The MAX3430 fault-protected RS-485 transceiver features
±80V protection from overvoltage signal faults on communication bus lines. Each device contains one driver and
one receiver, and the output pins can withstand faults,
with respect to ground, of up to ±80V. Even if the faults
occur when the transceiver is active, shut down, or powered off, the device will not be damaged. The MAX3430
operates from a 3.3V supply and features a slew-rate-limited driver that minimizes EMI and reduces reflections
caused by improperly terminated cables, allowing errorfree data transmission at data rates up to 250kbps. The
MAX3430 has a 1/4-unit-load receiver input impedance
allowing up to 128 transceivers on a single bus and features fail-safe circuitry, which guarantees a logic-high
receiver output when the receiver inputs are open.
Hot-swap circuitry eliminates false transitions on the
data cable during circuit initialization or connection to a
live backplane. Short-circuit current limiting and thermal-shutdown circuitry protect the driver against excessive power dissipation.
The MAX3430 is available in 8-pin SO and 8-pin PDIP
packages, and is specified over commercial and industrial temperature ranges.
, unless otherwise noted. Typical values are at VCC= +3.3V and TA= +25°C.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
, unless otherwise noted. Typical values are at VCC= +3.3V and TA= +25°C.)
)
)
RECEIVER SWITCHING CHARACTERISTICS
(VCC= +3.3V ±10%, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at VCC= +3.3V and TA= +25°C.)
)
)
Note 2: ∆VODand ∆VOCare the changes in VODand VOC, respectively, when the DI input changes state.
Note 3: The short-circuit output current applies to peak current just prior to foldback current limiting; the short-circuit foldback output
current applies during current limiting to allow a recovery from bus contention.
Receiver Output Enable. RO is enabled when RE is low; RO is high impedance when RE is high. The
device enters a low-power shutdown mode if RE is high and DE is low.
Driver Output Enable. Driving DE high enables the driver outputs. Pulling DE low puts the driver
outputs in a high-impedance state. If RE is high and DE is low, the device enters a low-power
shutdown mode. If the driver outputs are enabled, the device functions as a line driver, and when
they are high impedance it functions as a line receiver if RE is low.
Driver Input. A logic low on DI forces output A low and output B high, while a logic high on DI forces
output A high and output B low.
The driver accepts a single-ended, logic-level input
(DI) and transfers it to a differential, RS-485 level output
(A and B). Driving DE high enables the driver, while
pulling DE low places the driver outputs (A and B) into
a high-impedance state.
Receiver
The receiver accepts a differential, RS-485 level input
(A and B), and transfers it to a single-ended, logic-level
output (RO). Pulling RE low enables the receiver, while
driving RE high and DE low places the receiver inputs
(A and B) into a high-impedance state.
Low-Power Shutdown
Force DE low and RE high to shut down the MAX3430. A
time delay of 1µs prevents the device from accidentally
entering shutdown due to logic skews when switching
between transmit and receive modes. Holding DE low
and RE high for at least 1ms guarantees that the
MAX3430 enters shutdown. In shutdown, the device
consumes 100µA supply current.
±80V Fault Protection
The driver outputs/receiver inputs of RS-485 devices in
industrial network applications often experience voltage
faults resulting from transients that exceed the -7V to
+12V range specified in the EIA/TIA-485 standard. In
these applications, ordinary RS-485 devices (typical
absolute maximum ratings -8V to +12.5V) require costly
external protection devices. To reduce system complexity and the need for external protection, the driver
outputs/receiver inputs of the MAX3430 withstand voltage faults of up to ±80V with respect to ground without
damage (see the Absolute Maximum Ratings section,
Note 1). Protection is guaranteed regardless of whether
the device is active, shut down, or without power.
True Fail-Safe
The MAX3430 uses a -50mV to -200mV differential
input threshold to ensure true fail-safe receiver inputs.
This threshold guarantees the receiver outputs a logic
high for shorted, open, or idle data lines. The -50mV to
-200mV threshold complies with the ±200mV threshold
EIA/TIA-485 standard.
±12kV ESD Protection
As with all Maxim devices, ESD-protection structures
are incorporated on all pins to protect against ESD
encountered during handling and assembly. The
MAX3430 receiver inputs/driver outputs (A, B) have
extra protection against static electricity found in normal operation. Maxim’s engineers have developed
state-of-the-art structures to protect these pins against
±12kV ESD without damage. After an ESD event, the
MAX3430 continues working without latchup.
ESD protection can be tested in several ways. The
receiver inputs are characterized for protection up to
±12kV using the Human Body Model.
ESD Test Conditions
ESD performance depends on a number of conditions.
Contact Maxim for a reliability report that documents
test setup, methodology, and results.
Human Body Model
Figure 8a shows the Human Body Model, and Figure
8b shows the current waveform it generates when discharged into a low impedance. This model consists of
a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a
1.5kΩ resistor.
Driver Output Protection
Two mechanisms prevent excessive output current and
power dissipation caused by faults or bus contention.
The first, a foldback current limit on the driver output
stage, provides immediate protection against short circuits over the whole common-mode voltage range. The
second, a thermal shutdown circuit, forces the driver
outputs into a high-impedance state if the die temperature exceeds +160°C. Normal operation resumes when
the die temperature cools by +140°C, resulting in a
pulsed output during continuous short-circuit conditions.
Hot-Swap Capability
Hot-Swap Inputs
Inserting circuit boards into a hot, or powered backplane
may cause voltage transients on DE, RE, and receiver
inputs A and B that can lead to data errors. For example,
upon initial circuit board insertion, the processor undergoes a power-up sequence. During this period, the highimpedance state of the output drivers makes them
unable to drive the MAX3430 enable inputs to a defined
logic level. Meanwhile, leakage currents of up to 10µA
from the high-impedance output, or capacitively coupled
noise from VCCor GND, could cause an input to drift to
an incorrect logic state. To prevent such a condition from
occurring, the MAX3430 features hot-swap input circuitry
on DE to safeguard against unwanted driver activation
during hot-swap situations. When VCCrises, an internal
pulldown circuit holds DE low for at least 10µs, and until
the current into DE exceeds 200µA. After the initial
power-up sequence, the pulldown circuit becomes
transparent, resetting the hot-swap tolerable input.
Hot-Swap Input Circuitry
At the driver enable input (DE), there are two NMOS
devices, M1 and M2 (Figure 9). When VCCramps from
0, an internal 15µs timer turns on M2 and sets the SR
latch, which also turns on M1. Transistors M2, a 2mA
current sink, and M1, a 100µA current sink, pull DE to
GND through a 5.6kΩ resistor. M2 pulls DE to the disabled state against an external parasitic capacitance
up to 100pF that may drive DE high. After 15µs, the
timer deactivates M2 while M1 remains on, holding DE
low against three-state leakage currents that may drive
DE high. M1 remains on until an external current source
overcomes the required input current. At this time, the
SR latch resets M1 and turns off. When M1 turns off, DE
reverts to a standard, high-impedance CMOS input.
Whenever VCCdrops below 1V, the input is reset.
Figure 9. Simplified Structure of the Driver Enable Pin (DE)
The standard RS-485 receiver input impedance is 12kΩ
(one-unit load), and a standard driver can drive up to
32-unit loads. The MAX3430 transceiver 1/4-unit-load
receiver input impedance (48kΩ) allows up to 128
transceivers connected in parallel on one communication line. Connect any combination of these devices,
and/or other RS-485 devices, for a maximum of 32 unit
loads to the line.
RS-485 Applications
The MAX3430 transceiver provides bidirectional data
communications on multipoint bus transmission lines.
Figure 10 shows a typical network applications circuit.
The RS-485 standard covers line lengths up to 4000ft.
The signal line must be terminated at both ends in its
characteristic impedance, and stub lengths off the
main line kept as short as possible.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages
.)
N
1
TOP VIEW
e
FRONT VIEW
INCHES
DIM
MIN
0.053A
0.004
A1
0.014
B
0.007
C
e0.050 BSC1.27 BSC
0.150
HE
D
A
B
A1
C
L
E
H0.2440.2285.806.20
0.016L
VARIATIONS:
INCHES
MINDIM
D
0.1890.197AA5.004.808
0.3370.344AB8.758.5514
D
0-8
MAX
0.069
0.010
0.019
0.010
0.157
0.050
MAX
0.3940.386D
MILLIMETERS
MAX
MIN
1.35
1.75
0.10
0.25
0.35
0.49
0.19
0.25
3.804.00
0.401.27
MILLIMETERS
MAX
MIN
9.8010.00
N MS012
16
AC
SOICN .EPS
SIDE VIEW
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, .150" SOIC
REV.DOCUMENT CONTROL NO.APPROVAL
21-0041
1
B
1
MAX3430
±80V Fault-Protected, Fail-Safe,
1/4-Unit Load, +3.3V RS-485 Transceiver
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages
.)
PDIPN.EPS
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.