Rainbow Electronics MAX19998 User Manual

19-4827; Rev 0; 10/09
EVALUATION KIT
AVAILABLE
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
General Description
The MAX19998 single, high-linearity downconversion mixer provides 8.7dB of conversion gain, +24.3dBm input IP3, +11.3dBm 1dB input compression point, and a noise figure of 9.7dB for 2300MHz to 4000MHz WiMAXK, LTE, and MMDS receiver applications. With an ultra-wide LO 2600MHz to 4300MHz frequency range, the MAX19998 can be used in either low-side or high-side LO injection architectures for virtually all
2.5GHz and 3.5GHz applications. For a 2.5GHz vari­ant tuned specifically for high-side injection, refer to the MAX19996A.
In addition to offering excellent linearity and noise per­formance, the MAX19998 also yields a high level of component integration. This device includes a double­balanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19998 requires a nominal LO drive of 0dBm, and supply current is typi­cally 230mA at VCC = 5.0V or 150mA at VCC = 3.3V.
The MAX19998 is pin compatible with the MAX19996/ MAX19996A 2000MHz to 3900MHz mixer family. The device is also pin similar with the MAX9984/MAX9986/ MAX9986A 400MHz to 1000MHz mixers and the MAX9993/MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands.
The MAX19998 is available in a compact, 5mm x 5mm, 20-pin thin QFN with an exposed pad. Electrical perfor­mance is guaranteed over the extended -40NC to +85NC temperature range.
Applications
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
S 2300MHz to 4000MHz RF Frequency Range
S 2600MHz to 4300MHz LO Frequency Range
S 50MHz to 500MHz IF Frequency Range
S 8.7dB Conversion Gain
S 9.7dB Noise Figure
S +24.3dBm Typical Input IP3
S +11.3dBm Typical Input 1dB Compression Point
S 67dBc Typical 2RF - 2LO Spurious Rejection at
PRF = -10dBm
S Integrated LO Buffer
S Integrated RF and LO Baluns for Single-Ended
Inputs
S Low -3dBm to +3dBm LO Drive
S Pin Compatible with the MAX19996/MAX19996A
2000MHz to 3900MHz Mixers
S Pin Similar with the MAX9984/MAX9986/
MAX9986A Series of 400MHz to 1000MHz Mixers and the MAX9993/MAX9994/MAX9996 Series of 1700MHz to 2200MHz Mixers
S Single 5.0V or 3.3V Supply
S External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/Reduced­Performance Mode
Ordering Information
PART TEMP RANGE PIN-PACKAGE
MAX19998ETP+ MAX19998ETP+T
+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.
T = Tape and reel.
-40NC to +85NC
-40NC to +85NC
20 Thin QFN-EP* 20 Thin QFN-EP*
MAX19998
WiMAX is a trademark of WiMAX Forum.
_______________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND ..........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS, IFBIAS to GND ............. -0.3V to (VCC + 0.3V)
RF, LO Input Power .......................................................+12dBm
RF, LO Current
(RF and LO is DC shorted to GND through balun) ........50mA
Continuous Power Dissipation (Note 1) ................................. 5W
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
MAX19998
Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC.
known. The junction temperature must not exceed +150NC.
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25NC, all parameters are production tested.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I
CC
CC
Total supply current 230 247 mA
BJA (Notes 2, 3) ............................................................ +38NC/W
B
(Notes 1, 3) ............................................................ +13NC/W
JC
Operating Case Temperature Range
(Note 4) .................................................. TC = -40NC to +85NC
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering, 10s) ................................+300NC
4.75 5.0 5.25 V
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, R1 = 845ω, R2 = 1.1kω, VCC = 3.0V to 3.6V, no input RF or LO signals. TC = -40NC to +85NC, unless oth- erwise noted. Typical values are at VCC = 3.3V, TC = +25NC, parameters are guaranteed by design, unless otherwise noted.) (Note 5)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V Supply Current I
CC
CC
Total supply current 150 mA
3.0 3.3 3.6 V
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range f LO Frequency f
IF Frequency f
LO Drive P
2 ______________________________________________________________________________________
RF
LO
(Notes 5, 6) 2300 4000 MHz (Notes 5, 6) 2600 4300 MHz
Using a Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6)
IF
Using a Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6)
LO
100 500
50 250
-3 0 +3 dBm
MHz
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Gain G
Gain Variation vs. Frequency
Conversion Gain Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
Single-Sideband Noise Figure NF
Noise Figure Temperature Coefficient
Noise Figure Under Blocking NF
2RF - 2LO Spur Rejection 2 x 2 f
3RF - 3LO Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
C
DG
TC
TC
C
C
CG
1dB
SSB
NF
B
RF
LO
IF
IF
TC = +25NC (Notes 8, 9)
fRF = 3100MHz to 3900MHz, any 100MHz band
fRF = 3100MHz to 3900MHz, any 200MHz band
fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC
(Note 10) 10.0 11.4 dBm
f
- f
RF1
TC = +25NC (Note 9)
fRF = 3100MHz to 3900MHz, f P
RF1
No blockers present (Note 5) 9.7 12.5 No blockers present, TC = +25NC (Note 5)
Single sideband, no blockers present, TC = -40NC to +85NC
+8dBm blocker tone applied to RF port, fRF = 3500MHz, fLO = 3200MHz, f
BLOCKER
VCC = +5.0V, TC = +25NC (Notes 5, 11)
SPUR
SPUR
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application
Circuit. See the Typical Operating Characteristics
for performance vs. inductor values.
= 1MHz, P
RF2
= P
= -5dBm/tone, TC = -40NC to +85NC
RF2
= 3750MHz, PLO = 0dBm,
= fLO + 150MHz
= fLO + 100MHz
= P
RF1
= -5dBm/tone,
RF2
- f
RF2
= 1MHz,
RF1
PRF = -10dBm (Note 5) 63 67 PRF = -5dBm (Note 9) 58 62 PRF = -10dBm (Note 5) 80 85 PRF = -5dBm (Note 9) 70 75
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
fIF = 300MHz, L1 = L2 = 390nH
7.6 8.7 9.4 dB
0.15 dB
0.3
-0.01
22 24.3 dBm
Q0.2
9.7 11.0
0.018
21 25 dB
25 dB
16 dB
200
20
20
20
dB/NC
dBm
dB
dB/NC
dBc
dBc
I
dB
MAX19998
_______________________________________________________________________________________ 3
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (continued)
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF-to-IF Isolation fRF = 3500MHz, PLO = +3dBm (Note 9) 27 29.5 dB
MAX19998
LO Leakage at RF Port
2LO Leakage at RF Port PLO = +3dBm -29 dBm
LO Leakage at IF Port PLO = +3dBm (Note 9) -22 dBm
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845ω, R2 = 1.1kω, RF and LO ports are driven from 50I sources, fRF > fLO. Typical values are for TC = +25NC, VCC = 3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Gain G
Gain Variation vs. Frequency
Conversion Gain Temperature Coefficient
Input 1dB Compression Point IP Third-Order Input Intercept Point IIP3 f
IIP3 Variation with T
Single-Sideband Noise Figure NF
Noise Figure Temperature Coefficient
2RF - 2LO Spur Rejection 2 x 2 f
3RF - 3LO Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
C
DG
TC
TC
fLO = 2800MHz to 3600MHz, PLO = +3dBm (Note 9)
C
fRF = 3100MHz to 3900MHz, any 100MHz
C
band
fRF = 3100MHz to 3900MHz,
CG
TC = -40NC to +85NC (Note 10) 7.7 dBm
1dB
- f
RF1
f
RF1
TC = -40NC to +85NC
No blockers present 9.3 dB
SSB
Single sideband, no blockers present,
NF
TC = -40NC to +85NC
SPUR
SPUR
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched imped-
LO
ance
Nominal differential impedance at the IC’s IF
IF
outputs
= 1MHz, P
RF2
- f
= 1MHz, P
RF2
= fLO + 150MHz
= fLO + 100MHz
= P
RF1
RF1
= -5dBm/tone 20.1 dBm
RF2
= P
= -5dBm/tone,
RF2
PRF = -10dBm 64 PRF = -5dBm 59 PRF = -10dBm 74 PRF = -5dBm 64
-26 dBm
8.4 dB
0.15 dB
-0.01
Q0.2
0.018
30 dB
20 dB
200
dB/NC
dB
dB/NC
dBc
dBc
I
4 ______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (continued)
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845ω, R2 = 1.1kω, RF and LO ports are driven from 50I sources, fRF > fLO. Typical values are for TC = +25NC, VCC = 3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown
IF Output Return Loss RL
RF-to-IF Isolation fRF = 3100MHz to 3900MHz, PLO = +3dBm 27 dB LO Leakage at RF Port fLO = 2800MHz to 3600MHz, PLO = +3dBm -30 dBm 2LO Leakage at RF Port fLO = 2800MHz to 3600MHz, PLO = +3dBm -26.5 dBm LO Leakage at IF Port fLO = 2800MHz to 3600MHz, PLO = +3dBm -27.5 dBm
in the Typical Application
IF
Circuit. See the Typical Operating Characteristics
for performance vs. inductor values.
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 3400MHz to 4200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Gain G
Gain Variation vs. Frequency
Conversion Gain Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
IIP3 Variation with T
Single-Sideband Noise Figure NF
Noise Figure Temperature Coefficient
2LO - 2RF Spur Rejection 2 x 2 f
3LO - 3RF Spur Rejection 3 x 3 f
C
DG
TC
TC
TC = +25NC
C
fRF = 3100MHz to 3900MHz, any 100MHz band
C
fRF = 3100MHz to 3900MHz, any 200MHz band
fRF = 3100MHz to 3900MHz,
CG
TC = -40NC to +85NC
(Note 10) 11.4 dBm
1dB
f
- f
RF1
TC = +25NC
fRF = 3100MHz to 3900MHz, f P
RF1
No blockers present 9.8 dB
SSB
Single sideband, no blockers present,
NF
TC = -40NC to +85NC
SPUR
SPUR
= 1MHz, P
RF2
= P
= -5dBm/tone, TC = -40NC to +85NC
RF2
= fLO - 150MHz
= fLO - 100MHz
RF1
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
fIF = 300MHz, L1 = L2 = 390nH
= P
= -5dBm/tone,
RF2
- f
RF1
PRF = -10dBm 70 PRF = -5dBm 65 PRF = -10dBm 89 PRF = -5dBm 79
= 1MHz,
RF2
17
17
17
8.4 dB
0.15
0.3
-0.01
24.8 dBm
Q0.2
0.018
dB
dB
dB/NC
dBm
dB/NC
dBc
dBc
MAX19998
_______________________________________________________________________________________ 5
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION (continued)
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 3400MHz to 4200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Input Return Loss RL
MAX19998
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
RF-to-IF Isolation PLO = +3dBm 30 dB
LO Leakage at RF Port PLO = +3dBm -30.3 dBm
2LO Leakage at RF Port PLO = +3dBm -19 dBm
LO Leakage at IF Port PLO = +3dBm -23 dBm
LO on and IF terminated into a matched
RF
impedance
RF and IF terminated into a matched
LO
impedance
Nominal differential impedance at the IC’s IF
IF
outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in
IF
the Typical Application
Circuit. See the Typical Operating Characteristics
for performance vs. inductor values.
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
fIF = 300MHz, L1 = L2 = 390nH
24 dB
18 dB
200
20
20
20
I
dB
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Small-Signal Conversion Gain G
Gain Variation vs. Frequency
Conversion Gain Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
6 ______________________________________________________________________________________
DG
TC
TC = +25NC
C
fRF = 2300MHz to 2900MHz, any 100MHz band
C
fRF = 2300MHz to 2900MHz, any 200MHz band
fRF = 2300MHz to 2900MHz,
CG
TC = -40NC to +85NC
(Note 10) 11.4 dBm
1dB
f
- f
RF1
TC = +25NC
= 1MHz, P
RF2
RF1
= P
RF2
= -5dBm/tone,
8.4 dB
0.15 dB
0.3
-0.01
25.0 dBm
dB/NC
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION (continued)
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted. (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
IIP3 Variation with T
Single-Sideband Noise Figure NF
Noise Figure Temperature Coefficient
2LO - 2RF Spur Rejection 2 x 2 f
3LO - 3RF Spur Rejection 3 x 3 f
RF Input Return Loss RL
LO Input Return Loss RL
IF Output Impedance Z
IF Output Return Loss RL
C
SSB
TC
NF
RF
LO
IF
IF
fRF = 2300MHz to 2900MHz, f P
= P
RF1
No blockers present 10.0 dB
Single sideband, no blockers present, TC = -40NC to +85NC
SPUR
SPUR
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external compo­nents shown in the Typical Application Circuit. See the Typical Operating Characteristics for perfor­mance vs. inductor values.
= -5dBm/tone, TC = -40NC to +85NC
RF2
= fLO - 50MHz
= fLO - 100MHz
PRF = -10dBm 77 PRF = -5dBm 72 PRF = -10dBm 86 PRF = -5dBm 76
- f
RF1
fIF = 450MHz, L1 = L2 = 120nH
fIF = 350MHz, L1 = L2 = 270nH
fIF = 300MHz, L1 = L2 = 390nH
= 1MHz,
RF2
Q0.2
0.018
30 dB
18 dB
200
25
25
25
dBm
dB/NC
dBc
dBc
I
dB
MAX19998
RF-to-IF Isolation PLO = +3dBm 45 dB
LO Leakage at RF Port PLO = +3dBm -28.8 dBm
2LO Leakage at RF Port PLO = +3dBm -42.3 dBm
LO Leakage at IF Port PLO = +3dBm -26.3 dBm
Note 5: Not production tested. Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical
Operating Characteristics.
Note 7: All limits reflect losses of external components, including a 0.8dB loss at fIF = 300MHz due to the 4:1 impedance trans-
former. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: Guaranteed by design and characterization. Note 9: 100% production tested for functional performance. Note 10: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50I source. Note 11: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the
effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
_______________________________________________________________________________________ 7
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
11
10
TC = -40°C
MAX19998
9
8
CONVERSION GAIN (dB)
7
6
3000 4000
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
26
25
INPUT IP3 (dBm)
24
TC = +85°C
TC = -40°C
TC = +25°C
TC = +85°C
3800360034003200
PRF = -5dBm/TONE
TC = +25°C
11
MAX19998 toc01
10
9
8
CONVERSION GAIN (dB)
7
6
26
MAX19998 toc04
25
INPUT IP3 (dBm)
24
CONVERSION GAIN vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
3000 4000
RF FREQUENCY (MHz)
3800360034003200
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
11
MAX19998 toc02
10
CONVERSION GAIN (dB)
26
MAX19998 toc05
25
INPUT IP3 (dBm)
24
CONVERSION GAIN vs. RF FREQUENCY
9
8
7
6
3000 4000
VCC = 4.75V, 5.0V, 5.25V
3800360034003200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX19998 toc03
MAX19998 toc06
23
3000 4000
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE
vs. RF FREQUENCY
90
80
70
2RF - 2LO RESPONSE (dBc)
60
50
3000 4000
TC = +85°C
RF FREQUENCY (MHz)
PRF = -5dBm
TC = -40°C
3800360034003200
TC = +25°C
3800360034003200
23
3000 4000
90
MAX19998 toc07
80
70
2RF - 2LO RESPONSE (dBc)
60
50
3000 4000
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE
vs. RF FREQUENCY
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
RF FREQUENCY (MHz)
3800360034003200
PRF = -5dBm
3800360034003200
23
3000 4000
90
MAX19998 toc08
80
70
2RF - 2LO RESPONSE (dBc)
60
50
3000 4000
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE
vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
8 ______________________________________________________________________________________
3800360034003200
PRF = -5dBm
MAX19998 toc09
3800360034003200
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX19998
3RF - 3LO RESPONSE
vs. RF FREQUENCY
85
75
TC = -40°C, +25°C, +85°C
65
3RF - 3LO RESPONSE (dBc)
55
3000 4000
RF FREQUENCY (MHz)
PRF = -5dBm
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
NOISE FIGURE (dB)
TC = +85°C
TC = +25°C
3RF - 3LO RESPONSE
vs. RF FREQUENCY
85
MAX19998 toc10
75
PLO = -3dBm, 0dBm, +3dBm
65
3RF - 3LO RESPONSE (dBc)
3800360034003200
55
3000 4000
RF FREQUENCY (MHz)
PRF = -5dBm
3800360034003200
85
MAX19998 toc11
75
65
3RF - 3LO RESPONSE (dBc)
55
3000 4000
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc13
NOISE FIGURE (dB)
12
11
10
9
PLO = -3dBm, 0dBm, +3dBm
MAX19998 toc14
NOISE FIGURE (dB)
12
11
10
9
3RF - 3LO RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
MAX19998 toc12
VCC = 4.75V, 5.0V, 5.25V
3800360034003200
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc15
VCC = 4.75V, 5.0V, 5.25V
8
TC = -40°C
7
3000 4000
RF FREQUENCY (MHz)
INPUT P
13
12
(dBm)
1dB
11
INPUT P
10
9
3000 4000
vs. RF FREQUENCY
1dB
TC = +85°C
TC = -40°C
RF FREQUENCY (MHz)
TC = +25°C
_______________________________________________________________________________________ 9
8
3800360034003200
MAX19998 toc16
3800360034003200
7
3000 4000
RF FREQUENCY (MHz)
INPUT P
13
12
(dBm)
1dB
11
INPUT P
10
9
3000 4000
vs. RF FREQUENCY
1dB
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
3800360034003200
MAX19998 toc17
3800360034003200
8
7
3000 4000
RF FREQUENCY (MHz)
INPUT P
13
VCC = 5.0V
9
3000 4000
(dBm)
1dB
INPUT P
12
11
10
vs. RF FREQUENCY
1dB
VCC = 5.25V
VCC = 4.75V
RF FREQUENCY (MHz)
3800360034003200
MAX19998 toc18
3800360034003200
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
MAX19998
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
TC = +85°C
TC = +25°C
TC = -40°C
2700 3700
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
50
40
30
RF-TO-IF ISOLATION (dB)
20
TC = +85°C
TC = +25°C
3500330031002900
TC = -40°C
-10
MAX19998 toc19
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 2700 3700
50
MAX19998 toc22
40
30
RF-TO-IF ISOLATION (dB)
20
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
3500330031002900
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
-10
MAX19998 toc20
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 2700 3700
50
MAX19998 toc23
40
30
RF-TO-IF ISOLATION (dB)
20
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX19998 toc21
VCC = 4.75V, 5.0V, 5.25V
3500330031002900
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX19998 toc24
VCC = 4.75V, 5.0V, 5.25V
10
3000 4000
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
TC = -40°C
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 2500 4000
TC = +85°C
TC = +25°C
35003000
LO FREQUENCY (MHz)
3800360034003200
10
3000 4000
-20
MAX19998 toc25
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 2500 4000
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
35003000
LO FREQUENCY (MHz)
3800360034003200
10
3000 4000
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
MAX19998 toc26
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 2500 4000
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
10 _____________________________________________________________________________________
3800360034003200
MAX19998 toc27
35003000
SiGe, High-Linearity, 2300MHz to 4000MHz
2LO LEAKAGE AT RF PORT
2LO LEAKAGE AT RF PORT
2LO LEAKAGE AT RF PORT
RF PORT RETURN LOSS
IF PORT RETURN LOSS
LO PORT RETURN LOSS
SUPPLY CURRENT
Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX19998
-10
-20
TC = -40°C
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2500 4000
TC = +25°C
TC = +85°C
35003000
LO FREQUENCY (MHz)
vs. RF FREQUENCY
0
10
20
30
vs. LO FREQUENCY
RF PORT RETURN LOSS (dB)
PLO = -3dBm, 0dBm, +3dBm
-10
MAX19998 toc28
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
fIF = 300MHz
PLO = -3dBm, 0dBm, +3dBm
-50 2500 4000
vs. LO FREQUENCY
LO FREQUENCY (MHz)
MAX19998 toc31
35003000
0
10
20
30
IF PORT RETURN LOSS (dB)
40
-10
MAX19998 toc29
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2500 4000
vs. IF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
vs. LO FREQUENCY
MAX19998 toc30
VCC = 4.75V, 5.0V, 5.25V
35003000
LO FREQUENCY (MHz)
fLO = 3600MHz
MAX19998 toc32
LO PORT RETURN LOSS (dB)
40
3000 4000
RF FREQUENCY (MHz)
3800360034003200
vs. LO FREQUENCY
0
10
20
30
2600 4000
PLO = -3dBm
PLO = 0dBm
LO FREQUENCY (MHz)
PLO = +3dBm
365033002950
MAX19998 toc33
50
50 500
IF FREQUENCY (MHz)
vs. TEMPERATURE (TC)
250
240
230
220
SUPPLY CURRENT (mA)
210
200
-40 85
VCC = 5.25V
VCC = 4.75V
TEMPERATURE (°C)
VCC = 5.0V
410320230140
MAX19998 toc34
603510-15
______________________________________________________________________________________ 11
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
10
MAX19998
CONVERSION GAIN (dB)
TC = -40NC
9
8
7
6
3000 4000
TC = +85NC
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
22
21
20
INPUT IP3 (dBm)
19
TC = +85NC
TC = +25NC
TC = -40NC
TC = +25NC
VCC = 3.3V
P
= -5dBm/TONE
RF
VCC = 3.3V
3800360034003200
10
MAX19998 toc35
MAX19998 toc38
9
8
CONVERSION GAIN (dB)
7
6
22
21
20
INPUT IP3 (dBm)
19
CONVERSION GAIN vs. RF FREQUENCY
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
3000 4000
RF FREQUENCY (MHz)
3800360034003200
INPUT IP3 vs. RF FREQUENCY
VCC = 3.3V
P
= -5dBm/TONE
RF
PLO = -3dBm, 0dBm, +3dBm
10
MAX19998 toc36
CONVERSION GAIN (dB)
22
MAX19998 toc39
21
20
INPUT IP3 (dBm)
19
CONVERSION GAIN vs. RF FREQUENCY
9
8
7
6
3000 4000
VCC = 3.0V, 3.3V, 3.6V
3800360034003200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 3.6V
VCC = 3.0V
VCC = 3.3V
MAX19998 toc37
MAX19998 toc40
18
3000 4000
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE
vs. RF FREQUENCY
90
80
70
60
2RF - 2LO RESPONSE (dBc)
50
40
TC = +25NC
TC = +85NC
TC = -40NC
RF FREQUENCY (MHz)
VCC = 3.3V
PRF = -5dBm
3800360034003200
38003600340032003000 4000
18
3000 4000
90
MAX19998 toc41
80
70
60
2RF - 2LO RESPONSE (dBc)
50
40
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE
vs. RF FREQUENCY
VCC = 3.3V P
= -5dBm
RF
PLO = +3dBm
PLO = 0dBm
RF FREQUENCY (MHz)
PLO = -3dBm
3800360034003200
38003600340032003000 4000
18
3000 4000
90
MAX19998 toc42
80
70
60
2RF - 2LO RESPONSE (dBc)
50
40
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE
vs. RF FREQUENCY
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
12 _____________________________________________________________________________________
3800360034003200
PRF = -5dBm
MAX19998 toc43
38003600340032003000 4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX19998
3RF - 3LO RESPONSE
vs. RF FREQUENCY
75
70
65
60
3RF - 3LO RESPONSE (dBc)
55
50
TC = -40°C, +25°C, +85°C
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
NOISE FIGURE (dB)
8
TC = +25NC
TC = -40NC
TC = +85NC
VCC = 3.3V
PRF = -5dBm
38003600340032003000 4000
VCC = 3.3V
75
MAX19998 toc44
70
65
60
3RF - 3LO RESPONSE (dBc)
55
50
12
MAX19998 toc47
11
10
9
NOISE FIGURE (dB)
8
3RF - 3LO RESPONSE
vs. RF FREQUENCY
VCC = 3.3V
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
38003600340032003000 4000
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
75
MAX19998 toc45
70
65
60
3RF - 3LO RESPONSE (dBc)
55
50
12
MAX19998 toc48
11
10
9
NOISE FIGURE (dB)
8
3RF - 3LO RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
VCC = 3.0V
VCC = 3.6V
RF FREQUENCY (MHz)
VCC = 3.3V
38003600340032003000 4000
NOISE FIGURE vs. RF FREQUENCY
VCC = 3.0V, 3.3V, 3.6V
MAX19998 toc46
MAX19998 toc49
(dBm)
1dB
INPUT P
7
RF FREQUENCY (MHz)
INPUT P
9
8
7
6
vs. RF FREQUENCY
1dB
TC = +85NC
TC = -40NC
RF FREQUENCY (MHz)
38003600340032003000 4000
VCC = 3.3V
MAX19998 toc50
TC = +25NC
38003600340032003000 4000
(dBm)
1dB
INPUT P
7
RF FREQUENCY (MHz)
INPUT P
9
8
7
6
vs. RF FREQUENCY
1dB
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
38003600340032003000 4000
VCC = 3.3V
MAX19998 toc51
38003600340032003000 4000
(dBm)
1dB
INPUT P
7
RF FREQUENCY (MHz)
INPUT P
9
8
7
6
vs. RF FREQUENCY
1dB
VCC = 3.6V
VCC = 3.3V
RF FREQUENCY (MHz)
38003600340032003000 4000
MAX19998 toc52
VCC = 3.0V
38003600340032003000 4000
______________________________________________________________________________________ 13
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
-20
MAX19998
-30
TC = -40°C, +25°C, +85°C
-40
LO LEAKAGE AT IF PORT (dBm)
-50 2700 3700
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
50
40
30
RF-TO-IF ISOLATION (dB)
20
TC = +25NC
VCC = 3.3V
3500330031002900
VCC = 3.3V
TC = +85NC
TC = -40NC
-10
MAX19998 toc53
-20
-30
-40
LO LEAKAGE AT IF PORT (dBm)
-50 2700 3700
50
MAX19998 toc56
40
30
RF-TO-IF ISOLATION (dB)
20
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
MAX19998 toc54
-20
-30
VCC = 3.3V
-40
LO LEAKAGE AT IF PORT (dBm)
3500330031002900
-50 2700 3700
VCC = 3.6V
VCC = 3.0V
3500330031002900
LO FREQUENCY (MHz)
MAX19998 toc55
RF-TO-IF ISOLATION
vs. RF FREQUENCY
50
MAX19998 toc57
40
30
RF-TO-IF ISOLATION (dB)
20
VCC = 3.0V, 3.3V, 3.6V
MAX19998 toc58
10
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
TC = -40°C, +25°C, +85°C
LO FREQUENCY (MHz)
38003600340032003000 4000
VCC = 3.3V
350030002500 4000
10
-20
MAX19998 toc59
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
38003600340032003000 4000
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
350030002500 4000
LO FREQUENCY (MHz)
10
-20
MAX19998 toc60
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
LO FREQUENCY (MHz)
14 _____________________________________________________________________________________
38003600340032003000 4000
MAX19998 toc61
350030002500 4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX19998
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
-20
TC = -40NC
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
TC = +85NC
LO FREQUENCY (MHz)
0
10
20
30
RF PORT RETURN LOSS (dB)
VCC = 3.3V
TC = +25NC
350030002500 4000
RF PORT RETURN LOSS
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
-10
MAX19998 toc62
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
VCC = 3.3V
fIF = 300MHz
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
350030002500 4000
LO FREQUENCY (MHz)
MAX19998 toc65
IF PORT RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
MAX19998 toc63
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
VCC = 3.0V
VCC = 3.3V
VCC = 3.6V
350030002500 4000
LO FREQUENCY (MHz)
MAX19998 toc64
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
10
20
30
40
VCC = 3.0V, 3.3V, 3.6V
fLO = 3600MHz
MAX19998 toc66
40
3000 4000
RF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
0
10
PLO = -3dBm
20
LO PORT RETURN LOSS (dB)
30
2600 4000
LO FREQUENCY (MHz)
VCC = 3.3V
PLO = 0dBm
PLO = +3dBm
365033002950
3800360034003200
MAX19998 toc67
50
vs. TEMPERATURE (T
160
150
140
SUPPLY CURRENT (mA)
130
IF FREQUENCY (MHz)
SUPPLY CURRENT
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
TEMPERATURE (°C)
41032023014050 500
)
C
603510-15-40 85
MAX19998 toc68
______________________________________________________________________________________ 15
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
11
10
TC = -40°C
MAX19998
9
8
CONVERSION GAIN (dB)
7
6
3000 4000
INPUT IP3 vs. RF FREQUENCY
26
25
INPUT IP3 (dBm)
24
TC = +85°C
RF FREQUENCY (MHz)
TC = +85°C
TC = -40°C
TC = +25°C
3800360034003200
PRF = -5dBm/TONE
TC = +25°C
11
MAX19998 toc69
10
9
8
CONVERSION GAIN (dB)
7
6
26
MAX19998 toc72
25
INPUT IP3 (dBm)
24
CONVERSION GAIN vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
3000 4000
RF FREQUENCY (MHz)
3800360034003200
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
11
MAX19998 toc70
10
CONVERSION GAIN (dB)
26
MAX19998 toc73
25
INPUT IP3 (dBm)
24
CONVERSION GAIN vs. RF FREQUENCY
9
8
VCC = 4.75V, 5.0V, 5.25V
7
6
3000 4000
RF FREQUENCY (MHz)
3800360034003200
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX19998 toc71
MAX19998 toc74
23
3000 4000
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE
vs. RF FREQUENCY
90
80
TC = +85°C
70
2LO - 2RF RESPONSE (dBc)
60
TC = -40°C
50
3000 4000
RF FREQUENCY (MHz)
PRF = -5dBm
TC = +25°C
3800360034003200
3800360034003200
23
3000 4000
90
MAX19998 toc75
80
70
2LO - 2RF RESPONSE (dBc)
60
50
3000 4000
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE
vs. RF FREQUENCY
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
RF FREQUENCY (MHz)
3800360034003200
PRF = -5dBm
3800360034003200
23
3000 4000
90
MAX19998 toc76
80
70
2LO - 2RF RESPONSE (dBc)
60
50
3000 4000
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE
vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
16 _____________________________________________________________________________________
3800360034003200
PRF = -5dBm
MAX19998 toc77
3800360034003200
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX19998
3LO - 3RF RESPONSE
vs. RF FREQUENCY
95
85
75
3LO - 3RF RESPONSE (dBc)
65
55
3000 4000
TC = +85°C
TC = -40°C
RF FREQUENCY (MHz)
PRF = -5dBm
TC = +25°C
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
NOISE FIGURE (dB)
8
7
3000 3700
TC = +85°C
TC = +25°C
TC = -40°C
352533503175
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE
vs. RF FREQUENCY
95
MAX19998 toc78
85
75
3LO - 3RF RESPONSE (dBc)
65
3800360034003200
55
PLO = -3dBm, 0dBm, +3dBm
3000 4000
RF FREQUENCY (MHz)
PRF = -5dBm
3800360034003200
95
MAX19998 toc79
85
75
3LO - 3RF RESPONSE (dBc)
65
55
3000 4000
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc81
NOISE FIGURE (dB)
12
11
10
9
PLO = -3dBm, 0dBm, +3dBm
8
7
3000 3700
RF FREQUENCY (MHz)
352533503175
MAX19998 toc82
NOISE FIGURE (dB)
12
11
10
9
8
7
3000 3700
3LO - 3RF RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
MAX19998 toc80
VCC = 4.75V, 5.0V, 5.25V
3800360034003200
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc83
VCC = 4.75V, 5.0V, 5.25V
352533503175
RF FREQUENCY (MHz)
INPUT P
13
12
(dBm)
1dB
11
INPUT P
10
9
3000 4000
vs. RF FREQUENCY
1dB
TC = +85°C
TC = -40°C
RF FREQUENCY (MHz)
TC = +25°C
______________________________________________________________________________________ 17
INPUT P
13
MAX19998 toc84
12
(dBm)
1dB
11
INPUT P
10
3800360034003200
9
3000 4000
vs. RF FREQUENCY
1dB
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
INPUT P
13
MAX19998 toc85
12
(dBm)
1dB
11
INPUT P
10
3800360034003200
9
3000 4000
vs. RF FREQUENCY
1dB
VCC = 5.0V
RF FREQUENCY (MHz)
VCC = 5.25V
VCC = 4.75V
MAX19998 toc86
3800360034003200
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
TC = -40°C
MAX19998
-20
TC = +85°C
-30
LO LEAKAGE AT IF PORT (dBm)
-40 3000 4300
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
50
40
30
RF-TO-IF ISOLATION (dB)
20
vs. RF FREQUENCY
TC = +25°C
TC = +25°C
TC = +85°C
4100390037003500
TC = -40°C
-10
MAX19998 toc87
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40 3000 4300
50
MAX19998 toc90
40
30
RF-TO-IF ISOLATION (dB)
20
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
MAX19998 toc88
-20
-30
LO LEAKAGE AT IF PORT (dBm)
4100390037003500
-40 3000 4300
VCC = 4.75V, 5.0V, 5.25V
4100390037003500
LO FREQUENCY (MHz)
MAX19998 toc89
RF-TO-IF ISOLATION
vs. RF FREQUENCY
50
MAX19998 toc91
40
30
RF-TO-IF ISOLATION (dB)
20
VCC = 4.75V, 5.0V, 5.25V
MAX19998 toc92
10
3000 4000
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 3300 4300
TC = +85°C
TC = +25°C
TC = -40°C
405038003550
LO FREQUENCY (MHz)
3800360034003200
10
3000 4000
-20
MAX19998 toc93
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 3300 4300
3800360034003200
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
405038003550
LO FREQUENCY (MHz)
10
3000 4000
-20
MAX19998 toc94
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 3300 4300
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
18 _____________________________________________________________________________________
3800360034003200
MAX19998 toc95
405038003550
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX19998
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
TC = -40°C
-20
TC = +85°C
TC = +25°C
-30
2LO LEAKAGE AT RF PORT (dBm)
-40 3300 4300
LO FREQUENCY (MHz)
405038003550
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
10
20
30
RF PORT RETURN LOSS (dB)
PLO = -3dBm, 0dBm, +3dBm
-10
MAX19998 toc96
-20
-30
PLO = 0dBm
2LO LEAKAGE AT RF PORT (dBm)
-40 3300 4300
fIF = 300MHz
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = +3dBm
PLO = -3dBm
405038003550
LO FREQUENCY (MHz)
MAX19998 toc99
IF PORT RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
MAX19998 toc97
-20
-30
2LO LEAKAGE AT RF PORT (dBm)
-40 3300 4300
VCC = 4.75V, 5.0V, 5.25V
405038003550
LO FREQUENCY (MHz)
MAX19998 toc98
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
10
20
30
40
VCC = 4.75V, 5.0V, 5.25V
fLO = 4100MHz
MAX19998 toc100
40
3000 4000
RF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
0
10
20
LO PORT RETURN LOSS (dB)
30
2700 4300
PLO = -3dBm
PLO = 0dBm
PLO = +3dBm
390035003100
LO FREQUENCY (MHz)
3800360034003200
MAX19998 toc101
50
50 500
IF FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (T
250
240
230
220
SUPPLY CURRENT (mA)
210
200
-40 65
VCC = 5.25V
TEMPERATURE (°C)
VCC = 5.0V
VCC = 4.75V
410320230140
)
C
MAX19998 toc102
603510-15
______________________________________________________________________________________ 19
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
11
10
TC = -40°C
MAX19998
9
8
CONVERSION GAIN (dB)
7
6
2300 2900
27
26
25
INPUT IP3 (dBm)
24
TC = +85°C
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
TC = +85°C
TC = -40°C
TC = +25°C
275026002450
PRF = -5dBm/TONE
TC = +25°C
11
10
MAX19998 toc103
9
8
CONVERSION GAIN (dB)
7
6
27
MAX19998 toc106
26
25
INPUT IP3 (dBm)
24
CONVERSION GAIN vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
2300 2900
RF FREQUENCY (MHz)
275026002450
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
11
10
MAX19998 toc104
CONVERSION GAIN (dB)
27
MAX19998 toc107
26
25
INPUT IP3 (dBm)
24
CONVERSION GAIN vs. RF FREQUENCY
9
8
VCC = 4.75V, 5.0V, 5.25V
7
6
2300 2900
RF FREQUENCY (MHz)
275026002450
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX19998 toc105
MAX19998 toc108
23
2300 2900
RF FREQUENCY (MHz)
275026002450
2LO - 2RF RESPONSE
vs. RF FREQUENCY
90
TC = +85NC
80
70
2LO - 2RF RESPONSE (dBc)
60
50
2300 2900
TC = -40NC
RF FREQUENCY (MHz)
PRF = -5dBm
TC = +25NC
275026002450
23
2300 2900
90
MAX19998 toc109
80
70
2LO - 2RF RESPONSE (dBc)
60
50
2300 2900
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE
vs. RF FREQUENCY
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
RF FREQUENCY (MHz)
275026002450
PRF = -5dBm
275026002450
23
2300 2900
90
MAX19998 toc110
80
70
2LO - 2RF RESPONSE (dBc)
60
50
2300 2900
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE
vs. RF FREQUENCY
VCC = 5.25V
RF FREQUENCY (MHz)
20 _____________________________________________________________________________________
VCC = 4.75V
VCC = 5.0V
275026002450
PRF = -5dBm
MAX19998 toc111
275026002450
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX19998
3LO - 3RF RESPONSE
vs. RF FREQUENCY
95
85
75
TC = -40NC
3LO - 3RF RESPONSE (dBc)
65
55
2300 2900
TC = +85NC
RF FREQUENCY (MHz)
PRF = -5dBm
TC = +25NC
275026002450
NOISE FIGURE vs. RF FREQUENCY
13
12
11
10
NOISE FIGURE (dB)
9
TC = +85NC
TC = +25NC
TC = -40NC
95
MAX19998 toc112
85
75
3LO - 3RF RESPONSE (dBc)
65
55
2300 2900
13
12
MAX19998 toc115
11
10
NOISE FIGURE (dB)
9
3LO - 3RF RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
275026002450
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
95
MAX19998 toc113
85
75
3LO - 3RF RESPONSE (dBc)
65
55
2300 2900
13
12
MAX19998 toc116
11
10
NOISE FIGURE (dB)
9
3LO - 3RF RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
MAX19998 toc114
VCC = 4.75V, 5.0V, 5.25V
275026002450
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc117
VCC = 4.75V
VCC = 5.0V
VCC = 5.25V
(dBm)
1dB
INPUT P
13
12
11
10
8
9
INPUT P
TC = -40NC
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
TC = +85NC
TC = +25NC
RF FREQUENCY (MHz)
2750260024502300 2900
2750260024502300 2900
MAX19998 toc118
(dBm)
1dB
INPUT P
8
INPUT P
13
12
11
PLO = -3dBm, 0dBm, +3dBm
10
9
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
RF FREQUENCY (MHz)
2750260024502300 2900
MAX19998 toc119
2750260024502300 2900
(dBm)
1dB
INPUT P
8
RF FREQUENCY (MHz)
INPUT P
13
VCC = 5.0V
12
11
10
9
vs. RF FREQUENCY
1dB
VCC = 4.75V
RF FREQUENCY (MHz)
2750260024502300 2900
VCC = 5.25V
2750260024502300 2900
______________________________________________________________________________________ 21
MAX19998 toc120
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-10
MAX19998
-20 TC = +85°C
-30
LO LEAKAGE AT IF PORT (dBm)
-40
60
50
40
RF-TO-IF ISOLATION (dB)
TC = +25°C
TC = -40°C
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
TC = +85NC
TC = -40NC
3050290027502600 3200
TC = +25NC
-10
MAX19998 toc121
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
60
MAX19998 toc124
50
40
RF-TO-IF ISOLATION (dB)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
3050290027502600 3200
-10
MAX19998 toc122
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
60
MAX19998 toc125
50
VCC = 4.75V
40
RF-TO-IF ISOLATION (dB)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
3050290027502600 3200
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
VCC = 5.25V
VCC = 5.0V
MAX19998 toc123
MAX19998 toc126
30
RF FREQUENCY (MHz)
2750260024502300 2900
LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
-20
TC = -40NC
-25
-30
TC = +25NC
-35
LO LEAKAGE AT RF PORT (dBm)
-40
2500 4000
LO FREQUENCY (MHz)
TC = +85NC
35003000
30
-20
MAX19998 toc127
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 2500 4000
2750260024502300 2900
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
35003000
LO FREQUENCY (MHz)
30
-20
MAX19998 toc128
-25
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40 2500 4000
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
22 _____________________________________________________________________________________
2750260024502300 2900
MAX19998 toc129
35003000
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX19998
2LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
-20
-30
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
-60 2500 4000
TC = -40NC
TC = +25NC
TC = +85NC
35003000
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs.
0
10
20
MAX19998 toc130
RF FREQUENCY
2LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
-20
-30
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
-60 2500 4000
fIF = 300MHz
PLO = -3dBm
LO FREQUENCY (MHz)
MAX19998 toc133
PLO = +3dBm
PLO = 0dBm
35003000
10
20
30
MAX19998 toc131
IF PORT RETURN LOSS vs.
0
2LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
-20
-30
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
-60 2500 4000
LO FREQUENCY (MHz)
VCC = 5.0VVCC = 4.75V
VCC = 5.25V
35003000
IF FREQUENCY
fLO = 3000MHz
MAX19998 toc134
VCC = 4.75V, 5.0V, 5.25V
MAX19998 toc132
30
RF PORT RETURN LOSS (dB)
PLO = -3dBm, 0dBm, +3dBm
40
RF FREQUENCY (MHz)
LO PORT RETURN LOSS vs.
LO FREQUENCY
0
10
20
LO PORT RETURN LOSS (dB)
30
PLO = -3dBm
PLO = 0dBm PLO = +3dBm
LO FREQUENCY (MHz)
260024502300 29002750
MAX19998 toc135
3650330029502600 4000
IF PORT RETURN LOSS (dB)
40
50
50 500
IF FREQUENCY (MHz)
SUPPLY CURRENT vs.
TEMPERATURE (T
250
240
230
220
SUPPLY CURRENT (mA)
210
200
VCC = 5.25V
-40 85 TEMPERATURE (°C)
VCC = 5.0V
VCC = 4.75V
410320230140
)
C
MAX19998 toc136
603510-15
______________________________________________________________________________________ 23
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Pin Configuration/Functional Diagram
TOP VIEW
IF+
IF-
GND
IFBIAS
1920 18 17
LEXT
16
V
1
CC
15
GND
MAX19998
CC
V
MAX19998
9
GND
10
GND
GND
GND
GND
2
RF
3
4
EP
5
76 8
CC
V
LOBIAS
Pin Description
PIN NAME FUNCTION
1, 6, 8, 14 V
CC
2 RF
3, 9, 13, 15 GND Ground. Not internally connected. Pins can be grounded.
Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin.
Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide an input DC-blocking capacitor if required.
V
14
CC
13
GND
12
GND
11
LO
4, 5, 10, 12,
17
7 LOBIAS
11 LO
GND
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together.
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604I (5V, 230mA bias condition) from LOBIAS to ground.
Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor.
External Inductor Connection. Connect a low-ESR 4.7nH inductor from this pin to ground to increase
16 LEXT
the RF-to-IF and LO-to-IF isolation. Connect this pin directly to ground to reduce the component count at the expense of reduced RF-to-IF and LO-to-IF isolation.
18, 19 IF-, IF+
20 IFBIAS
Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit).
IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698I (5V, 230mA bias condition) from IFBIAS to GND.
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple
EP
ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance.
24 _____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Detailed Description
The MAX19998 provides high linearity and low noise figure for a multitude of 2300MHz to 4000MHz WiMAX, LTE, and MMDS base-station applications. This device operates over a 2600MHz to 4300MHz LO range and a 50MHz to 500MHz IF range. Integrated baluns and matching circuitry allow 50I single-ended interfaces to the RF and LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19998’s input to a range of -3dBm to +3dBm. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF - 2LO and 2LO - 2RF performance.
RF Input and Balun
The MAX19998 RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is inter­nally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 17dB over the RF frequency range of 3200MHz to 3900MHz. See Table 1 for lower band tuning.
LO Inputs, Buffer, and Balun
The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.
High-Linearity Mixer
The core of the MAX19998 is a double-balanced, high­performance passive mixer. Exceptional linearity is pro­vided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifier, IIP3, 2RF - 2LO rejection, and noise-figure performance are typically +24.3dBm, 67dBc, and 9.7dB, respectively, for low-side LO injection architectures covering the 3000MHz to 4000MHz RF band.
Differential IF Output Amplifier
The MAX19998 has a 50MHz to 500MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components. The MAX19998 mixer is tuned for a 300MHz IF using 390nH external pullup bias inductors. Lower IF frequencies
would require higher L1 and L2 inductor values to main-
MAX19998
tain a good IF match. The differential, open-collector IF output ports require that these inductors be connected to VCC.
Note that these differential ports are ideal for provid­ing enhanced 2RF - 2LO performance. Single-ended IF applications require a 4:1 (impedance ratio) balun to transform the 200I differential IF impedance to a 50I single-ended system. Use the TC4-1W-17 4:1 transform­er for IF frequencies above 200MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200MHz. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/ IF- ports to keep external DC from entering the IF ports of the mixer.
Applications Information
Input and Output Matching
The RF and LO inputs provide 50I matches when combined with the proper tuning. Use an 8.2pF capaci­tor value on the RF port for frequencies ranging from 3000MHz to 4000MHz. Use a 3.3nH series inductor and a 0.3pF shunt capacitor on the RF port for frequencies ranging from 2300MHz to 2900MHz. On the LO port, use a 2pF DC-blocking capacitor to cover operations span­ning the 2600MHz to 4300MHz range.
The IF output impedance is 200I (differential). For evalu­ation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit).
Reduced-Power Mode
The MAX19998 has two pins (LOBIAS, IFBIAS) that allow external resistors to set the internal bias currents. See Table 1 for nominal values for these resistors. Larger value resistors can be used to reduce power dissipa­tion at the expense of some performance loss. If Q1% resistors are not readily available, substitute with Q5% resistors.
Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3V. Doing so reduces the overall power consumption by 57% (typ). See the 3.3V Supply AC Electrical Characteristics table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance trade-offs.
______________________________________________________________________________________ 25
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
LEXT Inductor
Short LEXT to ground using a 0I resistor. For applica­tions requiring improved RF-to-IF and LO-to-IF isolation, L3 can be changed to optimize performance (see the Typical Operating Characteristics). However, the load impedance presented to the mixer must be such that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions. Since approximately 120mA flows through LEXT, it is
MAX19998
important to use a low-DCR wire-wound inductor.
Layout Considerations
A properly designed PCB is an essential part of any RF/ microwave circuit. Keep RF signal lines as short as pos­sible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground
does not exceed several picofarads. For the best per­formance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19998 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage supply bypassing is essential for high­frequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Table 1 for component values.
Table 1. Component Values
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
8.2pF microwave capacitor (0402). Use for RF
C1 1
C2, C6, C8, C11 4
C3, C9 0 Not installed, capacitors
C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc.
C13, C14 2 1000pF microwave capacitors (0402) Murata Electronics North America, Inc.
C15 1 82pF microwave capacitor (0402) Murata Electronics North America, Inc.
C16 1
L1, L2 2 390nH wire-wound high-Q inductors* (0805) Coilcraft, Inc.
L3 1 4.7nH wire-wound high-Q inductor (0603) Coilcraft, Inc.
R1 1
R2 1
R3 1 T1 1 4:1 IF balun TC4-1W-17* Mini-Circuits U1 1 MAX19998 IC (20 Thin QFN-EP) Maxim Integrated Products, Inc.
*Use larger value inductors and a TC4-1W-7A 4:1 balun for IF frequencies below 200MHz.
frequencies ranging from 3000MHz to 4000MHz.
3.3nH microwave inductor (0402). Use for RF frequencies ranging from 2300MHz to 2900MHz.
0.01FF microwave capacitors (0402)
Not installed for RF frequencies ranging from 3000MHz to 4000MHz
0.3pF microwave capacitor (0402). Use for RF frequencies ranging from 2300MHz to 2900MHz.
698I Q1% resistor (0402). Use for VCC = 5.0V applications.
845I Q1% resistor (0402). Use for VCC = 3.3V applications.
604I Q1% resistor (0402). Use for VCC = 5.0V applications.
1.1kI Q1% resistor (0402). Use for VCC = 3.3V applications.
0I resistor (1206)
Murata Electronics North America, Inc.
Coilcraft, Inc.
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Digi-Key Corp.
Digi-Key Corp.
Digi-Key Corp.
26 _____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Downconversion Mixer with LO Buffer
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX19998’s 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19998 is mounted be designed to conduct
Typical Application Circuit
L1
C13
V
GND
L2
R1
IF+
IFBIAS
1920 18 17
CC
1
RF
2
3
INPUT
RF
R3
C14
+5.0V
C3 C2
C1
C16*
heat from the EP. In addition, provide the EP with a low­inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
C15
326
1 4
4:1
IF-
GND
LEXT
16
U1
MAX19998
IF OUTPUT
T1
L3
GND
15
V
CC
14
GND
13
+5.0V
C11
MAX19998
GND
GND
4
5
+5.0V
EP
CC
V
C6
76 8
CC
V
LOBIAS
R2
C8 C9
9
10
GND
GND
NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION.
+5.0V
PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
*C16 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS.
GND
12
C10
LO
11
LO INPUT
______________________________________________________________________________________ 27
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Chip Information
PROCESS: SiGe BiCMOS
MAX19998
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
20 Thin QFN-EP T2055+3
21-0140
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
28 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
©
2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Loading...