Rainbow Electronics MAX4074, MAX4078 User Manual

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.
General Description
The MAX4074–MAX4078 GainAmp™ op amp family combines low-cost Rail-to-Rail®op amps with precision internal gain-setting resistors. Factory-trimmed on-chip resistors decrease design size, cost, and layout, and provide 0.1% gain accuracy. Fixed inverting gains from
-0.25V/V to -100V/V or noninverting gains from +1.25V/V to +101V/V are available. These devices operate from a single +2.5V to +5.5V supply and consume just 34µA. GainAmp amplifiers are optimally compensated for each gain version, achieving gain bandwidth (GBW) products up to 4MHz (AV= +25V/V to +101V/V). High-voltage fault protection withstands ±17V at either input without damage or excessive current draw (MAX4074/MAX4075 only).
Two versions are available in this amplifier family. The MAX4076/MAX4077/MAX4078 are single/dual/quad open-loop, unity-gain-stable op amps, and the MAX4074/MAX4075 are single/dual fixed-gain op amps. The input common-mode voltage range of the open-loop amplifiers extends from 150mV below the negative supply to within 1.2V of the positive supply. The GainAmp outputs can swing rail-to-rail and drive a 1kload while maintaining excellent DC accuracy (MAX4074/MAX4075 only). The amplifiers are stable for capacitive loads up to 100pF.
For space-critical applications, the MAX4074/MAX4076 are available in space-saving SOT23-5 packages.
Applications
Portable Battery-Powered Equipment
Instruments, Terminals, and Bar-Code Readers
Keyless Entry
Photodiode Preamps
Smart-Card Readers
Infrared Receivers for Remote Controls
Low-Side Current-Sense Amplifiers
Features
Internal Gain-Setting Resistors in SOT23
Packages (MAX4074)
0.1% Gain Accuracy (R
F/RG
) (MAX4074/75)
54 Standard Gains Available (MAX4074/75)
Open-Loop, Unity-Gain-Stable Op Amps
(MAX4076/77/78)
Rail-to-Rail Outputs Drive 1kLoad (MAX4074/75)
+2.5V to +5.5V Single Supply
34µA Supply Current (MAX4074/75)
Up to 4MHz GBW Product
Fault-Protected Inputs Withstand ±17V
(MAX4074/75)
200pA max Input Bias Current (MAX4076/77/78)
Stable with Capacitive Loads up to 100pF
with No Isolation Resistor
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
________________________________________________________________ Maxim Integrated Products 1
19-1526; Rev 1; 10/99
Pin Configurations/
Functional Diagrams
Patent pending. GainAmp is a trademark of Maxim Integrated Products. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
Ordering Information
Pin Configurations continued at end of data sheet.
Ordering Information continued at end of data sheet.
Note: Insert the desired gain code in the blank to complete the
part number (see the Gain Selector Guide). **See the Gain Selector Guide for a list of preferred gains and top marks.
8 SO
5 SOT23-5
PIN-
PACKAGE
TEMP. RANGE
-40°C to +70°C
-40°C to +70°CMAX4074__ESA
MAX4074__EUK-T
PART
**
TOP
MARK
Typical Operating Circuit appears at end of data sheet.
Gain Selector Guide appears at end of data sheet.
TOP VIEW
MAX4074
1
OUT
2
V
EE
3
IN+
SOT23-5
5
V
CC
R
F
R
G
4
IN-
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS—MAX4074/MAX4075
(VCC= +2.5V to +5.5V, VEE= 0, V
IN+
= V
IN-
= VCC/2, RL= to VCC/2, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values
are at V
CC
= +5V and TA= +25°C.) (Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Supply Voltages (VCCto VEE) ..................................-0.3V to +6V
Voltage Inputs (IN_)
MAX4076/MAX4077/MAX4078 .....(V
CC
+ 0.3V) to (VEE- 0.3V)
MAX4074/MAX4075..........................................................±17V
Output Short-Circuit Duration to Either Supply (OUT_). . . . Continuous
Continuous Power Dissipation (T
A
= +70°C)
5-Pin SOT23 (derate 7.1mW/°C above +70°C) ............571mW
14-Pin TSSOP (derate 6.3mW/°C above +70°C) ..........500mW
8-Pin µMAX (derate 4.1mW/°C above +70°C) ..............330mW
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW
14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10sec) .............................+300°C
Supply Current (per amplifier) I
CC
34 50
µA
VCC= 3V
PARAMETER SYMBOL MIN TYP MAX UNITS
Inverting Input Resistance R
IN_
80
k
VCC- V
OH
300
Input Bias Current (Note 2) I
IN+_
0.8 1000 pA
Input Offset Voltage Drift 0.3 µV/°C
Noninverting Input Resistance R
IN_+
1000 M
Negative Input Voltage Range IN_- ±1 5 V
Power-Supply Rejection Ratio PSRR 70 96 dB
Supply Voltage Range V
CC
2.5 5.5 V
300 1000
37 55
Input Offset Voltage V
OS
0.2 3.5 mV
Closed-Loop Output Impedance R
OUT
0.2
VCC- V
OH
5
Output Short-Circuit Current
-22
mA
0.5 2.5
VOL- V
EE
Output Voltage Swing (Note 4)
100 600
mV
RL= 1k
VCC- V
OH
25 150
VOL- V
EE
Positive Input Voltage Range IN_+
11 80
RL= 10k
VOL- V
EE
CONDITIONS
AV≥ +25V/V
Shorted to V
CC
AV< +25V/V
Shorted to V
EE
VEE-V
CC
-
0.15 1.2
Guaranteed by functional test (Note 3)
VCC= 2.5V to 5.5V
VGuaranteed by functional test (Note 3)
0.4 2.5
Guaranteed by PSRR test
VCC= 5V
RL= 1M
RL= 1M
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS—MAX4076/MAX4077/MAX4078
(VCC= +2.5V to +5.5V, VEE= 0, V
IN+
= V
IN-
= VCC/2, RL= to VCC/2, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values
are at V
CC
= +5V and TA= +25°C.) (Note 1)
ELECTRICAL CHARACTERISTICS—MAX4074/MAX4075 (continued)
(VCC= +2.5V to +5.5V, VEE= 0, V
IN+
= V
IN-
= VCC/2, RL= to VCC/2, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values
are at V
CC
= +5V and TA= +25°C.) (Note 1)
90
80
90
-3dB Bandwidth BW (-3dB)
120
kHz
AV= +3V/V
AV= +5V/V
AV= +10V/V
AV= +25V/V
200AV= +1.25V/V
Input Noise Current Density 500
fA/Hz
Capacitive Load Stability C
LOAD
500 pF
DC Gain Accuracy
0.01 1.0 %
f = 5kHz
No sustained oscillations
PARAMETER SYMBOL MIN TYP MAX UNITS
Power-Up Time 9 ms
Slew Rate SR 100 V/ms
Settling Time (to 0.01%) 60 µs
Input Voltage Noise Density e
n
150
nV/Hz
CONDITIONS
Output settling to 1%
V
OUT
= 4V step
V
OUT
= 4V step
f = 5kHz (Note 5)
1.2
TA= +25°C
(VEE+ 25mV) < V
OUT
< (VCC- 25mV), RL= 1M(Note 6)
TA= T
MIN
to T
MAX
Supply Current (per amplifier) I
CC
40 55
µA
VCC= 3V
PARAMETER SYMBOL MIN TYP MAX UNITS
Input Bias Current (Note 2) I
IBIAS
1200pA
Input Offset Voltage Drift 1.5µV µV/°C
Power-Supply Rejection Ratio PSRR 70 95 dB
Supply Voltage Range V
CC
2.5 5.5 V
80 93
45 60
Input Offset Voltage V
OS
1.2 3.5mV mV
Closed-Loop Output Impedance R
OUT
0.2
4.5
Output Short-Circuit Current
20
mA
80 117
Large-Signal Voltage Gain A
VOL
dB
0.25V < V
OUT
< (VCC- 0.3V), RL= 5k
80 95
Common-Mode Input Voltage Range
I
VR
0.25V < V
OUT
< (VCC- 0.3V), RL= 10k
CONDITIONS
AV= +1V/V
Shorted to V
CC
Shorted to V
EE
0.15 V
CC -
1.2
VCC= 2.5V to 5.5V
VGuaranteed by CMRR
Guaranteed by PSRR test
VCC= 5V
0.05V < V
OUT
< (VCC- 0.1V), RL= 1M
RL= 1M
Input Offset Current I
OS
±0.4 pA
Common-Mode Rejection Ratio CMRR 70 95 dB(VCC- 1.2V) ≥ VCM≥ -0.15V
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS—MAX4076/MAX4077/MAX4078 (continued)
(VCC= +2.5V to +5.5V, VEE= 0, V
IN+
= V
IN-
= VCC/2, RL= to VCC/2, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values
are at V
CC
= +5V and TA= +25°C.) (Note 1)
RL= 1M
0.22 2.5
CONDITIONS
VOL- V
EE
RL= 10k
750VOL- V
EE
12 50VCC- V
OH
RL= 5k
mV
100 100
VOH/V
OL
Output Voltage Swing
VOL- V
EE
0.23 2.5
VCC- V
OH
100 100VCC- V
OH
kHzGBWGain-Bandwidth Product
UNITSMIN TYP MAXSYMBOLPARAMETER
230
V
OUT
= 4V step V/msSRSlew Rate 90
V
OUT
= 4V step µsSettling Time (to 0.01%) 69
f = 5kHz
nV/Hz
e
n
Input Voltage Noise Density 110
f = 5kHz
fA/Hz
Input Noise Current Density 1.1
No sustained oscillations, AV= +1V/V pFC
LOAD
Capacitive Load Stability 100
Note 1: All devices are 100% production tested at TA= +25°C. All temperature limits are guaranteed by design. Note 2: Guaranteed by design. Note 3: The input common-mode range for IN_+ is guaranteed by a functional test. A similar test is done on the IN_- input. See the
Applications Information section for more information on the input voltage range of the GainAmps.
Note 4: For A
V
= -0.5V/V and AV= -0.25V/V, the output voltage swing may be limited by the input voltage range.
Note 5: Includes noise from on-chip resistors. Note 6: The gain accuracy test is performed with the GainAmps in the noninverting configuration. The output voltage swing is limit-
ed by the input voltage range for certain gains and supply voltage conditions. For situations where the output voltage swing is limited by the valid input range, the output limits are adjusted accordingly.
Output settling to 1% msPower-Up Time 10
3
-6 1k 1M100k10k
SMALL-SIGNAL GAIN vs. FREQUENCY
-3
-5
1
-1
4
-2
-4
2
0
MAX4074-8 tocc1-2
FREQUENCY (Hz)
GAIN (dB)
AV = +2.25V/V
AV = +1.25V/V
V
OUT
= 100mVp-p
3
-6 1k 1M10k 100k
SMALL-SIGNAL GAIN vs. FREQUENCY
-3
-5
1
-1
4
-2
-4
2
0
MAX4074-8 tocc3-4
FREQUENCY (Hz)
GAIN (dB)
AV = +4V/V
AV = +2.5V/V
V
OUT
= 100mVp-p
3
-6 1k 1M10k 100k
SMALL-SIGNAL GAIN vs. FREQUENCY
-3
-5
1
-1
4
-2
-4
2
0
MAX4074-8 tocc5-6
FREQUENCY (Hz)
GAIN (dB)
AV = +9V/V
AV = +5V/V
V
OUT
= 100mVp-p
Typical Operating Characteristics
(VCC= +5.0V, RL= 100kto VCC/2, TA= +25°C, unless otherwise noted.)
MAX4074/MAX4075
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
_______________________________________________________________________________________ 5
Typical Operating Characteristics
(VCC= +5.0V, RL= 100kto VCC/2, TA= +25°C, unless otherwise noted.)
MAX4074/MAX4075
3
-6 1k 1M100k10k
LARGE-SIGNAL GAIN vs. FREQUENCY
-3
-5
1
-1
4
-2
-4
2
0
MAX4074-8 toc10
FREQUENCY (Hz)
GAIN (dB)
AV = +10V/V
AV = +21V/V
V
OUT
= 1Vp-p
3
-6 1k 1M100k10k
LARGE-SIGNAL GAIN vs. FREQUENCY
-3
-5
1
-1
4
-2
-4
2
0
MAX4074-8 toc11
FREQUENCY (Hz)
GAIN (dB)
AV = +25V/V
AV = +50V/V
V
OUT
= 1Vp-p
3
-6 1k 1M100k10k
LARGE-SIGNAL GAIN vs. FREQUENCY
-3
-5
1
-1
4
-2
-4
2
0
MAX4074-8 toc12
FREQUENCY (Hz)
GAIN (dB)
AV = +51V/V
AV = +101V/V
V
OUT
= 1Vp-p
SMALL-SIGNAL GAIN vs. FREQUENCY
4
V
= 100mVp-p
OUT
3
2
1
0
-1
GAIN (dB)
-2
-3
-4
-5
-6
AV = +21V/V
1k 1M100k10k
FREQUENCY (Hz)
LARGE-SIGNAL GAIN vs. FREQUENCY
4
V
= 1Vp-p
OUT
3
2
1
0
-1
GAIN (dB)
-2
-3
-4
-5
-6 1k 1M100k10k
AV = +2.25V/V
FREQUENCY (Hz)
MAX4074-8 toc04
AV = +10V/V
GAIN (dB)
MAX4074-8 toc07
AV = +1.25V/V
GAIN (dB)
SMALL-SIGNAL GAIN vs. FREQUENCY
4
V
= 100mVp-p
OUT
3
2
1
0
-1
-2
-3
-4
-5
-6 1k 1M100k10k
AV = +50V/V
FREQUENCY (Hz)
LARGE-SIGNAL GAIN vs. FREQUENCY
4
V
= 1Vp-p
OUT
3
2
1
0
-1
-2
-3
-4
-5
-6 1k 1M100k10k
AV = +4V/V
FREQUENCY (Hz)
AV = +25V/V
AV = +2.5V/V
MAX4074-8 toc05
GAIN (dB)
MAX4074-8 toc08
GAIN (dB)
SMALL-SIGNAL GAIN vs. FREQUENCY
4
V
= 100mVp-p
OUT
3
2
1
0
-1
-2
-3
-4
-5
-6 1k 1M100k10k
AV = +101V/V
FREQUENCY (Hz)
AV = +51V/V
LARGE-SIGNAL GAIN vs. FREQUENCY
4
V
= 1Vp-p
OUT
3
2
1
0
-1
-2
-3
-4
-5
-6 1k 1M100k10k
AV = +9V/V
AV = +5V/V
FREQUENCY (Hz)
MAX4074-8 toc06
MAX4074-8 toc09
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps
6 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC= +5.0V, RL= 100kto VCC/2, TA= +25°C, unless otherwise noted.)
MAX4074/MAX4075
10
0.1 1 1k 10k 100k10 100 10M1M
CURRENT NOISE DENSITY
vs. FREQUENCY
1
MAX4074 TOC31
FREQUENCY (Hz)
CURRENT NOISE DENSITY (fA/Hz)
TOTAL HARMONIC DISTORTION
0
V
= 1Vp-p
OUT
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100 100 100k10k1k
vs. FREQUENCY
AV = +51V/V
FREQUENCY (Hz)
AV = +25V/V
MAX4074-8 toc26
TOTAL HARMONIC DISTORTION
vs. OUTPUT VOLTAGE SWING
-20 f = 10kHz
-30
-40
-50
THD (dB)
-60
-70
-80
-90
0 2.01.0 3.0 4.00.5 2.51.5 3.5 4.5 5.0
0
-10
-20
-30
-40
-50
THD (dB)
-60
-70
-80
-90
-100 100 100k10k1k
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
V
= 1Vp-p
OUT
AV = +3V/V
AV = +10V/V
AV = +1.25V/V
FREQUENCY (Hz)
MAX4074-8 toc25
THD (dB)
TOTAL HARMONIC DISTORTION
vs. OUTPUT VOLTAGE SWING
-20 f = 10kHz
-30
-40
-50
THD (dB)
-60
-70
-80
-90
0 2.01.0 3.0 4.00.5 2.51.5 3.5 4.5 5.0
VOLTAGE SWING (Vp-p)
AV = +51V/V
AV = +25V/V
1000
MAX4074-8 toc28
100
VOLTAGE NOISE (nV/Hz)
10
VOLTAGE NOISE DENSITY
vs. FREQUENCY
AV = +3V/V
AV = +10V/V
AV = +1.25V/V
1 1k 10k 100k10 100 1M 10M
FREQUENCY (Hz)
AV = +3V/V
AV = +10V/V
AV = +1.25V/V
VOLTAGE SWING (Vp-p)
MAX4074-8 toc29
MAX4074-8 toc27
VOLTAGE NOISE DENSITY
vs. FREQUENCY
1000
AV = +25V/V
100
VOLTAGE NOISE (nV/Hz)
10
AV = +51V/V
1 1k 10k 100k10 100 1M 10M
FREQUENCY (Hz)
MAX4074-8 toc30
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
_______________________________________________________________________________________ 7
Typical Operating Characteristics (continued)
(VCC= +5.0V, RL= 100kto VCC/2, TA= +25°C, unless otherwise noted.)
MAX4074/MAX4075
MAX4074 TOC36
= +1.25V/V
A
V
50mV/div
= +1.25V/V
A
V
50mV/div
A
V
50mV/div
A
V
SMALL-SIGNAL PULSE RESPONSE
INPUT
OUTPUT
OUTPUT
= +3V/V
OUTPUT
= +5V/V
INPUT
OUTPUT
500mV/div
OUTPUT
500mV/div
= +3V/V
A
V
OUTPUT
500mV/div
= +5V/V
A
V
LARGE-SIGNAL PULSE RESPONSE
MAX4074 TOC35
OUTPUT
50mV/div
= +10V/V
A
V
OUTPUT
50mV/div
= +25V/V
A
V
OUTPUT
50mV/div
= +51V/V
A
V
OUTPUT
500mV/div
= +10V/V
A
V
OUTPUT
500mV/div
= +25V/V
A
V
OUTPUT
500mV/div
= +51V/V
A
V
10µs/div
10µs/div
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps
8 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC= +5.0V, RL= 100kto VCC/2, TA= +25°C, unless otherwise noted.)
300
0
1 10 100
OUTPUT VOLTAGE SWING
vs. R
LOAD
50
200
100
150
250
MAX4074 TOC34
R
LOAD
(k)
OUTPUT SWING (mV)
V
CC
- V
OH
V
OL
- V
EE
100 1k 10k 100k 1M
OUTPUT IMPEDANCE
vs. FREQUENCY
MAX4074TOC33
FREQUENCY (Hz)
OUTPUT IMPEDANCE ()
1k
0.1
1
10
100
-10
-100 100 100k10k1k
POWER-SUPPLY REJECTION
vs. FREQUENCY
-70
-90
-30
-50
0
-60
-80
-20
-40
MAX4074 TOC32
FREQUENCY (Hz)
PSR (dB)
VOH AND VOL vs. TEMPERATURE
175
150
125
100
75
50
25
VOLTAGE (mV)
0
-25
-50
-75
-100
-50 -5 10-35 -20 25 40 55 70 85
VOH, RL = 10k
VOL, RL = 10k
INPUT OFFSET VOLTAGE vs. TEMPERATURE
100
75
50
25
0
-25
-50
INPUT OFFSET VOLTAGE (µV)
-75
-100
- VEE = 2.5V)
(V
CC
VOH, RL = 1k
VOL, RL = 1k
TEMPERATURE (°C)
V
- V
= 5.5V
CC
EE
V
- V
= 2.5V
CC
EE
-50 -5 10-35 -20 25 40 55 70 85 TEMPERATURE (°C)
VOH AND VOL vs. TEMPERATURE
450
400 350
MAX4074/5-toc37
300 250
VOH, RL = 100k
VOL, RL = 100k
200
150 100
VOLTAGE (mV)
50
0
-50
-100
-150
-50 -5 10-35 -20 25 40 55 70 85
MAX4074/5-toc35
- VEE = 5.5V)
(V
CC
VOH, RL = 10k
VOL, RL = 10k
VOL, RL = 1k
TEMPERATURE (°C)
INPUT BIAS CURRENT vs. TEMPERATURE
600
500
400
300
200
100
INPUT BIAS CURRENT (pA)
0
-100
-200
-45 0 15-30 -15 30 45 60 75 90
VOH, RL = 1k
VOH, RL = 100k
VOL, RL = 100k
MAX4074/4075
V
- V
CC
MAX4076/77/78
TEMPERATURE (°C)
40.0
MAX4074/5-toc38
37.5
35.0
SUPPLY CURRENT (µA)
32.5
30.0
V
- V
= 5.5V
CC
EE
MAX4074/5-toc36
= 2.5V
EE
V
- V
= 5.5V
CC
EE
V
- V
= 2.5V
CC
EE
SUPPLY CURRENT vs. TEMPERATURE
V
- V
= 5.5V
CC
EE
V
- V
= 4.0V
CC
EE
V
- V
= 3.0V
CC
EE
V
- V
= 2.5V
CC
EE
-50 -5 10-35 -20 25 40 55 70 85 TEMPERATURE (°C)
MAX4074/5-toc39
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
_______________________________________________________________________________________ 9
Typical Operating Characteristics (continued)
(VCC= +5.0V, RL= 100kto VCC/2, TA= +25°C, unless otherwise noted.)
MAX4076/MAX4077/MAX4078
SMALL-SIGNAL GAIN vs. FREQUENCY
4
3
2
1
0
-1
GAIN (dB)
-2
-3
-4
-5
-6 1k 1M 10M100k10k
FREQUENCY (Hz)
CURRENT NOISE vs. FREQUENCY
100
10
1
CURRENT NOISE (pA/Hz)
0.1 1 1k 10k 100k10 100 1M 10M
FREQUENCY (Hz)
MAX4078
ALL HOSTILE CROSSTALK vs. FREQUENCY
-60 THREE AMPLIFIERS DRIVEN,
-65
ONE OUTPUT MEASURED.
-70
-75
-80
-85
-90
CROSSTALK (dB)
-95
-100
-105
-110 1k 1M10k 100k
FREQUENCY (Hz)
MAX4076/7/8 toc1
MAX4076-8 toc4
MAX4076-8 toc7
LARGE-SIGNAL GAIN vs. FREQUENCY
4
3
2
1
0
-1
GAIN (dB)
-2
-3
-4
-5
-6 1k 1M 10M100k10k
FREQUENCY (Hz)
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
-40 AV = +1V/V
-50
-60
THD (dB)
-70
-80
-90
100 100k10k1k
FREQUENCY (Hz)
GAIN AND PHASE
vs. FREQUENCY
120
80
40
0
-40
GAIN (dB)
-80
-120
-160
-200
PHASE
1 1k 10k 100k10 100 10M1M
FREQUENCY (Hz)
GAIN
MAX4076-8 toc8
MAX4076- 8 toc2
MAX4076-8 toc5
270
180
90
0
-90
-180
-270
-360
-450
VOLTAGE NOISE vs. FREQUENCY
1k
100
VOLTAGE NOISE (nV/Hz)
10
1 1k 10k 100k10 100 1M 10M
FREQUENCY (Hz)
MAX4077
CROSSTALK vs. FREQUENCY
-80
-85
-90
-95
-100
-105
-110
CROSSTALK (dB)
-115
-120
-125
-130 1k 1M10k 100k
FREQUENCY (Hz)
COMMON-MODE REJECTION
vs. FREQUENCY
-10
-20
-30
-40
-50
-60
CMR (dB)
-70
PHASE (degrees)
-80
-90
-100 1 1k 10k 100k10 100 10M1M
FREQUENCY (Hz)
MAX4076-8 toc3
MAX4076-8 toc6
MAX4076-8 toc9
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps
10 ______________________________________________________________________________________
Pin Description
_______________Detailed Description
Maxim’s GainAmp fixed-gain amplifiers combine a low­cost rail-to-rail op amp with internal gain-setting resis­tors. Factory-trimmed on-chip resistors provide 0.1% gain accuracy while decreasing design size, cost, and layout. There are two versions in this amplifier family: single/dual/quad open-loop, unity-gain-stable devices (MAX4076/MAX4077/MAX4078), and single/dual fixed­gain devices (MAX4074/MAX4075). All amplifiers fea­ture rail-to-rail outputs and drive a 10kload while maintaining excellent DC accuracy.
Open-Loop Op Amps
The single/dual/quad MAX4076/MAX4077/MAX4078 are low-power, open-loop op amps with rail-to-rail outputs. These devices are compensated for unity-gain stability and feature a GBW product of 230kHz. The common­mode range extends from 150mV below the negative rail to within 1.2V of the positive rail. These high-perfor­mance op amps serve as the core for this family of GainAmp fixed-gain amplifiers. Although the -3dB band­width will not correspond to that of a fixed-gain amplifier in higher gain configurations, these open-loop op amps can be used to prototype designs.
Internal Gain-Setting Resistors
Maxim’s proprietary laser trimming techniques allow RF/RGvalues (Figure 1) that produce many different gain configurations. These GainAmp fixed-gain ampli­fiers feature a negative-feedback resistor network that is laser trimmed to provide a gain-setting feedback ratio (RF/RG) with 0.1% typical accuracy. The standard op amp pinouts allow the GainAmp fixed-gain ampli­fiers to plug directly into existing board designs, easily replacing op amps-plus-resistor gain blocks.
Figure 1. Internal Gain-Setting Resistors
FUNCTION
Positive SupplyV
CC
5
No Connection. Not internally connected.N.C.
Inverting Amplifier InputIN_-4
Noninverting Amplifier InputIN_+3
Negative Supply or GroundV
EE
2
Amplifier OutputOUT_1
7
1, 5, 8
2
3
4
6
8
2, 6
3, 5
4
1, 7
4
2, 6, 9, 13
3, 5, 10, 12
11
1, 7, 8, 14
MAX4075 MAX4077
MAX4078
µMAX/SO SO/TSSOPSOT23
NAME
SO
PIN
MAX4074/MAX4076
IN-
IN+
V
CC
R
G
V
EE
R
F
-R
F
A
=
V
R
G
AV = 1 + R
R
F
G
OUT
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
______________________________________________________________________________________ 11
GainAmp Bandwidth
GainAmp fixed-gain amplifiers feature factory-trimmed precision resistors to provide fixed inverting gains from
-0.25V/V to -100V/V or noninverting gains from +1.25V/V to +101V/V. The op amp core is decompensated strate­gically over the gain-set options to maximize band­width. Open-loop decompensation increases GBW product, ensuring that usable bandwidth is maintained with increasing closed-loop gains. A GainAmp with a fixed gain of AV= +25V/V has a -3dB bandwidth of 120kHz. By comparison, a unity-gain-stable op amp con­figured for AV= +25V/V would yield a -3dB bandwidth of only 8kHz. Decompensation is performed at five inter­mediate gain sets, as shown in the Gain Selector Guide.
High-Voltage (±17V)
Input Fault Protection
The MAX4074/MAX4075 family includes ±17V input fault protection. For normal operation, see the input voltage range specification in the Electrical Character- istics. Overdriven inputs up to ±17V will not cause out­put phase reversal. A back-to-back SCR structure at the input pins allows either input to safely swing ±17V relative to VEE(Figure 2). Additionally, the internal op amp inputs are diode clamped to both supply rails for
the protection of sensitive input stage circuitry. Current through the clamp diodes is limited by a 5kresistor at the noninverting input, and by RGat the inverting input. An IN+ or IN- fault voltage as high as ±17V causes less than 3.5mA to flow through the input pin, protecting both the GainAmp and the signal source from damage.
Applications Information
GainAmp fixed-gain amplifiers offer a precision, fixed­gain amplifier in a small package that can be used in a variety of circuit board designs. GainAmp fixed-gain amplifiers can be used in many op amp circuits that use resistive negative feedback to set gain, and do not require other connections to the op amp inverting input. Both inverting and noninverting op amp configurations can be implemented easily using a GainAmp.
GainAmp Input Voltage Range
The MAX4074/MAX4075 combine both an op amp and gain-setting feedback resistors on the same IC. The inverting input voltage range is different from the nonin­verting input voltage range because the inverting input pin is connected to the RGinput series resistor. Just as with a discrete design, take care not to saturate the inputs/output of the core op amp to avoid signal distor­tions or clipping.
Figure 2. Input Protection
IN-
IN+
17V
SCR
V
17V
SCR
V
R
F
R
G
OUT
EE
EE
V
CC
5k
V
EE
NOTE: INPUT STAGE PROTECTION INCLUDES TWO 17V SCRs AND TWO DIODES AT THE INPUT STAGE.
MAX4074 MAX4075
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps
12 ______________________________________________________________________________________
GainAmp Signal Coupling
and Configurations
Common op amp configurations include both noninvert­ing and inverting amplifiers. Figures 3–6 show various single- and dual-supply circuit configurations. In single­supply systems, use a resistor-divider to bias the nonin­verting input. A lowpass filter capacitor from the op amp input to ground (Figure 5) prevents high-frequency power-supply noise from coupling into the op amp input. Dual-supply systems can have ground-referenced sig­nals DC-coupled into the inverting or noninverting inputs.
Supply Bypassing and Board Layout
All devices in this GainAmp family operate from a +2.5V to +5.5V single supply or from ±1.25V to ±2.75V dual supplies. For single-supply operation, bypass the power supply with a 0.1µF capacitor to ground. For dual sup­plies, bypass each supply to ground. Bypass with capacitors as close to the device as possible to mini­mize lead inductance and noise. A printed circuit board with a low-inductance ground plane is recommended.
Capacitive-Load Stability
Driving large capacitive loads can cause instability in most low-power, rail-to-rail output amplifiers. The fixed­gain amplifiers of this GainAmp family are stable with capacitive loads up to 100pF. Stability with higher capacitive loads can be improved by adding an isola­tion resistor in series with the op amp output, as shown in Figure 7. This resistor improves the circuit’s phase margin by isolating the load capacitor from the amplifi­er’s output. In Figure 8, a 220pF capacitor is driven with a 100isolation resistor exhibiting some overshoot but no oscillation. Figures 9 and 10 show the typical small­signal pulse responses of GainAmp fixed-gain ampli­fiers with 47pF and 100pF capacitive loads and no isolation resistor
Figure 3. Single-Supply, DC-Coupled Inverting Amplifier with Negative Input Voltage
Figure 4. Dual-Supply, DC-Coupled Inverting Amplifier
Figure 5. Single-Supply, AC-Coupled Inverting Amplifier
Figure 6. Dual-Supply, DC-Coupled Noninverting Amplifier
V
CC
MAX4074
V
IN
R
G
V
CC
0.1µF
V
IN
R
G
V
IN
V
CC
MAX4074
V
CC
V
EE
R
F
MAX4074
V
CC
R
F
MAX4074
=
= V
= - V
V
IN
CC
(1+
RF
IN
(
- VIN
R
G
(
F
G
V
OUT
R
V
OUT
2 R
V
OUT
R
)
RF
)
)
G
V
EE
V
CC
R
V
IN
R
G
R
F
V
=
OUT
R
-R
F
)
(V
IN
G
R
G
F
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
______________________________________________________________________________________ 13
Figure 7. Dual-Supply, Capacitive-Load-Driving Circuit
Figure 8. Small-Signal/Large-Signal Transient Response with Excessive Capacitive Load and Isolation Resistor
MAX4074
INPUT
R
G
R
F
V
CC
R
ISO
C
V
EE
L
OUTPUT
R
L
INPUT
AV = +5V/V
50mV/div
A
= +5V/V
V
500mV/div
OUTPUT
OUTPUT
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps
14 ______________________________________________________________________________________
Figure 9. GainAmp Small-Signal Pulse Response (CL= 340pF, R
L
= 100kΩ)
Figure 10. GainAmp Small-Signal Pulse Response (CL= 940pF, R
L
= 100k)
INPUT
OUTPUT
50mV/div
= +1.25V/V
A
V
OUTPUT
50mV/div
= +3V/V
A
V
OUTPUT
50mV/div
= +5V/V
A
V
OUTPUT
50mV/div
= +10V/V
A
V
50mV/div
= +1.25V/V
A
V
50mV/div
A
V
50mV/div
A
V
50mV/div
= +10V/V
A
V
INPUT
OUTPUT
OUTPUT
= +3V/V
OUTPUT
= +5V/V
OUTPUT
OUTPUT
50mV/div
= +25V/V
A
V
OUTPUT
50mV/div
= +51V/V
A
V
10µs/div
OUTPUT
50mV/div
= +25V/V
A
V
OUTPUT
50mV/div
= +51V/V
A
V
10µs/div
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
______________________________________________________________________________________ 15
Gain Selector Guide
Note: Bold indicates preferred gains. These gain versions are available as samples and in small quantities.
1.25 200
NONINVERTING
GAIN (V/V)
ADJBAB
-3dB BW (kHz)
GAIN
CODE
TOP MARK
INVERTING
GAIN (V/V)
0.25
1.5 136 ADJCAC 0.5
2.25 70 ADJEAE 1.25
2 102 ADJD
AD
1
3 135 ADJG
AG
2
4
2.5
90 ADJIAJ 3
3.5 116
180
ADJHAH 2.5
ADJFAF 1.5
6 71 ADJKAL 5
9
5
50 ADJMAN 8
7 61
80
ADJLAM 6
11 79 ADJO
BA
10
16
10
54 ADJQBC 15
13.5 64
90
ADJPBB 12.5
ADJN
AO
9
ADJJ
AK
4
25 120 ADJS
BE
24
21 40 ADJRBD 20
31 89 ADJUBG 30
50
26
50 ADJW
BJ
49
41 67
106
ADJVBH 40
ADJTBF 25
61 66 ADJYBL 60
100
51
40 ADKA
BN
99
80 50
82
ADJZBM 79
101 38 ADKB
CA
100
ADJX
BK
50
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps
16 ______________________________________________________________________________________
Pin Configurations/Functional Diagrams
TOP VIEW
N.C.
IN-
MAX4074
N.C.
1
2
-
8
V
7
CC
+
6
IN+
V
3
4
EE
OUT
N.C.
5
SO
MAX4075
OUTA
1
R
F
-
INA-
2
+
R
G
+
INA+
3
V
4
EE
8
V
CC
7
OUTB
R
F
-
6
INB-
R
G
INB+
5
µMAX/SO
OUT
OUTA
INA-
INA+
V
MAX4076
N.C.
1
2
-
8
V
7
CC
+
6
3
4
OUT
N.C.
5
SO
MAX4078
1
-
+
2
3
4
5
6
+
-
14
OUTD
-
+
13
IND-
12
IND+
V
11
EE
INC+
10
INC-
9
+
-
V
IN+
MAX4076
1
2
EE
3
+
5
V
-
4
IN-
N.C.
CC
IN-
IN+
SOT23-5
V
EE
MAX4077
1
-
2
+
+
3
4
EE
µMAX/SO
8
V
OUTA
CC
OUTB
INB-
INB+
INA-
INA+
V
INB+
INB-
CC
7
-
6
5
OUTB
7
SO/TSSOP
8
OUTC
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
______________________________________________________________________________________ 17
___________________Chip Information
TRANSISTOR COUNTS
MAX4074: 180 MAX4077: 340
MAX4075: 360 MAX4078: 332
MAX4076: 180
Note: Insert the desired gain code in the blank to complete the part number (see the Gain Selector Guide). **See the Gain Selector Guide for a list of preferred gains and top marks.
Ordering Information (continued)
MAX4074
INPUT
IN-
IN+
+5V
OUT
V
CC
V
CC
V
EE
V
CC
R
G
0.1µF
R
F
0.1µF
0.1µF
Typical Operating Circuit
MAX4075__ESA -40°C to +70°C 8 SO
MAX4075__EUA
-40°C to +70°C 8 µMAX
MAX4078ESD -40°C to +70°C 14 SO
MAX4078EUD
-40°C to +70°C 14 TSSOP
PART
MAX4076EUK-T
MAX4076ESA -40°C to +70°C
-40°C to +70°C
TEMP. RANGE
PIN-
PACKAGE
5 SOT23-5
8 SO
MAX4077EUA
MAX4077ESA -40°C to +70°C
-40°C to +70°C 8 µMAX
8 SO
TOP
MARK
**
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps
18 ______________________________________________________________________________________
Package Information
SOT5L.EPS
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
______________________________________________________________________________________ 19
Package Information (continued)
TSSOP.EPS
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1999 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
8LUMAXD.EPS
SOICN.EPS
Loading...