGND
8
14 TSSOP
UPIO2
UPIO1
DSP
SCLK
DV
DGND
DIN
1
2
3
MAX5291
4
CS
DD
MAX5293
5
MAX5295
6
7
8
16
PU
15
OUTA
14
FBA
13
REF
12
FBB
OUTB
11
10
AV
DD
AGND
9
16 TSSOP
N.C.
PU
UPIO1
UPIO2
16 15 14 13
DSP
1
2
DIN
CS
SCLK
3
4
5678
DD
DV
MAX5290 MAX5292 MAX5294
DGND
AGND
12
11
10
9
DD
AV
(4mm x 4mm) THIN QFN
R ESO L U TIO N
( B IT S)
PART
OUTPUT BUFFER
CO NFIGUR ATION
MAX5290AEUD* Unity Gain 12 ±1
MAX5290BEUD Unity Gain 12 ±4
MAX5290AETE* Unity Gain 12 ±1
MAX5290BETE Unity Gain 12 ±4
MAX5291AEUE* Force Sense 12 ±1
MAX5291BEUE Force Sense 12 ±4
MAX5291AETE* Force Sense 12 ±1
MAX5291BETE Force Sense 12 ±4
MAX5292EUD Unity Gain 10 ±1
MAX5292ETE Unity Gain 10 ±1
MAX5293EUE Force Sense 10 ±1
MAX5293ETE Force Sense 10 ±1
MAX5294EUD Unity Gain 8 ±0.5
MAX5294ETE Unity Gain 8 ±0.5
MAX5295EUE Force Sense 8 ±0.5
MAX5295ETE Force Sense 8 ±0.5
OUTA
N.C.
REF
OUTB
INL
(LSBs
MAX)
OUTA
PU
UPIO1
UPIO2
16 15 14 13
DSP
DIN
SCLK
1
2
MAX5291
3
CS
4
5678
DD
DV
MAX5293 MAX5295
DGND
AGND
12
11
10
9
DD
AV
(4mm x 4mm) THIN QFN
FBA
REF
FBB
OUTB
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
______________________________________________________________________________________ 31
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages
.)
TSSOP4.40mm.EPS
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit, Voltage-Output DACs
32 ______________________________________________________________________________________
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages
.)
24L QFN THIN.EPS
PACKAGE OUTLINE 12,16,20,24L QFN THIN, 4x4x0.8 mm
21-0139 A
MAX5290–MAX5295
Buffered, Fast-Settling, Dual, 12-/10-/8-Bit,
Voltage-Output DACs
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 33
© 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages
.)
PACKAGE OUTLINE 12,16,20,24L QFN THIN, 4x4x0.8 mm
A21-0139
Loading...