Rainbow Electronics MAX2042 User Manual

19-4679; Rev 0; 8/09
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
General Description
The MAX2042 single, high-linearity upconversion/down­conversion mixer provides +36dBm IIP3, 7.3dB noise fig­ure, and 7.2dB conversion loss for 2000MHz to 3000MHz WCS, LTE, WiMAXK, and MMDS wireless infrastructure applications. With a wide LO frequency range of 1800MHz to 2800MHz, this particular mixer is ideal for low-side LO injection receiver and transmitter architectures. High-side LO injection is supported by the MAX2042A, which is pin­pin and functionally compatible with the MAX2042.
In addition to offering excellent linearity and noise performance, the MAX2042 also yields a high level of component integration. This device includes a double­balanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The MAX2042 requires a nominal LO drive of 0dBm, and supply current is typically 138mA at VCC = +5.0V or 120mA at VCC = +3.3V.
The MAX2042 is pin compatible with the MAX2042A 2000MHz to 3900MHz mixer. The device is also pin simi­lar with the MAX2029/MAX2031 650MHz to 1000MHz mixers, the MAX2039/MAX2041 1700MHz to 3000MHz mixers, and the MAX2044/MAX2044A 3000MHz to 4000MHz mixers, making this entire family of up/down­converters ideal for applications where a common PCB layout is used for multiple frequency bands.
The MAX2042 is available in a compact 20-pin thin QFN (5mm x 5mm) package with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC temperature range.
Applications
2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Ordering Information
PART TEMP RANGE PIN-PACKAGE
MAX2042ETP+ -40NC to +85NC 20 Thin QFN-EP* MAX2042ETP+T -40NC to +85NC 20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.
T = Tape and reel.
Features
S 2000MHz to 3000MHz RF Frequency Range S 1800MHz to 2800MHz LO Frequency Range S 50MHz to 500MHz IF Frequency Range S 7.2dB Conversion Loss S 7.3dB Noise Figure S +36dBm Typical IIP3 S +23.4dBm Typical Input 1dB Compression Point S 70dBc Typical 2RF-2LO Spurious Rejection at PRF
= -10dBm
S Integrated LO Buffer S Integrated RF and LO Baluns for Single-Ended
Inputs
S Low -3dBm to +3dBm LO Drive S Pin Compatible with the MAX2042A 2000MHz to
3900MHz High-Side LO Injection Mixer
S Pin Similar with the MAX2029/MAX2031 650MHz
to 1000MHz Mixers, MAX2039/MAX2041 1700MHz to 3000MHz Mixers, and MAX2044/MAX2044A 3000MHz to 4000MHz Mixers
S Single +5.0V or +3.3V Supply S External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/Reduced­Performance Mode
Pin Configuration/
Functional Diagram
TOP VIEW
IF+
IF-
GND
GND
GND
16
15
GND
V
14
CC
13
GND
12
GND
11
LO
10
GND
GND
1920+ 18 17
V
1
CC
2
RF
3
GND
4
GND
EP*
5
GND
76
CC
V
*EXPOSED PAD
WiMAX is a trademark of WiMAX Forum.
LOBIAS
MAX2042
8
CC
V
9
MAX2042
_______________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND ..........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS to GND .......................... -0.3V to (VCC + 0.3V)
RF, LO Input Power ....................................................... +20dBm
RF, LO Current (RF and LO are DC shorted
to GND through a balun)................................... .............50mA
Continuous Power Dissipation (Note 1) .............................5.0W
BJA (Notes 2, 3) ............................................................ +38NC/W
B
(Notes 1, 3) ............................................................ +13NC/W
JC
Operating Case Temperature Range
(Note 4) ........................................................... -40NC to +85NC
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering, 10s) ................................+300NC
MAX2042
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC.
Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +4.75V to +5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = +5.0V, TC = +25NC, all parameters are production tested.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I
CC
CC
4.75 5.0 5.25 V 138 150 mA
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +3.0V to +3.6V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = +3.3V, TC = +25NC, all parameters are production tested.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I
CC
CC
3.0 3.3 3.6 V 120 135 mA
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Typical Application Circuit with
RF Frequency Range
LO Frequency fLO (Notes 5, 6) 1800 2800 MHz
IF Frequency fIF
LO Drive PLO (Notes 5, 6) -3 0 +3 dBm
2 ______________________________________________________________________________________
C1 = 8.2pF, see Table 1 for details (Notes 5, 6)
Using M/A-Com MABAES0029 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6)
2000 3000 MHz
50 500 MHz
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC
Loss Variation vs. Frequency DLC
Conversion Loss Temperature Coefficient
Single Sideband Noise Figure NFSSB No blockers present 7.3 dB
Noise Figure Temperature Coefficient
Noise Figure Under Blocking NFB
Input 1dB Compression Point IP1dB
Third-Order Input Intercept Point IIP3
IIP3 Variation with TC
2RF - 2LO Spur Rejection 2 x 2
3RF - 3LO Spur Rejection 3 x 3
RF Input Return Loss RLRF
LO Input Return Loss RLLO
TCCL TC = -40NC to +85NC 0.0071 dB/NC
TCNF
fRF = 2300MHz to 2900MHz, TC = +25NC (Note 8)
fRF = 2305MHz to 2360MHz 0.15 fRF = 2500MHz to 2570MHz 0.15 fRF = 2570MHz to 2620MHz 0.15 fRF = 2500MHz to 2690MHz 0.15 fRF = 2700MHz to 2900MHz 0.20
fRF = 2300MHz to 2900MHz, single side­band, no blockers present, TC = -40NC to +85NC
+8dBm blocker tone applied to RF port, fRF = 2600MHz, fLO = 2300MHz, fBLOCKER = 2795MHz, PLO = 0dBm, VCC = 5.0V, TC = +25NC (Notes 5, 9)
TC = +25NC (Notes 5, 10)
PRF1 = PRF2 = 0dBm/tone, PLO = 0dBm, TC = +25NC
fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm/ tone, TC = -40NC to +85NC
fSPUR = fLO + 150MHz (Note 5)
fSPUR = fLO + 100MHz (Note 5)
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
fRF = 2300MHz 22.5 23.4
fRF = 2900MHz 17.6 20.7
fRF1 = 2300MHz, fRF2 = 2301MHz, fLO = 2000MHz (Note 5)
fRF1 = 2600MHz, fRF2 = 2601MHz, fLO = 2300MHz (Note 8)
fRF1 = 2900MHz, fRF2 = 2901MHz, fLO = 2600MHz (Note 5)
PRF = -10dBm 64 70 PRF = 0dBm 54 60 PRF = -10dBm 80 92 PRF = 0dBm 60 72
6.7 7.2 8.1 dB
0.019 dB/NC
20.8 25 dB
34 36
31 34
28 30
Q0.5 dB
17 dB
15 dB
dB
dBmfRF = 2600MHz 20.6 22.1
dBm
dBc
dBc
MAX2042
_______________________________________________________________________________________ 3
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
MAX2042
IF Output Impedance ZIF
IF Output Return Loss RLIF
RF-to-IF Isolation PLO = +3dBm (Note 8) 30 37 dB
LO Leakage at RF Port
2LO Leakage at RF Port PLO = +3dBm -36 dBm
LO Leakage at IF Port
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit
fLO = 2000MHz to 2800MHz, PLO = +3dBm (Note 8)
fLO = 2000MHz to 2800MHz, PLO = +3dBm (Note 8)
50
18 dB
-28 -22 dBm
-24.2 -16 dBm
I
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC (Note 8) 7.2 dB
Loss Variation vs. Frequency DLC
Conversion Loss Temperature Coefficient
Single Sideband Noise Figure NFSSB No blockers present 7.5 dB
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP1dB (Note 10) 20 dBm
Third-Order Input Intercept Point IIP3
IIP3 Variation with TC
2RF - 2LO Spur Rejection 2 x 2
3RF - 3LO Spur Rejection 3 x 3
TCCL TC = -40NC to +85NC 0.008 dB/NC
TCNF
fRF = 2300MHz to 2900MHz, any 100MHz band
Single sideband, no blockers present, TC = -40NC to +85NC
fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm/tone
fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm/tone, TC = -40NC to +85NC
PRF = -10dBm, fSPUR = fLO + 150MHz 72 PRF = 0dBm, fSPUR = fLO + 150MHz 62 PRF = -10dBm, fSPUR = fLO + 100MHz 87 PRF = 0dBm, fSPUR = fLO + 100MHz 67
0.2 dB
0.019 dB/NC
31 dBm
Q0.25 dB
dBc
dBc
4 ______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Input Return Loss RLRF
LO Input Return Loss RLLO
IF Output Impedance ZIF
IF Output Return Loss RLIF
Minimum RF-to-IF Isolation fRF = 2300MHz to 2900MHz, PLO = +3dBm 36 dB Maximum LO Leakage at RF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -24.5 dBm Maximum 2LO Leakage at RF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -24 dBm Maximum LO Leakage at IF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -20 dBm
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit
15 dB
12 dB
50
18 dB
I
MAX2042
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 2300MHz to 2900MHz, fIF =200MHz, fLO = 2100MHz to 2700MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC (Note 8) 6.8 dB
Loss Variation vs. Frequency DLC
Conversion Loss Temperature Coefficient
Input 1dB Compression Point IP1dB (Note 10) 22.7 dBm
Third-Order Input Intercept Point IIP3
IIP3 Variation with TC
LO Q 2IF Spur Rejection 1 x 2
LO Q 3IF Spur Rejection 1 x 3
Output Noise Floor POUT = 0dBm (Note 9) -163 dBm/Hz
TCCL TC = -40NC to +85NC 0.007 dB/NC
fRF = 2300MHz to 2960MHz, any 100MHz band
fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = +25NC (Note 8)
fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = -40NC to +85NC
LO - 2IF 70 LO + 2IF 67 LO - 3IF 82 LO + 3IF 77
30 32.4 dBm
0.2 dB
Q0.5 dB
dBc
dBc
_______________________________________________________________________________________ 5
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Loss LC 6.8 dB
MAX2042
Loss Variation vs. Frequency DLC
Conversion Loss Temperature Coefficient
Input 1dB Compression Point IP1dB (Note 10) 19 dBm
Third-Order Input Intercept Point IIP3
IIP3 Variation with TC
LO Q 2IF Spur Rejection
LO Q 3IF Spur Rejection 1 x 3
Output Noise Floor POUT = 0dBm (Note 9) -160 dBm/Hz
TCCL TC = -40NC to +85NC 0.008 dB/NC
1 x 2
fRF = 2300MHz to 2900MHz, any 100MHz band
fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone
fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = -40NC to +85NC
LO - 2IF 72 LO + 2IF 70 LO - 3IF 73 LO + 3IF 70
0.15 dB
29.5 dBm
Q0.75 dB
dBc
dBc
Note 5: Not production tested. Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance trans-
former. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: 100% production tested for functional performance. Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects
of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 10: Maximum reliable continuous input power applied to the RF port of this device is +20dBm from a 50I source.
6 ______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
MAX2042
CONVERSION LOSS vs. RF FREQUENCY
9
8
7
CONVERSION LOSS (dB)
6
5
TC = +85NC
TC = +25NC
TC = -40NC
2000 3000
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
35
INPUT IP3 (dBm)
30
TC = +85NC
PRF = 0dBm/TONE
TC = -40NC
TC = +25NC
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042 toc01
2800260024002200
8
7
CONVERSION LOSS (dB)
6
5
2000 3000
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
2800260024002200
MAX2042 toc02
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc04
40
35
INPUT IP3 (dBm)
30
PLO = -3dBm, 0dBm, +3dBm
PRF = 0dBm/TONE
MAX2042 toc05
CONVERSION LOSS vs. RF FREQUENCY
9
8
7
CONVERSION LOSS (dB)
6
5
2000 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
35
VCC = 5.0V
INPUT IP3 (dBm)
30
VCC = 5.25V
VCC = 4.75V
PRF = 0dBm/TONE
MAX2042 toc03
2800260024002200
MAX2042 toc06
25
2000 3000
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
75
TC = +85NC
70
65
60
2RF-2LO RESPONSE (dBc)
55
50
2000
TC = +25NC
TC = -40NC
RF FREQUENCY (MHz)
PRF = 0dBm
_______________________________________________________________________________________ 7
2800260024002200
2800260024002200 3000
25
2000 3000
75
MAX2042 toc07
70
65
60
2RF-2LO RESPONSE (dBc)
55
50
2000
2800260024002200
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
25
2000 3000
75
MAX2042 toc08
70
65
60
2RF-2LO RESPONSE (dBc)
55
50
2000
2800260024002200
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
MAX2042 toc09
VCC = 4.75V, 5.0V, 5.25V
2800260024002200 3000
RF FREQUENCY (MHz)
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
3RF-3LO RESPONSE vs. RF FREQUENCY
85
MAX2042
75
TC = -40NC, +25NC, +85NC
65
3RF-3LO RESPONSE (dBc)
55
2000 2800260024002200 3000
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
10
9
8
7
NOISE FIGURE (dB)
6
5
TC = +85NC
TC = +25NC
PRF = 0dBm
TC = -40NC
85
MAX2042 toc10
75
65
3RF-3LO RESPONSE (dBc)
55
2000 2800260024002200 3000
10
MAX2042 toc13
9
8
7
NOISE FIGURE (dB)
6
5
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
85
MAX2042 toc11
75
65
3RF-3LO RESPONSE (dBc)
55
2000 2800260024002200 3000
10
MAX2042 toc14
9
8
7
NOISE FIGURE (dB)
6
5
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
MAX2042 toc12
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc15
VCC = 4.75V, 5.0V, 5.25V
(dBm)
1dB
INPUT P
4
25
23
21
19
17
2000 2800 3000260024002200
INPUT P
TC = +25NC
2000 2800 3000260024002200
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
TC = -40NC
TC = +85NC
RF FREQUENCY (MHz)
MAX2042 toc16
4
2000 2800 3000260024002200
INPUT P
25
23
PLO = -3dBm, 0dBm, +3dBm
(dBm)
1dB
21
INPUT P
19
17
2000 2800 3000260024002200
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
RF FREQUENCY (MHz)
MAX2042 toc17
(dBm)
1dB
INPUT P
4
25
23
21
19
17
2000 2800 3000260024002200
INPUT P
VCC = 4.75V
2000 2800 3000260024002200
RF FREQUENCY (MHz)
1dB
RF FREQUENCY (MHz)
8 ______________________________________________________________________________________
vs. RF FREQUENCY
VCC = 5.25V
MAX2042 toc18
VCC = 5.0V
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, f TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
TC = -40NC
MAX2042 toc19
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
= 300MHz, PRF = 0dBm, PLO = 0dBm,
IF
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
MAX2042 toc20
MAX2042
MAX2042 toc21
-20
TC = +85NC
-30
LO LEAKAGE AT IF PORT (dBm)
-40 1700 2700
TC = +25NC
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
50
TC = +85NC
40
RF-TO-IF ISOLATION (dB)
30
TC = -40NC
20
2000 2800 3000260024002200
TC = +25NC
RF FREQENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-20
PLO = -3dBm, 0dBm, +3dBm
-30
LO LEAKAGE AT IF PORT (dBm)
2500230021001900
-40 1700 2700
LO FREQUENCY (MHz)
2500230021001900
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
MAX2042 toc22
50
40
RF-TO-IF ISOLATION (dB)
30
20
2000 2800 3000260024002200
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
-20
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 1700 2700
60
MAX2042 toc23
50
40
RF-TO-IF ISOLATION (dB)
30
20
2000 2800 3000260024002200
-20
VCC = 4.75V, 5.0V, 5.25V
2500230021001900
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2042 toc24
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-25
-30 TC = -40NC, +25NC, +85NC
-35
LO LEAKAGE AT RF PORT (dBm)
-40
1800 2600 2800240022002000
LO FREQUENCY (MHz)
_______________________________________________________________________________________ 9
MAX2042 toc25
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 1800 2600 2800240022002000
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
MAX2042 toc26
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 1800 2600 2800240022002000
MAX2042 toc27
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
Loading...
+ 18 hidden pages