Rainbow Electronics MAX19997A User Manual

General Description
The MAX19997A dual downconversion mixer is a versa­tile, highly integrated diversity downconverter that pro­vides high linearity and low noise figure for a multitude of 1800MHz to 2900MHz base-station applications. The MAX19997A fully supports both low- and high-side LO injection architectures for the 2300MHz to 2900MHz WiMAX, LTE, WCS, and MMDS bands, providing
8.7dB gain, +24dBm input IP3, and 10.3dB NF in the low-side configuration, and 8.7dB gain, +24dBm input IP3, and 10.4dB NF in the high-side configuration. High­side LO injection architectures can be further extended down to 1800MHz with the addition of one tuning ele­ment (a shunt inductor) on each RF port.
The device integrates baluns in the RF and LO ports, an LO buffer, two double-balanced mixers, and a pair of differential IF output amplifiers. The MAX19997A requires a typical LO drive of 0dBm and a supply cur­rent guaranteed below 420mA to achieve the targeted linearity performance.
The MAX19997A is available in a compact 6mm x 6mm, 36-pin thin QFN lead-free package with an exposed pad. Electrical performance is guaranteed over the extended temperature range, from TC= -40°C to +85°C.
Applications
2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
UMTS/WCDMA and cdma2000
®
3G Base
Stations
PCS1900 and EDGE Base Stations
PHS/PAS Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
o 1800MHz to 2900MHz RF Frequency Range
o 1950MHz to 3400MHz LO Frequency Range
o 50MHz to 500MHz IF Frequency Range
o Supports Both Low-Side and High-Side LO
Injection
o 8.7dB Conversion Gain
o +24dBm Input IP3
o 10.3dB Noise Figure
o +11.3dBm Input 1dB Compression Point
o 70dBc Typical 2 x 2 Spurious Rejection at
P
RF
= -10dBm
o Dual Channels Ideal for Diversity Receiver
Applications
o Integrated LO Buffer
o Integrated LO and RF Baluns for Single-Ended
Inputs
o Low -3dBm to +3dBm LO Drive
o Pin Compatible with the MAX19999 3000MHz to
4000MHz Mixer
o Pin Similar to the MAX9995/MAX9995A and
MAX19995/MAX19995A 1700MHz to 2200MHz Mixers and the MAX9985/MAX9985A and MAX19985/MAX19985A 700MHz to 1000MHz Mixers
o 42dB Channel-to-Channel Isolation
o Single +5.0V or +3.3V Supply
o External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/Reduced­Performance Mode
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-4288; Rev 0; 10/08
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
PART TEMP RANGE PIN-PACKAGE
MAX19997AETX+ -40°C to +85°C
36 Thin QFN-EP*
MAX19997AETX+T
-40°C to +85°C
36 Thin QFN-EP*
+
Denotes a lead-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel.
Pin Configuration/Functional Block Diagram appears at end of data sheet.
WiMAX is a trademark of WiMAX Forum.
cdma2000 is a registered trademark of Telecommunications Industry Association.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC= +4.75V to
+5.25V, T
C
= -40°C to +85°C. Typical values are at VCC= +5.0V, TC= +25°C, unless otherwise noted. R1, R4 = 750Ω, R2, R5 =
698Ω.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCCto GND...........................................................-0.3V to +5.5V
RF_, LO to GND.....................................................-0.3V to +0.3V
IFM_, IFD_, IFM_SET, IFD_SET, LO_ADJ_M,
LO_ADJ_ to GND ...................................-0.3V to (V
CC
+ 0.3V)
RF_, LO Input Power ......................................................+15dBm
RF_, LO Current (RF and LO is DC
shorted to GND through balun)................................... ...50mA
Continuous Power Dissipation (Note 1) ..............................8.7W
θ
JA
(Notes 2, 3)..............................................................+38°C/W
θ
JC
(Notes 1, 3)...............................................................7.4°C/W
Operating Case Temperature Range
(Note 4) ...................................................T
C
= -40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC= +3.0V to
+3.6V, T
C
= -40°C to +85°C. Typical values are at VCC= +3.3V, TC= +25°C, unless otherwise noted. R1, R4 = 1.1kΩ, R2, R5 =
845Ω.)
Note 1: Based on junction temperature TJ= TC+ (θJCx VCCx ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the
Applications Information
section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature T
J
= TA+ (θJCx VCCx ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial
.
Note 4: T
C
is the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
Supply Voltage V
Supply Current I
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC
CC
Total supply current 388 420 mA
Supply Voltage V
Supply Current I
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC
CC
Total supply current, VCC = +3.3V 279 310 mA
4.75 5.00 5.25 V
3.0 3.3 3.6 V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 3
RECOMMENDED AC OPERATING CONDITIONS
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1),VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 2650MHz to 3250MHz, fIF= 350MHz,
f
RF
< fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2950MHz,
f
IF
= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Without External Tuning
RF Frequency with External Tuning
LO Frequency f
IF Frequency f
LO Drive Level P
f
RF
f
RF
LO
IF
LO
(Note 5) 2400 2900 MHz
S ee Tab l e 2 for an outl i ne of tuni ng el em ents op ti m i zed for 1950M H z op er ati on; op ti m i zati on at other fr eq uenci es w i thi n the 1800M H z to 2400M H z r ang e can b e achi eved w i th different component values; contact the factory for details
(Notes 5, 6) 1950 3400 MHz
Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6)
Using alternative Mini-Circuits TC4-1W-7A 4:1 transformer, IF matching components affect the IF frequency range (Notes 5, 6)
1800 2400 MHz
100 500
MHz
50 250
-3 +3 dBm
Conversion Gain G
Conversion Gain Flatness
Gain Variation Over Temperature TC
Input Compression Point IP
Third-Order Input Intercept Point IIP3
Thi r d - O r d er Inp ut Inter cep t P oi nt V ar i ati on Over Tem p er atur e
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
C
CG
1dB
fRF = 2400MHz to 2900MHz, T
= +25°C (Notes 8, 9, 10)
C
fRF = 2305MHz to 2360MHz 0.15
fRF = 2500MHz to 2570MHz 0.15
fRF = 2570MHz to 2620MHz 0.1
fRF = 2500MHz to 2690MHz 0.15
= 2700MHz to 2900MHz 0.15
f
RF
fRF = 2300MHz to 2900MHz,
= -40°C to +85°C
T
C
(Notes 8, 9, 11) 9.6 11.3 dBm
f
- f
RF1
(Notes 8, 9)
f
RF
P
RF
(Notes 8, 9)
f
RF1
= 1MHz, PRF = -5dBm per tone
RF2
= 2600MHz, f
= -5dBm per tone, TC = +25C
- f
= 1MHz, TC = -40°C to +85°C ±0.3 dBm
RF2
RF1
- f
RF2
= 1MHz,
8.1 8.7 9.3 dB
-0.01 dB/°C
22.0 24
22.5 24
dB
dBm
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
4 _______________________________________________________________________________________
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1),VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 2650MHz to 3250MHz, fIF= 350MHz,
f
RF
< fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2950MHz,
fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
Noise Figure NF
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Single sideband, no blockers present f
= 2400M H z to 2900M H z ( N ote 6, 8, 10)
R F
SSB
Single sideband, no blockers present, f
= 2400M H z to 2900M H z , TC = +25°C
R F
(Note 6, 8, 10)
10.4 12.5
10.4 11.4
dB
Noise Figure Temperature Coefficient
Noise Figure Under Blocking Conditions
2LO-2RF Spur 2 x 2
3LO-3RF Spur 3 x 3
RF Input Return Loss
LO Input Return Loss
IF Output Impedance Z
TC
NF
NF
IF
Single sideband, no blockers present,
= -40°C to +85°C
T
C
f
BLOCKER
f
RF
B
0dBm, V
fRF = 2600MHz, fLO = 2950MHz, P
RF
(Note 8)
f
RF
P
RF
(Notes 8, 9)
fRF = 2600MHz, fLO = 2950MHz, P
RF
T
C
f
RF
P
RF
T
C
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
= 2412MHz, P
= 2600MHz, f
= + 5.0V , TC = + 25°C ( Notes 8, 12)
C C
= -10dBm, f
= 2600MHz, fLO = 2950MHz,
= -5dBm, f
= -10dBm, f
= +25°C (Note 8)
= 2600MHz, f
= -5dBm, f
= +25°C (Notes 8, 9)
SPUR
SPUR
SPUR
SPUR
BLOCKER
= 2950MHz, PLO =
LO
= fLO - 175MHz
- 175MHz
= f
LO
= f
LO
= 2950MHz,
LO
- 116.67MHz,
= f
LO
= 8dBm,
- 116.67MHz,
0.018 dB/°C
22.5 25 dB
62 69
dBc
57 64
73 84
dBc
63 74
14 dB
13 dB
200 Ω
RF terminated into 50Ω, LO driven by 50Ω
IF Output Return Loss
source, IF transformed to 50Ω using external components shown in the Typical
Application Circuit
21 dB
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 5
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1),VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 2650MHz to 3250MHz, fIF= 350MHz,
f
RF
< fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2950MHz,
fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 1950MHz to 2550MHz, fIF= 350MHz, fRF> fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2250MHz, fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
RF-to-IF Isolation 25 dB
LO Leakage at RF Port (Notes 8, 9) -28 dBm
2LO Leakage at RF Port -33 dBm
LO Leakage at IF Port -18.5 dBm
Channel Isolation
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω
38.5 43 dB
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Gain G
Conversion Gain Flatness
Gain Variation Over Temperature TC
Input Compression Point IP
Third-Order Input Intercept Point IIP3
C
CG
1dB
fRF = 2400MHz to 2900MHz, T
= +25°C (Notes 8, 9, 10)
C
fRF = 2305MHz to 2360MHz 0.2
fRF = 2500MHz to 2570MHz 0.15
fRF = 2570MHz to 2620MHz 0.2
fRF = 2500MHz to 2690MHz 0.25
= 2700MHz to 2900MHz 0.25
f
RF
fRF = 2300MHz to 2900MHz, TC = -40°C to +85°C
(Notes 6, 8, 11) 9.6 11.3 dBm
f
- f
RF1
(Notes 8, 9)
f
RF
P
RF
(Notes 8, 9)
= 1MHz, PRF = -5dBm per tone
RF2
= 2600MHz, f
= -5dBm per tone, TC = +25°C
RF1
- f
= 1MHz,
RF2
8.1 8.7 9.3 dB
-0.01 dB/°C
21.6 23 dBm
22 23.8 dBm
dB
Thi r d - O r d er Inp ut Inter cep t P oi nt V ar i ati on Over Tem p er atur e
f
RF1
- f
= 1MHz, TC = -40°C to +85°C ±0.3 dBm
RF2
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
6 _______________________________________________________________________________________
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 1950MHz to 2550MHz, fIF= 350MHz, f
RF
> fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2250MHz,
fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Noise Figure NF
Single sideband, no blockers present f
= 2400MHz to 2900MHz (Notes 6, 8)
RF
SSB
Single sideband, no blockers present, f
= 2400MHz to 2900MHz, TC = +25°C
RF
(Notes 6, 8)
10.3 13.0
10.3 11.3
dB
Noise Figure Temperature Coefficient
Noise Figure Under Blocking Conditions
2RF-2LO Spur 2 x 2
3RF-3LO Spur 3 x 3
RF Input Return Loss
LO Input Return Loss
IF Output Impedance Z
TC
NF
NF
IF
Single sideband, no blockers present,
= -40°C to +85°C
T
C
f
BLOCKER
f
RF
B
P
LO
(Notes 6, 8, 12)
fRF = 2600MHz, fLO = 2250MHz, P
RF
T
C
f
RF
P
RF
T
C
fRF = 2600MHz, fLO = 2250MHz, P
RF
T
C
f
RF
P
RF
T
C
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
= 2793MHz, P
= 2600MHz, fLO = 2250MHz,
= 0dBm, V cc = + 5.0V , TC = +25°C
= -10dBm, f
= +25°C (Note 8)
= 2600MHz, fLO = 2250MHz,
= -5dBm, f
= +25°C (Notes 8, 9)
= -10dBm, f
= +25°C (Note 8)
= 2600MHz, fLO = 2250MHz,
= -5dBm, f
= +25°C (Notes 8, 9)
SPUR
SPUR
SPUR
SPUR
BLOCKER
= fLO + 175MHz,
= fLO + 175MHz,
= fLO + 116.67MHz,
= fLO + 116.67MHz,
0.018 dB/°C
= 8dBm,
22 25 dB
62 67
dBc
57 62
78 83
dBc
68 73
16 dB
11.5 dB
200 Ω
RF terminated into 50Ω, LO driven by 50Ω
IF Output Return Loss
source, IF transformed to 50Ω using external components shown in the Typical
Application Circuit
20 dB
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 7
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1). Typical values are at VCC= +3.3V, PRF= -5dBm,
P
LO
= 0dBm, fRF= 2600MHz, fLO= 2250MHz, fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 1950MHz to 2550MHz, fIF= 350MHz, f
RF
> fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2250MHz,
fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
RF-to-IF Isolation 23.5 dB
LO Leakage at RF Port (Notes 8, 9) -31 -24 dBm
2LO Leakage at RF Port -27 dBm
LO Leakage at IF Port -9.6 dBm
Channel Isolation
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω (Notes 8, 9)
38.5 42 dB
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Gain G
Conversion Gain Flatness
Gain Variation Over Temperature TC
Input Compression Point IP
Thi r d - O r d er Inp ut Inter cep t P oi nt IIP3 f
Third-Order Input Intercept Variation Over Temperature
Noise Figure NF
Noise Figure Temperature Coefficient
(Note 9) 8.5 dB
C
fRF = 2305MHz to 2360MHz 0.2
fRF = 2500MHz to 2570MHz 0.15
fRF = 2570MHz to 2620MHz 0.15
fRF = 2500MHz to 2690MHz 0.25
= 2700MHz to 2900MHz 0.15
f
RF
TC
CG
1dB
SSB
NF
fRF = 2300MHz to 2900MHz, T
= -40°C to +85°C
C
- f
RF1
f
RF1
Single sideband, no blockers present 9.7 dB
Single sideband, no blockers present, T
C
= 1MHz, PRF = -5dBm per tone 19.7 dBm
RF2
- f
= 1MHz, TC = -40°C to +85°C ±0.5 dBm
RF2
= -40°C to +85°C
-0.01 dB/°C
7.7 dBm
0.018 dB/°C
dB
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
8 _______________________________________________________________________________________
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1). Typical values are at VCC= +3.3V, PRF= -5dBm,
P
LO
= 0dBm, fRF= 2600MHz, fLO= 2250MHz, fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the
Typical Operating
Characteristics
.
Note 6: Not production tested. Note 7: All limits reflect losses of external components, including a 0.8dB loss at f
IF
= 350MHz due to the 4:1 impedance trans-
former. Output measurements taken at the IF outputs of
Typical Application Circuit
.
Note 8: Guaranteed by design and characterization. Note 9: 100% production tested for functional performance. Note 10: RF frequencies below 2400MHz require external RF tuning similar to components listed in Table 2. Note 11: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50Ω source. Note 12: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of
all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021:
Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers
.
2RF-2LO Spur 2 x 2
3RF-3LO Spur 3 x 3
RF Input Return Loss
LO Input Return Loss
IF Output Impedance Z
IF Output Return Loss
RF-to-IF Isolation 25 dB
LO Leakage at RF Port -36 dBm
2LO Leakage at RF Port -31 dBm
LO Leakage at IF Port -13.5 dBm
Channel Isolation
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
PRF = -10dBm, f
= -5dBm, f
P
RF
PRF = -10dBm, f
= -5dBm, f
P
RF
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s
IF
IF outputs
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical
Application Circuit
RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω
= fLO + 175MHz 74
SPUR
= fLO + 175MHz 69
SPUR
= fLO + 116.67MHz 74
SPUR
= fLO + 116.67MHz 64
SPUR
16 dB
11 dB
200 Ω
26 dB
42 dB
dBc
dBc
Typical Operating Characteristics
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________
9
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
11
10
9
8
CONVERSION GAIN (dB)
7
TC = +85°C
6
2200 3000
TC = -30°C
TC = +25°C
280026002400
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
26
25
TC = +25°C
PRF = -5dBm/TONE
TC = +85°C
11
10
MAX19997A toc01
CONVERSION GAIN (dB)
26
MAX19997A toc04
25
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
9
8
7
6
2200 3000
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
280026002400
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
11
10
MAX19997A toc02
CONVERSION GAIN (dB)
26
MAX19997A toc05
25
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
9
8
7
6
2200 3000
VCC = 4.75V, 5.0V, 5.25V
280026002400
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
PRF = -5dBm/TONE
VCC = 5.25V
VCC = 5.0V
MAX19997A toc03
MAX19997A toc06
24
INPUT IP3 (dBm)
23
22
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
13
12
11
10
NOISE FIGURE (dB)
9
TC = +25°C
8
7
RF FREQUENCY (MHz)
TC = -30°C
TC = +85°C
TC = -30°C
2800260024002200 3000
2800260024002200 3000
MAX19997A toc07
24
INPUT IP3 (dBm)
23
22
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
13
12
11
10
NOISE FIGURE (dB)
PLO = -3dBm, 0dBm, +3dBm
9
8
7
RF FREQUENCY (MHz)
2800260024002200 3000
2800260024002200 3000
MAX19997A toc08
24
INPUT IP3 (dBm)
23
22
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
13
12
11
10
NOISE FIGURE (dB)
9
8
7
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
VCC = 4.75V
2800260024002200 3000
MAX19997A toc09
2800260024002200 3000
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
10 ______________________________________________________________________________________
2LO-2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
80
2LO-2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
80
PRF = -5dBm
PRF = -5dBm
2LO-2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
80
PRF = -5dBm
70
TC = +85°C
60
2LO-2RF RESPONSE (dBc)
TC = -30°C
50
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
95
85
TC = -30°C
75
3LO-3RF RESPONSE (dBc)
65
55
RF FREQUENCY (MHz)
TC = +25°C
TC = +25°C, +85°C
2800260024002200 3000
PRF = -5dBm
2800260024002200 3000
MAX19997A toc10
70
60
2LO-2RF RESPONSE (dBc)
50
95
MAX19997A toc13
85
75
3LO-3RF RESPONSE (dBc)
65
55
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
MAX19997A toc11
70
60
2LO-2RF RESPONSE (dBc)
50
95
MAX19997A toc14
85
75
3LO-3RF RESPONSE (dBc)
65
55
MAX19997A toc12
VCC = 4.75V, 5.0V, 5.25V
2800260024002200 3000
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
PRF = -5dBm
MAX19997A toc15
VCC = 4.75V, 5.0V, 5.25V
2800260024002200 3000
RF FREQUENCY (MHz)
INPUT P
1dB
(LO > RF, STANDARD RF BAND)
13
VCC = 5.25V
12
11
10
9
VCC = 4.75V
RF FREQUENCY (MHz)
13
12
(dBm)
1dB
11
INPUT P
10
9
INPUT P
vs. RF FREQUENCY
1dB
(LO > RF, STANDARD RF BAND)
TC = +85°C
TC = -30°C
TC = +25°C
2800260024002200 3000
RF FREQUENCY (MHz)
MAX19997A toc16
13
12
(dBm)
1dB
11
INPUT P
10
9
INPUT P
vs. RF FREQUENCY
1dB
(LO > RF, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
MAX19997A toc17
(dBm)
1dB
INPUT P
vs. RF FREQUENCY
VCC = 5.0V
MAX19997A toc18
2800260024002200 3000
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
11
Y
Y
Y
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
TC = -30°C, +25°C, +85°C
2800260024002200 3000
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENC
(LO > RF, STANDARD RF BAND)
0
-10 TC = -30°C
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENC
(LO > RF, STANDARD RF BAND)
0
-10
60
55
MAX19997A toc19
50
45
40
CHANNEL ISOLATION (dB)
35
30
LO LEAKAGE AT IF PORT vs. LO FREQUENC
0
MAX19997A toc22
-10
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
(LO > RF, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
MAX19997A toc20
MAX19997A toc23
MAX19997A toc21
2800260024002200 3000
MAX19997A toc24
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
TC = +25°C, +85°C
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
40
TC = +85°C
30
20
RF-TO-IF ISOLATION (dB)
10
TC = -30°C
RF FREQUENCY (MHz)
TC = +25°C
3150295027502550 3350
2800260024002200 3000
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
40
MAX19997A toc25
30
20
RF-TO-IF ISOLATION (dB)
10
3150295027502550 3350
LO FREQUENCY (MHz)
(LO > RF, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
40
MAX19997A toc26
30
20
RF-TO-IF ISOLATION (dB)
10
VCC = 4.75V, 5.0V, 5.25V
3150295027502550 3350
LO FREQUENCY (MHz)
(LO > RF, STANDARD RF BAND)
VCC = 4.75V, 5.0V, 5.25V
2800260024002200 3000
RF FREQUENCY (MHz)
MAX19997A toc27
Loading...
+ 23 hidden pages