Rainbow Electronics MAX2042 User Manual

19-4679; Rev 0; 8/09
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
General Description
The MAX2042 single, high-linearity upconversion/down­conversion mixer provides +36dBm IIP3, 7.3dB noise fig­ure, and 7.2dB conversion loss for 2000MHz to 3000MHz WCS, LTE, WiMAXK, and MMDS wireless infrastructure applications. With a wide LO frequency range of 1800MHz to 2800MHz, this particular mixer is ideal for low-side LO injection receiver and transmitter architectures. High-side LO injection is supported by the MAX2042A, which is pin­pin and functionally compatible with the MAX2042.
In addition to offering excellent linearity and noise performance, the MAX2042 also yields a high level of component integration. This device includes a double­balanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The MAX2042 requires a nominal LO drive of 0dBm, and supply current is typically 138mA at VCC = +5.0V or 120mA at VCC = +3.3V.
The MAX2042 is pin compatible with the MAX2042A 2000MHz to 3900MHz mixer. The device is also pin simi­lar with the MAX2029/MAX2031 650MHz to 1000MHz mixers, the MAX2039/MAX2041 1700MHz to 3000MHz mixers, and the MAX2044/MAX2044A 3000MHz to 4000MHz mixers, making this entire family of up/down­converters ideal for applications where a common PCB layout is used for multiple frequency bands.
The MAX2042 is available in a compact 20-pin thin QFN (5mm x 5mm) package with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC temperature range.
Applications
2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Ordering Information
PART TEMP RANGE PIN-PACKAGE
MAX2042ETP+ -40NC to +85NC 20 Thin QFN-EP* MAX2042ETP+T -40NC to +85NC 20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.
T = Tape and reel.
Features
S 2000MHz to 3000MHz RF Frequency Range S 1800MHz to 2800MHz LO Frequency Range S 50MHz to 500MHz IF Frequency Range S 7.2dB Conversion Loss S 7.3dB Noise Figure S +36dBm Typical IIP3 S +23.4dBm Typical Input 1dB Compression Point S 70dBc Typical 2RF-2LO Spurious Rejection at PRF
= -10dBm
S Integrated LO Buffer S Integrated RF and LO Baluns for Single-Ended
Inputs
S Low -3dBm to +3dBm LO Drive S Pin Compatible with the MAX2042A 2000MHz to
3900MHz High-Side LO Injection Mixer
S Pin Similar with the MAX2029/MAX2031 650MHz
to 1000MHz Mixers, MAX2039/MAX2041 1700MHz to 3000MHz Mixers, and MAX2044/MAX2044A 3000MHz to 4000MHz Mixers
S Single +5.0V or +3.3V Supply S External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/Reduced­Performance Mode
Pin Configuration/
Functional Diagram
TOP VIEW
IF+
IF-
GND
GND
GND
16
15
GND
V
14
CC
13
GND
12
GND
11
LO
10
GND
GND
1920+ 18 17
V
1
CC
2
RF
3
GND
4
GND
EP*
5
GND
76
CC
V
*EXPOSED PAD
WiMAX is a trademark of WiMAX Forum.
LOBIAS
MAX2042
8
CC
V
9
MAX2042
_______________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND ..........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS to GND .......................... -0.3V to (VCC + 0.3V)
RF, LO Input Power ....................................................... +20dBm
RF, LO Current (RF and LO are DC shorted
to GND through a balun)................................... .............50mA
Continuous Power Dissipation (Note 1) .............................5.0W
BJA (Notes 2, 3) ............................................................ +38NC/W
B
(Notes 1, 3) ............................................................ +13NC/W
JC
Operating Case Temperature Range
(Note 4) ........................................................... -40NC to +85NC
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering, 10s) ................................+300NC
MAX2042
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC.
Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +4.75V to +5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = +5.0V, TC = +25NC, all parameters are production tested.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I
CC
CC
4.75 5.0 5.25 V 138 150 mA
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +3.0V to +3.6V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = +3.3V, TC = +25NC, all parameters are production tested.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I
CC
CC
3.0 3.3 3.6 V 120 135 mA
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Typical Application Circuit with
RF Frequency Range
LO Frequency fLO (Notes 5, 6) 1800 2800 MHz
IF Frequency fIF
LO Drive PLO (Notes 5, 6) -3 0 +3 dBm
2 ______________________________________________________________________________________
C1 = 8.2pF, see Table 1 for details (Notes 5, 6)
Using M/A-Com MABAES0029 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6)
2000 3000 MHz
50 500 MHz
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC
Loss Variation vs. Frequency DLC
Conversion Loss Temperature Coefficient
Single Sideband Noise Figure NFSSB No blockers present 7.3 dB
Noise Figure Temperature Coefficient
Noise Figure Under Blocking NFB
Input 1dB Compression Point IP1dB
Third-Order Input Intercept Point IIP3
IIP3 Variation with TC
2RF - 2LO Spur Rejection 2 x 2
3RF - 3LO Spur Rejection 3 x 3
RF Input Return Loss RLRF
LO Input Return Loss RLLO
TCCL TC = -40NC to +85NC 0.0071 dB/NC
TCNF
fRF = 2300MHz to 2900MHz, TC = +25NC (Note 8)
fRF = 2305MHz to 2360MHz 0.15 fRF = 2500MHz to 2570MHz 0.15 fRF = 2570MHz to 2620MHz 0.15 fRF = 2500MHz to 2690MHz 0.15 fRF = 2700MHz to 2900MHz 0.20
fRF = 2300MHz to 2900MHz, single side­band, no blockers present, TC = -40NC to +85NC
+8dBm blocker tone applied to RF port, fRF = 2600MHz, fLO = 2300MHz, fBLOCKER = 2795MHz, PLO = 0dBm, VCC = 5.0V, TC = +25NC (Notes 5, 9)
TC = +25NC (Notes 5, 10)
PRF1 = PRF2 = 0dBm/tone, PLO = 0dBm, TC = +25NC
fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm/ tone, TC = -40NC to +85NC
fSPUR = fLO + 150MHz (Note 5)
fSPUR = fLO + 100MHz (Note 5)
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
fRF = 2300MHz 22.5 23.4
fRF = 2900MHz 17.6 20.7
fRF1 = 2300MHz, fRF2 = 2301MHz, fLO = 2000MHz (Note 5)
fRF1 = 2600MHz, fRF2 = 2601MHz, fLO = 2300MHz (Note 8)
fRF1 = 2900MHz, fRF2 = 2901MHz, fLO = 2600MHz (Note 5)
PRF = -10dBm 64 70 PRF = 0dBm 54 60 PRF = -10dBm 80 92 PRF = 0dBm 60 72
6.7 7.2 8.1 dB
0.019 dB/NC
20.8 25 dB
34 36
31 34
28 30
Q0.5 dB
17 dB
15 dB
dB
dBmfRF = 2600MHz 20.6 22.1
dBm
dBc
dBc
MAX2042
_______________________________________________________________________________________ 3
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
MAX2042
IF Output Impedance ZIF
IF Output Return Loss RLIF
RF-to-IF Isolation PLO = +3dBm (Note 8) 30 37 dB
LO Leakage at RF Port
2LO Leakage at RF Port PLO = +3dBm -36 dBm
LO Leakage at IF Port
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit
fLO = 2000MHz to 2800MHz, PLO = +3dBm (Note 8)
fLO = 2000MHz to 2800MHz, PLO = +3dBm (Note 8)
50
18 dB
-28 -22 dBm
-24.2 -16 dBm
I
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC (Note 8) 7.2 dB
Loss Variation vs. Frequency DLC
Conversion Loss Temperature Coefficient
Single Sideband Noise Figure NFSSB No blockers present 7.5 dB
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP1dB (Note 10) 20 dBm
Third-Order Input Intercept Point IIP3
IIP3 Variation with TC
2RF - 2LO Spur Rejection 2 x 2
3RF - 3LO Spur Rejection 3 x 3
TCCL TC = -40NC to +85NC 0.008 dB/NC
TCNF
fRF = 2300MHz to 2900MHz, any 100MHz band
Single sideband, no blockers present, TC = -40NC to +85NC
fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm/tone
fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm/tone, TC = -40NC to +85NC
PRF = -10dBm, fSPUR = fLO + 150MHz 72 PRF = 0dBm, fSPUR = fLO + 150MHz 62 PRF = -10dBm, fSPUR = fLO + 100MHz 87 PRF = 0dBm, fSPUR = fLO + 100MHz 67
0.2 dB
0.019 dB/NC
31 dBm
Q0.25 dB
dBc
dBc
4 ______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Input Return Loss RLRF
LO Input Return Loss RLLO
IF Output Impedance ZIF
IF Output Return Loss RLIF
Minimum RF-to-IF Isolation fRF = 2300MHz to 2900MHz, PLO = +3dBm 36 dB Maximum LO Leakage at RF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -24.5 dBm Maximum 2LO Leakage at RF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -24 dBm Maximum LO Leakage at IF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -20 dBm
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit
15 dB
12 dB
50
18 dB
I
MAX2042
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 2300MHz to 2900MHz, fIF =200MHz, fLO = 2100MHz to 2700MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC (Note 8) 6.8 dB
Loss Variation vs. Frequency DLC
Conversion Loss Temperature Coefficient
Input 1dB Compression Point IP1dB (Note 10) 22.7 dBm
Third-Order Input Intercept Point IIP3
IIP3 Variation with TC
LO Q 2IF Spur Rejection 1 x 2
LO Q 3IF Spur Rejection 1 x 3
Output Noise Floor POUT = 0dBm (Note 9) -163 dBm/Hz
TCCL TC = -40NC to +85NC 0.007 dB/NC
fRF = 2300MHz to 2960MHz, any 100MHz band
fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = +25NC (Note 8)
fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = -40NC to +85NC
LO - 2IF 70 LO + 2IF 67 LO - 3IF 82 LO + 3IF 77
30 32.4 dBm
0.2 dB
Q0.5 dB
dBc
dBc
_______________________________________________________________________________________ 5
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC 6.8 dB
MAX2042
Loss Variation vs. Frequency DLC
Conversion Loss Temperature Coefficient
Input 1dB Compression Point IP1dB (Note 10) 19 dBm
Third-Order Input Intercept Point IIP3
IIP3 Variation with TC
LO Q 2IF Spur Rejection
LO Q 3IF Spur Rejection 1 x 3
Output Noise Floor POUT = 0dBm (Note 9) -160 dBm/Hz
TCCL TC = -40NC to +85NC 0.008 dB/NC
1 x 2
fRF = 2300MHz to 2900MHz, any 100MHz band
fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone
fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = -40NC to +85NC
LO - 2IF 72 LO + 2IF 70 LO - 3IF 73 LO + 3IF 70
0.15 dB
29.5 dBm
Q0.75 dB
dBc
dBc
Note 5: Not production tested. Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance trans-
former. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: 100% production tested for functional performance. Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects
of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 10: Maximum reliable continuous input power applied to the RF port of this device is +20dBm from a 50I source.
6 ______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
MAX2042
CONVERSION LOSS vs. RF FREQUENCY
9
8
7
CONVERSION LOSS (dB)
6
5
TC = +85NC
TC = +25NC
TC = -40NC
2000 3000
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
35
INPUT IP3 (dBm)
30
TC = +85NC
PRF = 0dBm/TONE
TC = -40NC
TC = +25NC
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042 toc01
2800260024002200
8
7
CONVERSION LOSS (dB)
6
5
2000 3000
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
2800260024002200
MAX2042 toc02
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc04
40
35
INPUT IP3 (dBm)
30
PLO = -3dBm, 0dBm, +3dBm
PRF = 0dBm/TONE
MAX2042 toc05
CONVERSION LOSS vs. RF FREQUENCY
9
8
7
CONVERSION LOSS (dB)
6
5
2000 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
35
VCC = 5.0V
INPUT IP3 (dBm)
30
VCC = 5.25V
VCC = 4.75V
PRF = 0dBm/TONE
MAX2042 toc03
2800260024002200
MAX2042 toc06
25
2000 3000
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
75
TC = +85NC
70
65
60
2RF-2LO RESPONSE (dBc)
55
50
2000
TC = +25NC
TC = -40NC
RF FREQUENCY (MHz)
PRF = 0dBm
_______________________________________________________________________________________ 7
2800260024002200
2800260024002200 3000
25
2000 3000
75
MAX2042 toc07
70
65
60
2RF-2LO RESPONSE (dBc)
55
50
2000
2800260024002200
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
25
2000 3000
75
MAX2042 toc08
70
65
60
2RF-2LO RESPONSE (dBc)
55
50
2000
2800260024002200
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
MAX2042 toc09
VCC = 4.75V, 5.0V, 5.25V
2800260024002200 3000
RF FREQUENCY (MHz)
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
3RF-3LO RESPONSE vs. RF FREQUENCY
85
MAX2042
75
TC = -40NC, +25NC, +85NC
65
3RF-3LO RESPONSE (dBc)
55
2000 2800260024002200 3000
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
10
9
8
7
NOISE FIGURE (dB)
6
5
TC = +85NC
TC = +25NC
PRF = 0dBm
TC = -40NC
85
MAX2042 toc10
75
65
3RF-3LO RESPONSE (dBc)
55
2000 2800260024002200 3000
10
MAX2042 toc13
9
8
7
NOISE FIGURE (dB)
6
5
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
85
MAX2042 toc11
75
65
3RF-3LO RESPONSE (dBc)
55
2000 2800260024002200 3000
10
MAX2042 toc14
9
8
7
NOISE FIGURE (dB)
6
5
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
MAX2042 toc12
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc15
VCC = 4.75V, 5.0V, 5.25V
(dBm)
1dB
INPUT P
4
25
23
21
19
17
2000 2800 3000260024002200
INPUT P
TC = +25NC
2000 2800 3000260024002200
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
TC = -40NC
TC = +85NC
RF FREQUENCY (MHz)
MAX2042 toc16
4
2000 2800 3000260024002200
INPUT P
25
23
PLO = -3dBm, 0dBm, +3dBm
(dBm)
1dB
21
INPUT P
19
17
2000 2800 3000260024002200
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
RF FREQUENCY (MHz)
MAX2042 toc17
(dBm)
1dB
INPUT P
4
25
23
21
19
17
2000 2800 3000260024002200
INPUT P
VCC = 4.75V
2000 2800 3000260024002200
RF FREQUENCY (MHz)
1dB
RF FREQUENCY (MHz)
8 ______________________________________________________________________________________
vs. RF FREQUENCY
VCC = 5.25V
MAX2042 toc18
VCC = 5.0V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
TC = -40NC
MAX2042 toc19
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
MAX2042 toc20
MAX2042
MAX2042 toc21
-20
TC = +85NC
-30
LO LEAKAGE AT IF PORT (dBm)
-40 1700 2700
TC = +25NC
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
50
TC = +85NC
40
RF-TO-IF ISOLATION (dB)
30
TC = -40NC
20
2000 2800 3000260024002200
TC = +25NC
RF FREQENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-20
PLO = -3dBm, 0dBm, +3dBm
-30
LO LEAKAGE AT IF PORT (dBm)
2500230021001900
-40 1700 2700
LO FREQUENCY (MHz)
2500230021001900
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
MAX2042 toc22
50
40
RF-TO-IF ISOLATION (dB)
30
20
2000 2800 3000260024002200
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
-20
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 1700 2700
60
MAX2042 toc23
50
40
RF-TO-IF ISOLATION (dB)
30
20
2000 2800 3000260024002200
-20
VCC = 4.75V, 5.0V, 5.25V
2500230021001900
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2042 toc24
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-25
-30 TC = -40NC, +25NC, +85NC
-35
LO LEAKAGE AT RF PORT (dBm)
-40
1800 2600 2800240022002000
LO FREQUENCY (MHz)
_______________________________________________________________________________________ 9
MAX2042 toc25
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 1800 2600 2800240022002000
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
MAX2042 toc26
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 1800 2600 2800240022002000
MAX2042 toc27
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
MAX2042
-25
TC = -40NC
MAX2042 toc28
-20
-25
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-25
MAX2042 toc29
MAX2042 toc30
-30
-35
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50 1800 2600 2800240022002000
LO FREQUENCY (MHz)
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
30
0
10
TC = +85NC
TC = +25NC
RF PORT RETURN LOSS
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
PLO = -3dBm
-30
-35
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50 1800 2600 2800240022002000
LO FREQUENCY (MHz)
fIF = 300MHz
MAX2042 toc31
28002600240022002000 3000
MAX2042 toc33
PLO = -3dBm, 0dBm, +3dBm
0
5
10
15
20
IF PORT RETURN LOSS (dB)
25
30
150
145
140
-30
-35
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50 1800 2600 2800240022002000
IF PORT RETURN LOSS
vs. IF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
IF FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (T
VCC = 5.25V
fLO = 2200MHz
41032023014050 500
C
VCC = 5.0V
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
MAX2042 toc32
)
MAX2042 toc34
135
20
LO PORT RETURN LOSS (dB)
30
PLO = +3dBm
PLO = 0dBm
1700 2700
LO FREQUENCY (MHz)
2500230021001900
130
SUPPLY CURRENT (mA)
125
120
-40 85
VCC = 4.75V
TEMPERATURE (˚C)
603510-15
10 _____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
MAX2042
CONVERSION LOSS vs. RF FREQUENCY
9
TC = +85NC
8
7
CONVERSION LOSS (dB)
6
5
2000 3000
RF FREQUENCY (MHz)
TC = +25NC
TC = -40NC
INPUT IP3 vs. RF FREQUENCY
35
30
INPUT IP3 (dBm)
25
TC = -40NC PRF = 0dBm/TONE
TC = +25NC
TC = +85NC
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042 toc35
2800260024002200
8
7
CONVERSION LOSS (dB)
6
5
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
MAX2042 toc36
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc38
35
30
INPUT IP3 (dBm)
25
PLO = -3dBm, 0dBm, +3dBm
PRF = 0dBm/TONE
MAX2042 toc39
CONVERSION LOSS vs. RF FREQUENCY
9
8
7
CONVERSION LOSS (dB)
6
5
2000 3000
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
35
30
INPUT IP3 (dBm)
25
VCC = 3.3V, 3.6V
PRF = 0dBm/TONE
VCC = 3.0V
MAX2042 toc37
2800260024002200
MAX2042 toc40
20
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
75
70
65
60
2RF-2LO RESPONSE (dBc)
55
50
TC = +85NC
RF FREQUENCY (MHz)
______________________________________________________________________________________ 11
28002600240022002000 3000
PRF = 0dBm
TC = +25NC
TC = -40NC
28002600240022002000 3000
20
75
MAX2042 toc41
70
65
60
2RF-2LO RESPONSE (dBc)
55
50
28002600240022002000 3000
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
28002600240022002000 3000
RF FREQUENCY (MHz)
20
75
MAX2042 toc42
70
65
60
2RF-2LO RESPONSE (dBc)
55
50
28002600240022002000 3000
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
VCC = 3.6V
VCC = 3.0V
RF FREQUENCY (MHz)
PRF = 0dBm
VCC = 3.3V
28002600240022002000 3000
MAX2042 toc43
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
3RF-3LO RESPONSE vs. RF FREQUENCY
80
MAX2042
70
60
3RF-3LO RESPONSE (dBc)
NOISE FIGURE (dB)
TC = -40NC, +25NC, +85NC
50
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
10
9
8
7
6
TC = +25°C
TC = +85°C
PRF = 0dBm
28002600240022002000 3000
80
MAX2042 toc44
70
60
3RF-3LO RESPONSE (dBc)
50
2000 3000
10
MAX2042 toc47
9
8
7
NOISE FIGURE (dB)
6
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
2800260024002200
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
80
MAX2042 toc45
70
60
3RF-3LO RESPONSE (dBc)
50
2000 3000
10
MAX2042 toc48
9
8
7
NOISE FIGURE (dB)
6
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
2800260024002200
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
VCC = 3.0V
VCC = 3.6V
VCC = 3.3V
MAX2042 toc46
MAX2042 toc49
5
4
2000 3000
INPUT P
24
22
(dBm)
1dB
20
INPUT P
18
16
2000 3000
TC = -40°C
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
TC = -40°C
TC = +25°C
RF FREQUENCY (MHz)
TC = +85°C
2800260024002200
MAX2042 toc50
2800260024002200
5
4
2000 3000
RF FREQUENCY (MHz)
24
INPUT P
22
(dBm)
1dB
20
INPUT P
18
16
PLO = -3dBm, 0dBm, +3dBm
2000 3000
vs. FREQUENCY
1dB
RF FREQUENCY (MHz)
5
2800260024002200
MAX2042 toc51
2800260024002200
4
2000 3000
RF FREQUENCY (MHz)
INPUT P
24
22
(dBm)
1dB
20
INPUT P
18
16
2000 3000
1dB
VCC = 3.6V
RF FREQUENCY (MHz)
12 _____________________________________________________________________________________
2800260024002200
vs. FREQUENCY
MAX2042 toc52
VCC = 3.3V
VCC = 3.0V
2800260024002200
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = -40NC
-10
MAX2042 toc53
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
MAX2042 toc54
MAX2042
MAX2042 toc55
-20
TC = +85NC
-30
LO LEAKAGE AT IF PORT (dBm)
-40 1700 2700
TC = +25NC
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
TC = +85NC
50
TC = +25NC
40
TC = -40NC
RF-TO-IF ISOLATION (dB)
30
20
2000 3000
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-20
PLO = -3dBm, 0dBm, +3dBm
-30
LO LEAKAGE AT IF PORT (dBm)
2500230021001900
-40 1700 2700
LO FREQUENCY (MHz)
2500230021001900
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
MAX2042 toc56
50
40
RF-TO-IF ISOLATION (dB)
30
2800260024002200
20
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-20
VCC = 3.0V, 3.3V, 3.6V
-30
LO LEAKAGE AT IF PORT (dBm)
-40 1700 2700
60
MAX2042 toc57
50
40
RF-TO-IF ISOLATION (dB)
30
20
2000 3000
-20
2500230021001900
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2042 toc58
VCC = 3.0V, 3.3V, 3.6V
2800260024002200
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 1800 2800
TC = -40NC, +25NC, +85NC
LO FREQUENCY (MHz)
______________________________________________________________________________________ 13
MAX2042 toc59
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-40
PLO = -3dBm, 0dBm, +3dBm
1800 2800
LO FREQUENCY (MHz)
2600240022002000
MAX2042 toc60
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 1800 2800
MAX2042 toc61
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
2600240022002000
LO FREQUENCY (MHz)
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
2LO LEAKAGE AT RF PORT
vs. FREQUENCY
-20
MAX2042
-25
-30
-35
TC = -40NC
TC = +25NC
MAX2042 toc62
-20
-25
-30
-35
2LO LEAKAGE AT RF PORT
vs. FREQUENCY
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
2LO LEAKAGE AT RF PORT
vs. FREQUENCY
-20
-25
MAX2042 toc63
-30
-35
MAX2042 toc64
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50 1800 2800
LO FREQUENCY (MHz)
TC = +85NC
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
fIF = 300MHz
5
10
15
20
RF PORT RETURN LOSS (dB)
25
30
2000 3000
RF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
0
2600240022002000
PLO = -3dBm, 0dBm, +3dBm
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50 1800 2800
2800260024002200
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
MAX2042 toc65
IF PORT RETURN LOSS (dB)
130
-40
2LO LEAKAGE AT RF PORT (dBm)
-45
-50
2600240022002000
1800 2800
LO FREQUENCY (MHz)
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
fLO = 2200MHz
5
10
VCC = 3.0V, 3.3V, 3.6V
15
20
25
30
50 500
IF FREQUENCY (MHz)
410320230140
SUPPLY CURRENT
vs. TEMPERATURE
VCC = 3.0V, 3.3V, 3.6V
2600240022002000
MAX2042 toc66
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
-40 85 TEMPERATURE (NC)
603510-15
PLO = -3dBm
10
20
PLO = 0dBm
LO PORT RETURN LOSS (dB)
30
1700 2700
LO FREQUENCY (MHz)
PLO = +3dBm
MAX2042 toc67
2500230021001900
125
120
SUPPLY CURRENT (mA)
115
110
14 _____________________________________________________________________________________
MAX2042 toc68
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, f 0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
= 200MHz, PIF = 0dBm, PLO =
IF
MAX2042
CONVERSION LOSS vs. RF FREQUENCY
9
TC = +85°C
8
7
CONVERSION LOSS (dB)
6
5
2000 3000
TC = +25°C
TC = -40°C
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
38
36
34
INPUT IP3 (dBm)
32
30
28
TC = +25°C
2000 3000
RF FREQUENCY (MHz)
PIF = 0dBm/TONE
TC = +85°C
2800260024002200
TC = -40°C
2800260024002200
9
MAX2042 toc69
MAX2042 toc72
8
7
CONVERSION LOSS (dB)
6
5
40
38
36
34
INPUT IP3 (dBm)
32
30
28
CONVERSION LOSS vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
9
MAX2042 toc70
MAX2042 toc73
8
7
CONVERSION LOSS (dB)
6
5
40
38
36
34
INPUT IP3 (dBm)
32
30
28
CONVERSION LOSS vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
2000 3000
RF FREQUENCY (MHz)
2800260024002200
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
2000 3000
RF FREQUENCY (MHz)
2800260024002200
MAX2042 toc71
MAX2042 toc74
LO-2IF RESPONSE vs. RF FREQUENCY
85
75
65
LO-2IF RESPONSE (dBc)
55
45
2000 3000
TC = +85°C
TC = -40°C
RF FREQUENCY (MHz)
______________________________________________________________________________________ 15
PIF = 0dBm
TC = +25°C
2800260024002200
85
MAX2042 toc75
75
65
LO-2IF RESPONSE (dBc)
55
45
LO-2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
85
MAX2042 toc76
75
65
LO-2IF RESPONSE (dBc)
55
45
LO-2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
2000 3000
RF FREQUENCY (MHz)
2800260024002200
MAX2042 toc77
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, f 0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
= 200MHz, PIF = 0dBm, PLO =
IF
LO+2IF RESPONSE vs. RF FREQUENCY
85
MAX2042
75
TC = +85°C
65
LO+2IF RESPONSE (dBc)
55
45
2000 3000
100
90
80
LO-3IF RESPONSE (dBc)
70
TC = -40°C
RF FREQUENCY (MHz)
LO-3IF RESPONSE vs. RF FREQUENCY
TC = -40°C
TC = +25°C
TC = +25°C
TC = +85°C
PIF = 0dBm
2800260024002200
PIF = 0dBm
85
MAX2042 toc78
75
65
LO+2IF RESPONSE (dBc)
55
45
100
MAX2042 toc81
90
80
LO-3IF RESPONSE (dBc)
70
LO+2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
LO-3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
85
MAX2042 toc79
75
65
LO+2IF RESPONSE (dBc)
55
45
100
MAX2042 toc82
90
80
LO-3IF RESPONSE (dBc)
70
LO+2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 4.75V, 5.0V, 5.25V
2000 3000
RF FREQUENCY (MHz)
2800260024002200
LO-3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 5.25V VCC = 5.0V
VCC = 4.75V
MAX2042 toc80
MAX2042 toc83
60
2000 3000
RF FREQUENCY (MHz)
LO+3IF RESPONSE vs. RF FREQUENCY
100
90
80
LO+3IF RESPONSE (dBc)
70
60
TC = +85°C
2000 3000
RF FREQUENCY (MHz)
TC = -40°C
TC = +25°C
2800260024002200
PIF = 0dBm
2800260024002200
60
100
MAX2042 toc84
90
80
LO+3IF RESPONSE (dBc)
70
60
2000 3000
RF FREQUENCY (MHz)
2800260024002200
LO+3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
60
100
MAX2042 toc85
90
80
LO+3IF RESPONSE (dBc)
70
60
2000 3000
RF FREQUENCY (MHz)
LO+3IF RESPONSE vs. RF FREQUENCY
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
2000 3000
RF FREQUENCY (MHz)
16 _____________________________________________________________________________________
2800260024002200
PIF = 0dBm
MAX2042 toc86
2800260024002200
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, f 0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
= 200MHz, PIF = 0dBm, PLO =
IF
MAX2042
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35 1800 2800
TC = -40°C, +25°C, +85°C
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
MAX2042 toc87
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35
2600240022002000
PLO = -3dBm, 0dBm, +3dBm
1800 2800
LO FREQUENCY (MHz)
2600240022002000
MAX2042 toc88
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
-40
MAX2042 toc89
TC = -40°C
-50
-60
-70
IF LEAKAGE AT RF PORT (dBm)
-80
TC = +25°C
TC = +85°C
MAX2042 toc90
-35 1800 2800
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
-40
PLO = -3dBm, 0dBm, +3dBm
-50
-60
-70
IF LEAKAGE AT RF PORT (dBm)
-80
-90 1800 2800
LO FREQUENCY (MHz)
2600240022002000
MAX2042 toc91
2600240022002000
-90 1800 2800
LO FREQUENCY (MHz)
2600240022002000
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
-40
-50
VCC = 5.0V, 5.25V
-60
-70
IF LEAKAGE AT RF PORT (dBm)
-80
VCC = 4.75V
-90 1800 2800
LO FREQUENCY (MHz)
MAX2042 toc92
2600240022002000
______________________________________________________________________________________ 17
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, f 0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
= 200MHz, PIF = 0dBm, PLO =
IF
MAX2042
10
15
20
RF PORT RETURN LOSS (dB)
25
30
10
15
20
LO PORT RETURN LOSS (dB)
25
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
fIF = 300MHz
5
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
LO PORT RETURN LOSS
vs. LO FREQUENCY
0
5
PLO = -3dBm
PLO = +3dBm
PLO = 0dBm
MAX2042 toc93
MAX2042 toc95
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
fLO = 2200MHz
5
10
15
20
IF PORT RETURN LOSS (dB)
25
30
50 500
VCC = 4.75V, 5.0V, 5.25V
IF FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (T
150
145
140
135
130
SUPPLY CURRENT (mA)
125
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX2042 toc94
410320230140
)
C
MAX2042 toc96
30
1700 2700
LO FREQUENCY (MHz)
2500230021001900
120
-40 85 TEMPERATURE (°C)
603510-15
18 _____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, f 0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
= 200MHz, PIF = 0dBm, PLO =
IF
MAX2042
CONVERSION LOSS vs. RF FREQUENCY
9
TC = +85°C
8
7
CONVERSION LOSS (dB)
6
5
2000 3000
TC = +25°C
TC = -40°C
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
34
32
30
28
INPUT IP3 (dBm)
26
24
TC = -40°C
TC = +85°C
PIF = 0dBm/TONE
TC = +25°C
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042 toc97
2800260024002200
8
7
CONVERSION LOSS (dB)
6
5
2000 3000
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
2800260024002200
MAX2042 toc98
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc100
34
32
30
28
INPUT IP3 (dBm)
26
24
PLO = -3dBm
PLO = +3dBm
PIF = 0dBm/TONE
MAX2042 toc101
PLO = 0dBm
CONVERSION LOSS vs. RF FREQUENCY
9
8
7
CONVERSION LOSS (dB)
6
5
2000 3000
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
34
32
30
28
INPUT IP3 (dBm)
26
24
VCC = 3.6V
VCC = 3.0V
PIF = 0dBm/TONE
VCC = 3.3V
MAX2042 toc99
2800260024002200
MAX2042 toc102
22
2000 3000
RF FREQUENCY (MHz)
LO-2IF RESPONSE vs. RF FREQUENCY
85
75
65
LO-2IF RESPONSE (dBc)
55
45
2000 3000
TC = +85°C
TC = -40°C
RF FREQUENCY (MHz)
PIF = 0dBm
TC = +25°C
______________________________________________________________________________________ 19
2800260024002200
22
2000 3000
RF FREQUENCY (MHz)
2800260024002200
LO-2IF RESPONSE vs. RF FREQUENCY
85
MAX2042 toc103
75
65
LO-2IF RESPONSE (dBc)
55
2800260024002200
45
2000 3000
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
RF FREQUENCY (MHz)
PIF = 0dBm
2800260024002200
22
85
MAX2042 toc104
75
65
LO-2IF RESPONSE (dBc)
55
45
2000 3000
RF FREQUENCY (MHz)
2800260024002200
LO-2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 3.0V, 3.3V, 3.6V
2000 3000
RF FREQUENCY (MHz)
2800260024002200
MAX2042 toc105
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, f 0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
= 200MHz, PIF = 0dBm, PLO =
IF
LO+2IF RESPONSE vs. RF FREQUENCY
85
MAX2042
75
65
LO+2IF RESPONSE (dBc)
55
45
2000 3000
LO-3IF RESPONSE vs. RF FREQUENCY
90
80
70
LO-3IF RESPONSE (dBc)
60
TC = +85°C
TC = -40°C
RF FREQUENCY (MHz)
TC = +85°C
TC = +25°C
TC = -40°C
PIF = 0dBm
2800260024002200
PIF = 0dBm
TC = +25°C
85
MAX2042 toc106
75
65
LO+2IF RESPONSE (dBc)
55
45
90
MAX2042 toc109
80
70
LO-3IF RESPONSE (dBc)
60
LO+2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
LO-3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
85
MAX2042 toc107
75
65
LO+2IF RESPONSE (dBc)
55
45
90
MAX2042 toc110
80
70
LO-3IF RESPONSE (dBc)
60
LO+2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 3.0V, 3.3V, 3.6V
2000 3000
RF FREQUENCY (MHz)
2800260024002200
LO-3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
VCC = 3.3V
VCC = 3.6V
VCC = 3.0V
MAX2042 toc108
MAX2042 toc111
50
2000 3000
RF FREQUENCY (MHz)
LO+3IF RESPONSE vs. RF FREQUENCY
90
80
70
60
LO+3IF RESPONSE (dBc)
50
40
2000 3000
TC = -40°C
TC = +85°C
RF FREQUENCY (MHz)
PIF = 0dBm
TC = +25°C
2800260024002200
2800260024002200
50
90
MAX2042 toc112
80
70
60
LO+3IF RESPONSE (dBc)
50
40
2000 3000
RF FREQUENCY (MHz)
2800260024002200
LO+3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
2000 3000
RF FREQUENCY (MHz)
2800260024002200
50
90
MAX2042 toc113
80
70
60
LO+3IF RESPONSE (dBc)
50
40
2000 3000
RF FREQUENCY (MHz)
LO+3IF RESPONSE vs. RF FREQUENCY
VCC = 3.6V
VCC = 3.0V
2000 3000
RF FREQUENCY (MHz)
20 _____________________________________________________________________________________
2800260024002200
PIF = 0dBm
MAX2042 toc114
VCC = 3.3V
2800260024002200
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, f 0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
-20
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
= 200MHz, PIF = 0dBm, PLO =
IF
MAX2042
-25
TC = -40°C, +25°C, +85°C
-30
LO LEAKAGE AT RF PORT (dBm)
-35 1800 2800
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35 1800 2800
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
-40
MAX2042 toc115
-25
PLO = -3dBm, 0dBm, +3dBm
-30
LO LEAKAGE AT RF PORT (dBm)
2600240022002000
-35 1800 2800
LO FREQUENCY (MHz)
2600240022002000
MAX2042 toc116
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
-40
MAX2042 toc117
2600240022002000
-50
TC = +85°C
-60
-70
IF LEAKAGE AT RF PORT (dBm)
-80
-90 1800 2800
TC = -40°C
TC = +25°C
LO FREQUENCY (MHz)
2600240022002000
MAX2042 toc118
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
-40
-50
-60
-70
IF LEAKAGE AT RF PORT (dBm)
-80
-90 1800 2800
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
MAX2042 toc119
2600240022002000
-50
-60 VCC = 3.0V
-70
IF LEAKAGE AT RF PORT (dBm)
-80
-90
1800 2800
VCC = 3.6V
VCC = 3.3V
LO FREQUENCY (MHz)
2600240022002000
MAX2042 toc120
______________________________________________________________________________________ 21
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, f 0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
0
MAX2042
5
10
15
RF PORT RETURN LOSS
vs. RF FREQUENCY
fIF = 300MHz
PLO = -3dBm, 0dBm, +3dBm
MAX2042 toc121
0
5
10
15
IF PORT RETURN LOSS
VCC = 3.0V, 3.3V, 3.6V
vs. IF FREQUENCY
= 200MHz, PIF = 0dBm, PLO =
IF
f
= 2200MHz
LO
MAX2042 toc122
20
RF PORT RETURN LOSS (dB)
25
30
2000 3000
RF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
0
5
10
15
20
LO PORT RETURN LOSS (dB)
PLO = 0dBm
25
30
1700 2700
PLO = -3dBm
PLO = +3dBm
LO FREQUENCY (MHz)
20
IF PORT RETURN LOSS (dB)
25
2800260024002200
30
50 500
IF FREQUENCY (MHz)
410320230140
SUPPLY CURRENT
VCC = 3.3V
)
C
MAX2042 toc124
603510-15
130
vs. TEMPERATURE (T
VCC = 3.6V
MAX2042 toc123
2500230021001900
125
120
SUPPLY CURRENT (mA)
115
110
-40 85
VCC = 3.0V
TEMPERATURE (°C)
22 _____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Pin Description
PIN NAME FUNCTION
1, 6, 8, 14 VCC
2 RF
3, 4, 5, 10,
12, 13, 17
7 LOBIAS
9, 15 GND Ground. Not internally connected. Ground these pins or leave unconnected.
11 LO
16, 20 GND Ground. Connect all ground pins and the exposed pad (EP) together. 18, 19 IF-, IF+ Mixer Differential IF Output/Input
EP
GND
Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin.
Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide a DC-blocking capacitor if required. Capacitor also provides some RF match tuning.
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together.
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 698I Q1% resistor (nomi­nal bias condition) from LOBIAS to ground. The maximum current seen by this resistor is 3mA.
Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor. Capacitor also provides some LO match tuning.
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance.
MAX2042
______________________________________________________________________________________ 23
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Detailed Description
When used as a low-side LO injection mixer in the 2300MHz to 2900MHz band, the MAX2042 provides +36dBm of IIP3, with typical noise figure and conver­sion loss values of only 7.3dB and 7.2dB, respectively. The integrated baluns and matching circuitry allow for 50I single-ended interfaces to the RF and the LO ports. The integrated LO buffer provides a high drive level to
MAX2042
the mixer core, reducing the LO drive required at the MAX2042’s input to a -3dBm to +3dBm range. The IF port incorporates a differential interface, which is ideal for providing enhanced 2RF-2LO performance.
Specifications are guaranteed over broad frequency ranges to allow for use in WCS, LTE, WiMAX, and MMDS base stations. The MAX2042 is specified to operate over an RF input range of 2000MHz to 3000MHz, an LO range of 1800MHz to 2800MHz, and an IF range of 50MHz to 500MHz. The external IF transformer sets the lower fre­quency range (see the Typical Operating Characteristics for details). Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information).
RF Interface and Balun
The MAX2042 RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 15dB over the RF frequency range of 2500MHz to 2900MHz.
LO Inputs, Buffer, and Balun
The MAX2042 is optimized for low-side LO injection applications with an 1800MHz to 2800MHz LO frequency range. The LO input is internally matched to 50I, requir­ing only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfac­ing and matching components from the LO inputs to the IF outputs are integrated on-chip.
High-Linearity Mixer
The core of the MAX2042 is a double-balanced, high­performance passive mixer. Exceptional linearity is pro­vided by the large LO swing from the on-chip LO buffer. IIP3, 2RF-2LO rejection, and noise-figure performance are typically +36dBm, 70dBc, and 7.3dB, respectively.
Differential IF Interface
The MAX2042 has an IF frequency range of 50MHz to 500MHz, where the low-end frequency depends on the frequency response of the external IF components.
The MAX2042’s differential ports are ideal for provid­ing enhanced 2RF-2LO performance. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer. Typical applications typically use a 1:1 transformer such as the MABAES0029 to transform the 50I differential interface to a 50I single-ended interface. The loss of this transformer is included in the data presented in this data sheet. In addition, the IF interface directly supports single-ended AC-coupled signals into or out of IF+ by shorting IF- to ground, and a 1kI resistor from IF+ to ground.
Applications Information
Input and Output Matching
The RF input provides a 50I match when combined with a series DC-blocking capacitor. Use an 8.2pF capaci­tor value for RF frequencies ranging from 2000MHz to 3000MHz. The LO input is internally matched to 50I; use a 2pF DC-blocking capacitor to cover operations spanning the 1800MHz to 2800MHz range. The IF output impedance is 50I (differential). For evaluation, an exter­nal low-loss 1:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit).
Reduced-Power Mode
The MAX2042 has one pin (LOBIAS) that allows an exter­nal resistor to set the internal bias current. A nominal value for this resistor is shown in Tables 1 and 2. Larger value resistors can be used to reduce power dissipa­tion at the expense of some performance loss. See the Typical Operating Characteristics to evaluate the power vs. performance tradeoff. If Q1% resistors are not readily available, substitute with Q5% resistors.
Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of +3.3V. Doing so reduces the overall power consumption by up to 43%. See the +3.3V Supply AC Electrical Characteristics table and the relevant +3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs.
24 _____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Layout Considerations
A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX2042 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
Proper voltage-supply bypassing is essential for high­frequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Tables 1 and 2.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX2042’s 20-pin thin QFN package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2042 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
Table 1. Downconverter Mode Component Values
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
C1 1 8.2pF microwave capacitor (0402) Murata Electronics North America, Inc.
C2, C6, C8, C11 4
C3, C9 0 Not installed, capacitors
C5 0 Not installed, capacitor
C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc.
R1 1
T1 1 1:1 IF balun MABAES0029 M/A-Com, Inc.
U1 1 MAX2042 IC (20 TQFN) Maxim Integrated Products, Inc.
0.01FF microwave capacitors (0402)
698I Q1% resistor (0402)
Murata Electronics North America, Inc.
Digi-Key Corp.
Power-Supply Bypassing
MAX2042
Table 2. Upconverter Mode Component Values
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
C1 1 8.2pF microwave capacitor (0402) Murata Electronics North America, Inc.
C2, C6, C8, C11 4
C3, C9 0 Not installed, capacitors
C5 0 Not installed, capacitor
C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc.
R1 1
T1 1 1:1 IF balun MABAES0029 M/A-Com, Inc.
U1 1 MAX2042 IC (20 TQFN) Maxim Integrated Products, Inc.
______________________________________________________________________________________ 25
0.01FF microwave capacitors (0402)
698I Q1% resistor (0402)
Murata Electronics North America, Inc.
Digi-Key Corp.
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Application Circuit
MAX2042
C3 C2
3
N.C.
2
1:1
C5
V
CC
V
CC
1
C1
GND
GND
GND
RF
2
3
4
5
V
CC
C6
RF
GND
CC
V
EP
IF+
IF-
1920 18 17
MAX2042
76 8
CC
V
LOBIAS
R1
C8
V
CC
C9
GND
9
GND
NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION.
PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
GND
16
10
GND
5
T1
IF
41
GND
15
C10
C11
V
CC
LO INPUT
14
GND
13
GND
12
LO
11
26 _____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
20 TQFN-EP T2055+3
21-0140
MAX2042
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 27
©
2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Loading...