Rainbow Electronics MAX19997A User Manual

General Description
The MAX19997A dual downconversion mixer is a versa­tile, highly integrated diversity downconverter that pro­vides high linearity and low noise figure for a multitude of 1800MHz to 2900MHz base-station applications. The MAX19997A fully supports both low- and high-side LO injection architectures for the 2300MHz to 2900MHz WiMAX, LTE, WCS, and MMDS bands, providing
8.7dB gain, +24dBm input IP3, and 10.3dB NF in the low-side configuration, and 8.7dB gain, +24dBm input IP3, and 10.4dB NF in the high-side configuration. High­side LO injection architectures can be further extended down to 1800MHz with the addition of one tuning ele­ment (a shunt inductor) on each RF port.
The device integrates baluns in the RF and LO ports, an LO buffer, two double-balanced mixers, and a pair of differential IF output amplifiers. The MAX19997A requires a typical LO drive of 0dBm and a supply cur­rent guaranteed below 420mA to achieve the targeted linearity performance.
The MAX19997A is available in a compact 6mm x 6mm, 36-pin thin QFN lead-free package with an exposed pad. Electrical performance is guaranteed over the extended temperature range, from TC= -40°C to +85°C.
Applications
2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
UMTS/WCDMA and cdma2000
®
3G Base
Stations
PCS1900 and EDGE Base Stations
PHS/PAS Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
o 1800MHz to 2900MHz RF Frequency Range
o 1950MHz to 3400MHz LO Frequency Range
o 50MHz to 500MHz IF Frequency Range
o Supports Both Low-Side and High-Side LO
Injection
o 8.7dB Conversion Gain
o +24dBm Input IP3
o 10.3dB Noise Figure
o +11.3dBm Input 1dB Compression Point
o 70dBc Typical 2 x 2 Spurious Rejection at
P
RF
= -10dBm
o Dual Channels Ideal for Diversity Receiver
Applications
o Integrated LO Buffer
o Integrated LO and RF Baluns for Single-Ended
Inputs
o Low -3dBm to +3dBm LO Drive
o Pin Compatible with the MAX19999 3000MHz to
4000MHz Mixer
o Pin Similar to the MAX9995/MAX9995A and
MAX19995/MAX19995A 1700MHz to 2200MHz Mixers and the MAX9985/MAX9985A and MAX19985/MAX19985A 700MHz to 1000MHz Mixers
o 42dB Channel-to-Channel Isolation
o Single +5.0V or +3.3V Supply
o External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/Reduced­Performance Mode
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-4288; Rev 0; 10/08
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
PART TEMP RANGE PIN-PACKAGE
MAX19997AETX+ -40°C to +85°C
36 Thin QFN-EP*
MAX19997AETX+T
-40°C to +85°C
36 Thin QFN-EP*
+
Denotes a lead-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel.
Pin Configuration/Functional Block Diagram appears at end of data sheet.
WiMAX is a trademark of WiMAX Forum.
cdma2000 is a registered trademark of Telecommunications Industry Association.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC= +4.75V to
+5.25V, T
C
= -40°C to +85°C. Typical values are at VCC= +5.0V, TC= +25°C, unless otherwise noted. R1, R4 = 750Ω, R2, R5 =
698Ω.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCCto GND...........................................................-0.3V to +5.5V
RF_, LO to GND.....................................................-0.3V to +0.3V
IFM_, IFD_, IFM_SET, IFD_SET, LO_ADJ_M,
LO_ADJ_ to GND ...................................-0.3V to (V
CC
+ 0.3V)
RF_, LO Input Power ......................................................+15dBm
RF_, LO Current (RF and LO is DC
shorted to GND through balun)................................... ...50mA
Continuous Power Dissipation (Note 1) ..............................8.7W
θ
JA
(Notes 2, 3)..............................................................+38°C/W
θ
JC
(Notes 1, 3)...............................................................7.4°C/W
Operating Case Temperature Range
(Note 4) ...................................................T
C
= -40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC= +3.0V to
+3.6V, T
C
= -40°C to +85°C. Typical values are at VCC= +3.3V, TC= +25°C, unless otherwise noted. R1, R4 = 1.1kΩ, R2, R5 =
845Ω.)
Note 1: Based on junction temperature TJ= TC+ (θJCx VCCx ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the
Applications Information
section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature T
J
= TA+ (θJCx VCCx ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial
.
Note 4: T
C
is the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
Supply Voltage V
Supply Current I
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC
CC
Total supply current 388 420 mA
Supply Voltage V
Supply Current I
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC
CC
Total supply current, VCC = +3.3V 279 310 mA
4.75 5.00 5.25 V
3.0 3.3 3.6 V
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 3
RECOMMENDED AC OPERATING CONDITIONS
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1),VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 2650MHz to 3250MHz, fIF= 350MHz,
f
RF
< fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2950MHz,
f
IF
= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Without External Tuning
RF Frequency with External Tuning
LO Frequency f
IF Frequency f
LO Drive Level P
f
RF
f
RF
LO
IF
LO
(Note 5) 2400 2900 MHz
S ee Tab l e 2 for an outl i ne of tuni ng el em ents op ti m i zed for 1950M H z op er ati on; op ti m i zati on at other fr eq uenci es w i thi n the 1800M H z to 2400M H z r ang e can b e achi eved w i th different component values; contact the factory for details
(Notes 5, 6) 1950 3400 MHz
Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6)
Using alternative Mini-Circuits TC4-1W-7A 4:1 transformer, IF matching components affect the IF frequency range (Notes 5, 6)
1800 2400 MHz
100 500
MHz
50 250
-3 +3 dBm
Conversion Gain G
Conversion Gain Flatness
Gain Variation Over Temperature TC
Input Compression Point IP
Third-Order Input Intercept Point IIP3
Thi r d - O r d er Inp ut Inter cep t P oi nt V ar i ati on Over Tem p er atur e
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
C
CG
1dB
fRF = 2400MHz to 2900MHz, T
= +25°C (Notes 8, 9, 10)
C
fRF = 2305MHz to 2360MHz 0.15
fRF = 2500MHz to 2570MHz 0.15
fRF = 2570MHz to 2620MHz 0.1
fRF = 2500MHz to 2690MHz 0.15
= 2700MHz to 2900MHz 0.15
f
RF
fRF = 2300MHz to 2900MHz,
= -40°C to +85°C
T
C
(Notes 8, 9, 11) 9.6 11.3 dBm
f
- f
RF1
(Notes 8, 9)
f
RF
P
RF
(Notes 8, 9)
f
RF1
= 1MHz, PRF = -5dBm per tone
RF2
= 2600MHz, f
= -5dBm per tone, TC = +25C
- f
= 1MHz, TC = -40°C to +85°C ±0.3 dBm
RF2
RF1
- f
RF2
= 1MHz,
8.1 8.7 9.3 dB
-0.01 dB/°C
22.0 24
22.5 24
dB
dBm
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
4 _______________________________________________________________________________________
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1),VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 2650MHz to 3250MHz, fIF= 350MHz,
f
RF
< fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2950MHz,
fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
Noise Figure NF
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Single sideband, no blockers present f
= 2400M H z to 2900M H z ( N ote 6, 8, 10)
R F
SSB
Single sideband, no blockers present, f
= 2400M H z to 2900M H z , TC = +25°C
R F
(Note 6, 8, 10)
10.4 12.5
10.4 11.4
dB
Noise Figure Temperature Coefficient
Noise Figure Under Blocking Conditions
2LO-2RF Spur 2 x 2
3LO-3RF Spur 3 x 3
RF Input Return Loss
LO Input Return Loss
IF Output Impedance Z
TC
NF
NF
IF
Single sideband, no blockers present,
= -40°C to +85°C
T
C
f
BLOCKER
f
RF
B
0dBm, V
fRF = 2600MHz, fLO = 2950MHz, P
RF
(Note 8)
f
RF
P
RF
(Notes 8, 9)
fRF = 2600MHz, fLO = 2950MHz, P
RF
T
C
f
RF
P
RF
T
C
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
= 2412MHz, P
= 2600MHz, f
= + 5.0V , TC = + 25°C ( Notes 8, 12)
C C
= -10dBm, f
= 2600MHz, fLO = 2950MHz,
= -5dBm, f
= -10dBm, f
= +25°C (Note 8)
= 2600MHz, f
= -5dBm, f
= +25°C (Notes 8, 9)
SPUR
SPUR
SPUR
SPUR
BLOCKER
= 2950MHz, PLO =
LO
= fLO - 175MHz
- 175MHz
= f
LO
= f
LO
= 2950MHz,
LO
- 116.67MHz,
= f
LO
= 8dBm,
- 116.67MHz,
0.018 dB/°C
22.5 25 dB
62 69
dBc
57 64
73 84
dBc
63 74
14 dB
13 dB
200 Ω
RF terminated into 50Ω, LO driven by 50Ω
IF Output Return Loss
source, IF transformed to 50Ω using external components shown in the Typical
Application Circuit
21 dB
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 5
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1),VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 2650MHz to 3250MHz, fIF= 350MHz,
f
RF
< fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2950MHz,
fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 1950MHz to 2550MHz, fIF= 350MHz, fRF> fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2250MHz, fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
RF-to-IF Isolation 25 dB
LO Leakage at RF Port (Notes 8, 9) -28 dBm
2LO Leakage at RF Port -33 dBm
LO Leakage at IF Port -18.5 dBm
Channel Isolation
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω
38.5 43 dB
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Gain G
Conversion Gain Flatness
Gain Variation Over Temperature TC
Input Compression Point IP
Third-Order Input Intercept Point IIP3
C
CG
1dB
fRF = 2400MHz to 2900MHz, T
= +25°C (Notes 8, 9, 10)
C
fRF = 2305MHz to 2360MHz 0.2
fRF = 2500MHz to 2570MHz 0.15
fRF = 2570MHz to 2620MHz 0.2
fRF = 2500MHz to 2690MHz 0.25
= 2700MHz to 2900MHz 0.25
f
RF
fRF = 2300MHz to 2900MHz, TC = -40°C to +85°C
(Notes 6, 8, 11) 9.6 11.3 dBm
f
- f
RF1
(Notes 8, 9)
f
RF
P
RF
(Notes 8, 9)
= 1MHz, PRF = -5dBm per tone
RF2
= 2600MHz, f
= -5dBm per tone, TC = +25°C
RF1
- f
= 1MHz,
RF2
8.1 8.7 9.3 dB
-0.01 dB/°C
21.6 23 dBm
22 23.8 dBm
dB
Thi r d - O r d er Inp ut Inter cep t P oi nt V ar i ati on Over Tem p er atur e
f
RF1
- f
= 1MHz, TC = -40°C to +85°C ±0.3 dBm
RF2
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
6 _______________________________________________________________________________________
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 1950MHz to 2550MHz, fIF= 350MHz, f
RF
> fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2250MHz,
fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Noise Figure NF
Single sideband, no blockers present f
= 2400MHz to 2900MHz (Notes 6, 8)
RF
SSB
Single sideband, no blockers present, f
= 2400MHz to 2900MHz, TC = +25°C
RF
(Notes 6, 8)
10.3 13.0
10.3 11.3
dB
Noise Figure Temperature Coefficient
Noise Figure Under Blocking Conditions
2RF-2LO Spur 2 x 2
3RF-3LO Spur 3 x 3
RF Input Return Loss
LO Input Return Loss
IF Output Impedance Z
TC
NF
NF
IF
Single sideband, no blockers present,
= -40°C to +85°C
T
C
f
BLOCKER
f
RF
B
P
LO
(Notes 6, 8, 12)
fRF = 2600MHz, fLO = 2250MHz, P
RF
T
C
f
RF
P
RF
T
C
fRF = 2600MHz, fLO = 2250MHz, P
RF
T
C
f
RF
P
RF
T
C
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s IF outputs
= 2793MHz, P
= 2600MHz, fLO = 2250MHz,
= 0dBm, V cc = + 5.0V , TC = +25°C
= -10dBm, f
= +25°C (Note 8)
= 2600MHz, fLO = 2250MHz,
= -5dBm, f
= +25°C (Notes 8, 9)
= -10dBm, f
= +25°C (Note 8)
= 2600MHz, fLO = 2250MHz,
= -5dBm, f
= +25°C (Notes 8, 9)
SPUR
SPUR
SPUR
SPUR
BLOCKER
= fLO + 175MHz,
= fLO + 175MHz,
= fLO + 116.67MHz,
= fLO + 116.67MHz,
0.018 dB/°C
= 8dBm,
22 25 dB
62 67
dBc
57 62
78 83
dBc
68 73
16 dB
11.5 dB
200 Ω
RF terminated into 50Ω, LO driven by 50Ω
IF Output Return Loss
source, IF transformed to 50Ω using external components shown in the Typical
Application Circuit
20 dB
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________ 7
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the standard RF band (see Table 1). Typical values are at VCC= +3.3V, PRF= -5dBm,
P
LO
= 0dBm, fRF= 2600MHz, fLO= 2250MHz, fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1), VCC= +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 2300MHz to 2900MHz, fLO= 1950MHz to 2550MHz, fIF= 350MHz, f
RF
> fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm, fRF= 2600MHz, fLO= 2250MHz,
fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
RF-to-IF Isolation 23.5 dB
LO Leakage at RF Port (Notes 8, 9) -31 -24 dBm
2LO Leakage at RF Port -27 dBm
LO Leakage at IF Port -9.6 dBm
Channel Isolation
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω (Notes 8, 9)
38.5 42 dB
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Gain G
Conversion Gain Flatness
Gain Variation Over Temperature TC
Input Compression Point IP
Thi r d - O r d er Inp ut Inter cep t P oi nt IIP3 f
Third-Order Input Intercept Variation Over Temperature
Noise Figure NF
Noise Figure Temperature Coefficient
(Note 9) 8.5 dB
C
fRF = 2305MHz to 2360MHz 0.2
fRF = 2500MHz to 2570MHz 0.15
fRF = 2570MHz to 2620MHz 0.15
fRF = 2500MHz to 2690MHz 0.25
= 2700MHz to 2900MHz 0.15
f
RF
TC
CG
1dB
SSB
NF
fRF = 2300MHz to 2900MHz, T
= -40°C to +85°C
C
- f
RF1
f
RF1
Single sideband, no blockers present 9.7 dB
Single sideband, no blockers present, T
C
= 1MHz, PRF = -5dBm per tone 19.7 dBm
RF2
- f
= 1MHz, TC = -40°C to +85°C ±0.5 dBm
RF2
= -40°C to +85°C
-0.01 dB/°C
7.7 dBm
0.018 dB/°C
dB
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
8 _______________________________________________________________________________________
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the standard RF band (see Table 1). Typical values are at VCC= +3.3V, PRF= -5dBm,
P
LO
= 0dBm, fRF= 2600MHz, fLO= 2250MHz, fIF= 350MHz, TC= +25°C, unless otherwise noted.) (Note 7)
Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the
Typical Operating
Characteristics
.
Note 6: Not production tested. Note 7: All limits reflect losses of external components, including a 0.8dB loss at f
IF
= 350MHz due to the 4:1 impedance trans-
former. Output measurements taken at the IF outputs of
Typical Application Circuit
.
Note 8: Guaranteed by design and characterization. Note 9: 100% production tested for functional performance. Note 10: RF frequencies below 2400MHz require external RF tuning similar to components listed in Table 2. Note 11: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50Ω source. Note 12: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of
all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021:
Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers
.
2RF-2LO Spur 2 x 2
3RF-3LO Spur 3 x 3
RF Input Return Loss
LO Input Return Loss
IF Output Impedance Z
IF Output Return Loss
RF-to-IF Isolation 25 dB
LO Leakage at RF Port -36 dBm
2LO Leakage at RF Port -31 dBm
LO Leakage at IF Port -13.5 dBm
Channel Isolation
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
PRF = -10dBm, f
= -5dBm, f
P
RF
PRF = -10dBm, f
= -5dBm, f
P
RF
LO on and IF terminated into a matched impedance
RF and IF terminated into a matched impedance
Nominal differential impedance at the IC’s
IF
IF outputs
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical
Application Circuit
RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω
= fLO + 175MHz 74
SPUR
= fLO + 175MHz 69
SPUR
= fLO + 116.67MHz 74
SPUR
= fLO + 116.67MHz 64
SPUR
16 dB
11 dB
200 Ω
26 dB
42 dB
dBc
dBc
Typical Operating Characteristics
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
_______________________________________________________________________________________
9
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
11
10
9
8
CONVERSION GAIN (dB)
7
TC = +85°C
6
2200 3000
TC = -30°C
TC = +25°C
280026002400
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
26
25
TC = +25°C
PRF = -5dBm/TONE
TC = +85°C
11
10
MAX19997A toc01
CONVERSION GAIN (dB)
26
MAX19997A toc04
25
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
9
8
7
6
2200 3000
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
280026002400
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
11
10
MAX19997A toc02
CONVERSION GAIN (dB)
26
MAX19997A toc05
25
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
9
8
7
6
2200 3000
VCC = 4.75V, 5.0V, 5.25V
280026002400
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
PRF = -5dBm/TONE
VCC = 5.25V
VCC = 5.0V
MAX19997A toc03
MAX19997A toc06
24
INPUT IP3 (dBm)
23
22
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
13
12
11
10
NOISE FIGURE (dB)
9
TC = +25°C
8
7
RF FREQUENCY (MHz)
TC = -30°C
TC = +85°C
TC = -30°C
2800260024002200 3000
2800260024002200 3000
MAX19997A toc07
24
INPUT IP3 (dBm)
23
22
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
13
12
11
10
NOISE FIGURE (dB)
PLO = -3dBm, 0dBm, +3dBm
9
8
7
RF FREQUENCY (MHz)
2800260024002200 3000
2800260024002200 3000
MAX19997A toc08
24
INPUT IP3 (dBm)
23
22
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
13
12
11
10
NOISE FIGURE (dB)
9
8
7
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
VCC = 4.75V
2800260024002200 3000
MAX19997A toc09
2800260024002200 3000
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
10 ______________________________________________________________________________________
2LO-2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
80
2LO-2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
80
PRF = -5dBm
PRF = -5dBm
2LO-2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
80
PRF = -5dBm
70
TC = +85°C
60
2LO-2RF RESPONSE (dBc)
TC = -30°C
50
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
95
85
TC = -30°C
75
3LO-3RF RESPONSE (dBc)
65
55
RF FREQUENCY (MHz)
TC = +25°C
TC = +25°C, +85°C
2800260024002200 3000
PRF = -5dBm
2800260024002200 3000
MAX19997A toc10
70
60
2LO-2RF RESPONSE (dBc)
50
95
MAX19997A toc13
85
75
3LO-3RF RESPONSE (dBc)
65
55
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
MAX19997A toc11
70
60
2LO-2RF RESPONSE (dBc)
50
95
MAX19997A toc14
85
75
3LO-3RF RESPONSE (dBc)
65
55
MAX19997A toc12
VCC = 4.75V, 5.0V, 5.25V
2800260024002200 3000
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
PRF = -5dBm
MAX19997A toc15
VCC = 4.75V, 5.0V, 5.25V
2800260024002200 3000
RF FREQUENCY (MHz)
INPUT P
1dB
(LO > RF, STANDARD RF BAND)
13
VCC = 5.25V
12
11
10
9
VCC = 4.75V
RF FREQUENCY (MHz)
13
12
(dBm)
1dB
11
INPUT P
10
9
INPUT P
vs. RF FREQUENCY
1dB
(LO > RF, STANDARD RF BAND)
TC = +85°C
TC = -30°C
TC = +25°C
2800260024002200 3000
RF FREQUENCY (MHz)
MAX19997A toc16
13
12
(dBm)
1dB
11
INPUT P
10
9
INPUT P
vs. RF FREQUENCY
1dB
(LO > RF, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
MAX19997A toc17
(dBm)
1dB
INPUT P
vs. RF FREQUENCY
VCC = 5.0V
MAX19997A toc18
2800260024002200 3000
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
11
Y
Y
Y
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
TC = -30°C, +25°C, +85°C
2800260024002200 3000
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENC
(LO > RF, STANDARD RF BAND)
0
-10 TC = -30°C
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENC
(LO > RF, STANDARD RF BAND)
0
-10
60
55
MAX19997A toc19
50
45
40
CHANNEL ISOLATION (dB)
35
30
LO LEAKAGE AT IF PORT vs. LO FREQUENC
0
MAX19997A toc22
-10
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
(LO > RF, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
MAX19997A toc20
MAX19997A toc23
MAX19997A toc21
2800260024002200 3000
MAX19997A toc24
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
TC = +25°C, +85°C
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
40
TC = +85°C
30
20
RF-TO-IF ISOLATION (dB)
10
TC = -30°C
RF FREQUENCY (MHz)
TC = +25°C
3150295027502550 3350
2800260024002200 3000
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
40
MAX19997A toc25
30
20
RF-TO-IF ISOLATION (dB)
10
3150295027502550 3350
LO FREQUENCY (MHz)
(LO > RF, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
2800260024002200 3000
RF FREQUENCY (MHz)
-20
-30
LO LEAKAGE AT IF PORT (dBm)
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
40
MAX19997A toc26
30
20
RF-TO-IF ISOLATION (dB)
10
VCC = 4.75V, 5.0V, 5.25V
3150295027502550 3350
LO FREQUENCY (MHz)
(LO > RF, STANDARD RF BAND)
VCC = 4.75V, 5.0V, 5.25V
2800260024002200 3000
RF FREQUENCY (MHz)
MAX19997A toc27
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
12 ______________________________________________________________________________________
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
-10
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
-10
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
-10
TC = -30°C, +25°C, +85°C
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
-10
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
TC = -30°C, +25°C, +85°C
LO FREQUENCY (MHz)
MAX19997A toc28
-20
-30
P
= -3dBm, 0dBm, +3dBm
LO
-40
LO LEAKAGE AT RF PORT (dBm)
-50
3180296027402520
2300 3400
LO FREQUENCY (MHz)
3180296027402520
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
-10
MAX19997A toc31
-20
P
= -3dBm, 0dBm, +3dBm
LO
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
3180296027402520
2300 3400
LO FREQUENCY (MHz)
3180296027402520
MAX19997A toc29
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
-10
MAX19997A toc32
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
VCC = 4.75V, 5.0V, 5.25V
3180296027402520
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
3180296027402520
LO FREQUENCY (MHz)
MAX19997A toc30
MAX19997A toc33
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
13
RF PORT RETURN LOSS vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
30
RF FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
fIF = 350MHz
2800260024002200 3000
LO PORT RETURN LOSS vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
0
5
PLO = +3dBm
10
IF PORT RETURN LOSS vs. IF FREQUENCY
0
MAX19997A toc34
5
10
15
20
IF PORT RETURN LOSS (dB)
25
30
50 500
(LO > RF, STANDARD RF BAND)
fLO = 2600MHz
VCC = 4.75V, 5.0V, 5.25V
410320230140
IF FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
(LO > RF, STANDARD RF BAND)
400
390
MAX19997A toc37
380
MAX19997A toc35
VCC = 5.25V
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, STANDARD RF BAND)
0
5
10
15
20
IF PORT RETURN LOSS (dB)
25
30
50 500
fLO = 2600MHz
IF FREQUENCY (MHz)
MAX19997A toc38
fLO = 2350MHz
MAX19997A toc36
fLO = 2950MHz
410320230140
15
LO PORT RETURN LOSS (dB)
PLO = -3dBm
20
25
1900 3400
LO FREQUENCY (MHz)
PLO = 0dBm
31502900265024002150
370
SUPPLY CURRENT (mA)
360
350
VCC = 4.75V
-35 85 TEMPERATURE (°C)
VCC = 5.0V
6545255-15
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, extended RF band (see Table 2), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
14 ______________________________________________________________________________________
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
11
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
11
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
11
10
9
8
CONVERSION GAIN (dB)
7
6
26
25
24
INPUT IP3 (dBm)
23
22
TC = +85°C
1800 2300
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
TC = +85°C
TC = +25°C
TC = -30°C
1800 2300
RF FREQUENCY (MHz)
TC = -30°C
TC = +25°C
2200210020001900
PRF = -5dBm/TONE
2200210020001900
10
MAX19997A toc39
9
8
CONVERSION GAIN (dB)
7
6
26
MAX19997A toc42
25
24
INPUT IP3 (dBm)
23
22
PLO = -3dBm, 0dBm, +3dBm
1800 2300
RF FREQUENCY (MHz)
2200210020001900
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
1800 2300
RF FREQUENCY (MHz)
2200210020001900
10
MAX19997A toc40
9
8
CONVERSION GAIN (dB)
7
6
26
MAX19997A toc43
25
24
INPUT IP3 (dBm)
23
22
VCC = 4.75V, 5.0V, 5.25V
1800 2300
RF FREQUENCY (MHz)
2200210020001900
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
PRF = -5dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
1800 2300
RF FREQUENCY (MHz)
2200210020001900
MAX19997A toc41
MAX19997A toc44
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
13
12
11
10
NOISE FIGURE (dB)
9
8
7
1800 2300
TC = +85°C
TC = +25°C
TC = -30°C
RF FREQUENCY (MHz)
MAX19997A toc45
2200210020001900
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
13
12
11
10
NOISE FIGURE (dB)
9
8
7
1800 2300
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
13
12
MAX19997A toc46
11
10
NOISE FIGURE (dB)
9
8
2200210020001900
7
1800 2300
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
MAX19997A toc47
2200210020001900
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, extended RF band (see Table 2), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
15
2LO-2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
70
TC = +85°C
60
50
2LO-2RF RESPONSE (dBc)
40
TC = -30°C
1800 2300
RF FREQUENCY (MHz)
PRF = -5dBm
TC = +25°C
2200210020001900
3LO-3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
95
85
TC = -30°C
PRF = -5dBm
2LO-2RF RESPONSE vs. RF FREQUENCY
70
MAX19997A toc48
60
50
2LO-2RF RESPONSE (dBc)
40
1800 2300
3LO-3RF RESPONSE vs. RF FREQUENCY
95
MAX19997A toc51
85
(LO > RF, EXTENDED RF BAND)
PRF = -5dBm
MAX19997A toc49
PLO = -3dBm, 0dBm, +3dBm
2200210020001900
RF FREQUENCY (MHz)
(LO > RF, EXTENDED RF BAND)
PRF = -5dBm
MAX19997A toc52
2LO-2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
70
60
50
2LO-2RF RESPONSE (dBc)
40
1800 2300
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
95
85
PRF = -5dBm
MAX19997A toc50
2200210020001900
PRF = -5dBm
MAX19997A toc53
75
3LO-3RF RESPONSE (dBc)
65
TC = +25°C, +85°C
55
1800 2300
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
(LO > RF, EXTENDED RF BAND)
13
12
(dBm)
1dB
11
INPUT P
10
9
1800 2300
TC = +85°C
TC = -30°C
RF FREQUENCY (MHz)
TC = +25°C
75
3LO-3RF RESPONSE (dBc)
65
2200210020001900
55
1800 2300
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
2200210020001900
(LO > RF, EXTENDED RF BAND)
13
MAX19997A toc54
12
(dBm)
1dB
11
INPUT P
10
2200210020001900
9
1800 2300
PLO = -3dBm, 0dBm, +3dBm
2200210020001900
RF FREQUENCY (MHz)
75
3LO-3RF RESPONSE (dBc)
65
55
1800 2300
13
MAX19997A toc55
12
(dBm)
1dB
11
INPUT P
10
9
1800 2300
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
(LO > RF, EXTENDED RF BAND)
VCC = 5.0V
VCC = 4.75V
RF FREQUENCY (MHz)
VCC = 5.25V
2200210020001900
MAX19997A toc56
2200210020001900
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, extended RF band (see Table 2), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
16 ______________________________________________________________________________________
Y
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
60
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
60
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
1800 2300
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
0
-10
-20
LO LEAKAGE AT IF PORT (dBm)
-30 2150 2650
TC = -30°C, +25°C, +85°C
LO FREQUENCY (MHz)
55
MAX19997A toc57
50
45
40
CHANNEL ISOLATION (dB)
35
30
2200210020001900
1800 2300
PLO = -3dBm, 0dBm, +3dBm
2200210020001900
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENC
(LO > RF, EXTENDED RF BAND)
0
MAX19997A toc60
-10
-20
LO LEAKAGE AT IF PORT (dBm)
2550245023502250
-30
PLO = -3dBm, 0dBm, +3dBm
2150 2650
LO FREQUENCY (MHz)
2550245023502250
55
MAX19997A toc58
50
45
40
CHANNEL ISOLATION (dB)
35
30
1800 2300
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
0
MAX19997A toc61
-10
-20
LO LEAKAGE AT IF PORT (dBm)
-30 2150 2650
MAX19997A toc59
VCC = 4.75V, 5.0V, 5.25V
2200210020001900
RF FREQUENCY (MHz)
(LO > RF, EXTENDED RF BAND)
MAX19997A toc62
VCC = 4.75V, 5.0V, 5.25V
2550245023502250
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
30
TC = +85°C
20
RF-TO-IF ISOLATION (dB)
10
TC = +25°C
1800 2300
RF FREQUENCY (MHz)
TC = -30°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
30
MAX19997A toc63
20
RF-TO-IF ISOLATION (dB)
2200210020001900
10
1800 2300
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
MAX19997A toc64
2200210020001900
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
30
VCC = 4.75V, 5.0V, 5.25V
20
RF-TO-IF ISOLATION (dB)
10
1800 2300
RF FREQUENCY (MHz)
MAX19997A toc65
2200210020001900
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, extended RF band (see Table 2), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
17
Y
Y
Y
Y
LO LEAKAGE AT RF PORT vs. LO FREQUENC
(LO > RF, EXTENDED RF BAND)
-10
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
TC = -30°C, +25°C, +85°C
3180296027402520
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(LO > RF, EXTENDED RF BAND)
-10
-20
TC = -30°C, +25°C, +85°C
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
-10
MAX19997A toc66
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 2300
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(LO > RF, EXTENDED RF BAND)
-10
MAX19997A toc69
-20
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
MAX19997A toc67
3180296027402520
3400
MAX19997A toc70
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
-10
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 2300
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(LO > RF, EXTENDED RF BAND)
-10
-20
VCC = 4.75V, 5.0V, 5.25V
MAX19997A toc68
3180296027402520
3400
MAX19997A toc71
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
LO FREQUENCY (MHz)
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
3180296027402520
-50 2300 3400
LO FREQUENCY (MHz)
3180296027402520
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 2300 3400
LO FREQUENCY (MHz)
3180296027402520
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, extended RF band (see Table 2), VCC= +5.0V, LO is high-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
18 ______________________________________________________________________________________
)
RF PORT RETURN LOSS vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
0
5
10
fIF = 350MHz
MAX19997A toc72
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, EXTENDED RF BAND)
0
5
10
VCC = 4.75V, 5.0V, 5.25V
fLO = 2600MHz
MAX19997A toc73
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, EXTENDED RF BAND)
0
5
10
fLO = 2350MHz
MAX19997A toc74
15
20
RF PORT RETURN LOSS (dB)
25
30
1800 2300
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
0
5
10
15
LO PORT RETURN LOSS (dB)
20
25
1900 3400
15
20
IF PORT RETURN LOSS (dB)
25
2200210020001900
30
50
(LO > RF, EXTENDED RF BAND)
PLO = +3dBm
PLO = -3dBm
LO FREQUENCY (MHz)
PLO = 0dBm
2900 3150265024002150
IF FREQUENCY (MHz
400
MAX19997A toc75
390
380
370
SUPPLY CURRENT (mA)
360
350
15
20
IF PORT RETURN LOSS (dB)
25
fLO = 2600MHz
30
410320230140
500
50
SUPPLY CURRENT vs. TEMPERATURE (TC)
(LO > RF, EXTENDED RF BAND)
VCC = 5.25V
VCC = 4.75V
-35 TEMPERATURE (°C)
VCC = 5.0V
45 65255-15
IF FREQUENCY (MHz)
MAX19997A toc76
85
fLO = 2950MHz
410320230140
500
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is low-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
19
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
11
TC = -30°C
10
9
8
CONVERSION GAIN (dB)
7
6
TC = +85°C
2200 3000
RF FREQUENCY (MHz)
TC = +25°C
280026002400
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
26
TC = +85°C
25
PRF = -5dBm/TONE
TC = +25°C
11
10
MAX19997A toc77
9
8
CONVERSION GAIN (dB)
7
6
26
MAX19997A toc80
25
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
2200 3000
RF FREQUENCY (MHz)
280026002400
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
MAX19997A toc78
MAX19997A toc81
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
11
10
9
8
CONVERSION GAIN (dB)
7
6
2200 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
26
25
PRF = -5dBm/TONE
MAX19997A toc79
280026002400
MAX19997A toc82
24
INPUT IP3 (dBm)
23
TC = -30°C
22
2200 3000
RF FREQUENCY (MHz)
280026002400
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
13
12
11
10
NOISE FIGURE (dB)
9
8
7
TC = +25°C
2200 3000
TC = +85°C
TC = -30°C
280026002400
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
MAX19997A toc83
NOISE FIGURE (dB)
24
23
22
2200 3000
RF FREQUENCY (MHz)
280026002400
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
13
12
11
10
9
8
7
2200 3000
PLO = -3dBm, 0dBm, +3dBm
280026002400
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
MAX19997A toc84
NOISE FIGURE (dB)
24
23
22
VCC = 4.75V, 5.0V, 5.25V
2200 3000
RF FREQUENCY (MHz)
280026002400
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
13
12
11
10
9
8
7
2200 3000
VCC = 4.75V, 5.0V, 5.25V
280026002400
RF FREQUENCY (MHz)
MAX19997A toc85
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is low-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
20 ______________________________________________________________________________________
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
80
70
TC = +85°C
PRF = -5dBm
MAX19997A toc86
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
80
PLO = 0dBm
70
PRF = -5dBm
PLO = +3dBm
MAX19997A toc87
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
80
70
VCC = 4.75V, 5.0V, 5.25V
PRF = -5dBm
MAX19997A toc88
60
2RF-2LO RESPONSE (dBc)
50
TC = -30°C
TC = +25°C
2200 3000
RF FREQUENCY (MHz)
280026002400
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
95
85
75
3RF-3LO RESPONSE (dBc)
65
55
2200
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
PRF = -5dBm
280026002400
(RF > LO, STANDARD RF BAND)
13
MAX19997A toc89
3000
60
2RF-2LO RESPONSE (dBc)
50
2200 3000
RF FREQUENCY (MHz)
PLO = -3dBm
280026002400
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
95
85
75
3RF-3LO RESPONSE (dBc)
65
55
PLO = -3dBm, 0dBm, +3dBm
2200 3000
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
PRF = -5dBm
280026002400
(RF > LO, STANDARD RF BAND)
13
60
2RF-2LO RESPONSE (dBc)
50
2200 3000
3RF-3LO RESPONSE vs. RF FREQUENCY
95
MAX19997A toc90
85
75
3RF-3LO RESPONSE (dBc)
65
55
2200 3000
13
280026002400
RF FREQUENCY (MHz)
(RF > LO, STANDARD RF BAND)
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
280026002400
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
(RF > LO, STANDARD RF BAND)
MAX19997A toc91
12
(dBm)
1dB
11
INPUT P
10
9
2200 3000
TC = +85°C
TC = -30°C
RF FREQUENCY (MHz)
TC = +25°C
280026002400
MAX19997A toc92
12
(dBm)
1dB
11
INPUT P
10
9
2200 3000
PLO = -3dBm, 0dBm, +3dBm
280026002400
RF FREQUENCY (MHz)
MAX19997A toc93
(dBm)
INPUT P
12
VCC = 5.0V
1dB
11
10
9
2200 3000
RF FREQUENCY (MHz)
VCC = 5.25V
VCC = 4.75V
MAX19997A toc94
280026002400
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is low-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
21
Y
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
2200 3000
TC = -30°C, +25°C, +85°C
280026002400
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
0
-10
CHANNEL ISOLATION vs. RF FREQUENCY
55
50
MAX19997A toc95
45
40
CHANNEL ISOLATION (dB)
35
30
2200 3000
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
0
MAX19997A toc98
-10
(RF > LO, STANDARD RF BAND)
MAX19997A toc96
PLO = -3dBm, 0dBm, +3dBm
280026002400
RF FREQUENCY (MHz)
(RF > LO, STANDARD RF BAND)
MAX19997A toc99
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
2200 3000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
0
-10
MAX19997A toc97
280026002400
MAX19997A toc100
TC = -30°C, +25°C, +85°C
-20
LO LEAKAGE AT IF PORT (dBm)
-30 1850 2650
LO FREQUENCY (MHz)
245022502050
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
30
TC = +85°C
20
TC = +25°C
RF-TO-IF ISOLATION (dB)
10
2200 3000
RF FREQUENCY (MHz)
TC = -30°C
280026002400
-20
LO LEAKAGE AT IF PORT (dBm)
-30 1850 2650
RF-TO-IF ISOLATION vs. RF FREQUENCY
30
MAX19997A toc101
20
RF-TO-IF ISOLATION (dB)
10
2200 3000
PLO = -3dBm, 0dBm, +3dBm
245022502050
LO FREQUENCY (MHz)
(RF > LO, STANDARD RF BAND)
PLO = -3dBm, 0dBm, +3dBm
280026002400
RF FREQUENCY (MHz)
-20
LO LEAKAGE AT IF PORT (dBm)
-30 1850 2650
RF-TO-IF ISOLATION vs. RF FREQUENCY
30
MAX19997A toc102
20
RF-TO-IF ISOLATION (dB)
10
2200 3000
VCC = 4.75V, 5.0V, 5.25V
245022502050
LO FREQUENCY (MHz)
(RF > LO, STANDARD RF BAND)
MAX19997A toc103
VCC = 4.75V, 5.0V, 5.25V
280026002400
RF FREQUENCY (MHz)
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is low-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
22 ______________________________________________________________________________________
Y
Y
Y
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-10
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-10
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-10
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 1900 2900
TC = -30°C, +25°C, +85°C
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
-10
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 1900
TC = -30°C, +25°C, +85°C
LO FREQUENCY (MHz)
MAX19997A toc104
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
2700250023002100
-50
PLO = -3dBm, 0dBm, +3dBm
1900 2900
LO FREQUENCY (MHz)
2700250023002100
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
-10
MAX19997A toc107
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
2700250023002100
2900
1900
PLO = -3dBm, 0dBm, +3dBm
2700250023002100
LO FREQUENCY (MHz)
MAX19997A toc105
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50
-10
MAX19997A toc108
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
2900
-50
VCC = 4.75V, 5.0V, 5.25V
1900 2900
LO FREQUENCY (MHz)
2700250023002100
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
VCC = 4.75V, 5.0V, 5.25V
1900 2900
LO FREQUENCY (MHz)
2700250023002100
MAX19997A toc106
MAX19997A toc109
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is low-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
23
RF PORT RETURN LOSS vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
0
5
10
15
20
RF PORT RETURN LOSS (dB)
PLO = -3dBm, 0dBm, +3dBm
25
30
2200 3000
RF FREQUENCY (MHz)
fIF = 350MHz
280026002400
LO PORT RETURN LOSS vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
0
PLO = +3dBm
5
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
0
5
fLO = 2250MHz
10
15
20
IF PORT RETURN LOSS (dB)
fLO = 1850MHz
25
30
50 500
IF FREQUENCY (MHz)
MAX19997A toc114
fLO = 2650MHz
320 410230140
0
MAX19997A toc110
5
10
15
20
IF PORT RETURN LOSS (dB)
25
30
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
fLO = 2250MHz
VCC = 4.75V, 5.0V, 5.25V
50 500
IF FREQUENCY (MHz)
320 410230140
SUPPLY CURRENT vs. TEMPERATURE (TC)
(RF > LO, STANDARD RF BAND)
400
390
MAX19997A toc113
MAX19997A toc111
VCC = 5.25V
MAX19997A toc112
10
15
LO PORT RETURN LOSS (dB)
PLO = -3dBm
20
25
1900 3400
LO FREQUENCY (MHz)
PLO = 0dBm
2650 2900 315024002150
380
370
SUPPLY CURRENT (mA)
360
350
VCC = 4.75V
-35 85 TEMPERATURE (°C)
VCC = 5.0V
25 45 655-15
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is low-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
24 ______________________________________________________________________________________
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
11
TC = -30°C
10
9
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
11
10
9
TC = +25°C
VCC = 3.3V
MAX19997A toc115
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
11
10
9
VCC = 3.3V
MAX19997A toc116
MAX19997A toc117
8
7
CONVERSION GAIN (dB)
6
5
2200 3000
RF FREQUENCY (MHz)
TC = +85°C
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
22
VCC = 3.3V
21
20
19
INPUT IP3 (dBm)
18
17
2200 3000
TC = +85°C
TC = -30°C
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
13
12
11
TC = +85°C
280026002400
PRF = -5dBm/TONE
TC = +25°C
280026002400
VCC = 3.3V
8
7
CONVERSION GAIN (dB)
6
5
22
21
MAX19997A toc118
20
19
INPUT IP3 (dBm)
18
17
13
12
MAX19997A toc121
11
PLO = -3dBm, 0dBm, +3dBm
2200 3000
RF FREQUENCY (MHz)
280026002400
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
2200 3000
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
280026002400
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
8
7
CONVERSION GAIN (dB)
6
5
2200 3000
22
21
MAX19997A toc119
20
19
INPUT IP3 (dBm)
18
17
13
12
MAX19997A toc122
11
VCC = 3.0V, 3.3V, 3.6V
280026002400
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
PRF = -5dBm/TONE
VCC = 3.0V, 3.3V, 3.6V
2200 3000
RF FREQUENCY (MHz)
280026002400
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc120
MAX19997A toc123
10
NOISE FIGURE (dB)
9
8
7
TC = +25°C
2200 3000
RF FREQUENCY (MHz)
TC = -30°C
280026002400
10
NOISE FIGURE (dB)
9
8
7
PLO = -3dBm, 0dBm, +3dBm
2200 3000
RF FREQUENCY (MHz)
280026002400
10
NOISE FIGURE (dB)
9
8
7
2200 3000
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
280026002400
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is low-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
25
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
90
VCC = 3.3V
TC = -30°C
80
70
2RF-2LO RESPONSE (dBc)
60
50
TC = +85°C
2200 3000
RF FREQUENCY (MHz)
PRF = -5dBm
TC = +25°C
280026002400
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
95
85
75
VCC = 3.3V
PRF = -5dBm
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
90
80
70
2RF-2LO RESPONSE (dBc)
60
50
2200 3000
VCC = 3.3V
VCC = 3.0V
RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
95
85
75
VCC = 3.0V, 3.3V, 3.6V
90
MAX19997A toc124
80
70
2RF-2LO RESPONSE (dBc)
60
50
2200 3000
95
85
MAX19997A toc127
75
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
PLO = +3dBm
PLO = -3dBm
RF FREQUENCY (MHz)
PRF = -5dBm
PLO = 0dBm
280026002400
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
PRF = -5dBm
MAX19997A toc125
MAX19997A toc128
PRF = -5dBm
VCC = 3.6V
280026002400
PRF = -5dBm
MAX19997A toc126
MAX19997A toc129
65
3RF-3LO RESPONSE (dBc)
55
45
TC = -30°C, +25°C, +85°C
2200 3000
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
280026002400
(RF > LO, STANDARD RF BAND)
10
9
8
(dBm)
1dB
7
INPUT P
6
5
TC = -30°C
2200 3000
TC = +85°C
TC = +25°C
280026002400
RF FREQUENCY (MHz)
VCC = 3.3V
65
3RF-3LO RESPONSE (dBc)
55
45
2200 3000
10
MAX19997A toc130
9
8
(dBm)
1dB
7
INPUT P
6
5
2200 3000
280026002400
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
280026002400
RF FREQUENCY (MHz)
65
3RF-3LO RESPONSE (dBc)
55
45
2200 3000
10
MAX19997A toc131
9
8
(dBm)
1dB
7
INPUT P
6
5
2200 3000
280026002400
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
RF FREQUENCY (MHz)
VCC = 3.6V
VCC = 3.0V
280026002400
MAX19997A toc132
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is low-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
26 ______________________________________________________________________________________
Y
Y
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
55
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
55
VCC = 3.3V
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
55
VCC = 3.3V
50
45
40
CHANNEL ISOLATION (dB)
LO LEAKAGE AT IF PORT (dBm)
TC = -30°C, +25°C, +85°C
35
30
2200 3000
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
0
TC = -30°C
-10
-20
-30
TC = +85°C
TC = +25°C
1850 2650
LO FREQUENCY (MHz)
280026002400
VCC = 3.3V
245022502050
50
MAX19997A toc133
45
40
CHANNEL ISOLATION (dB)
35
30
2200 3000
LO LEAKAGE AT IF PORT vs. LO FREQUENC
0
MAX19997A toc136
-10
-20
LO LEAKAGE AT IF PORT (dBm)
-30 1850 2650
PLO = -3dBm, 0dBm, +3dBm
280026002400
RF FREQUENCY (MHz)
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
245022502050
LO FREQUENCY (MHz)
50
MAX19997A toc134
45
40
CHANNEL ISOLATION (dB)
35
30
2200 3000
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
0
MAX19997A toc137
-10
-20
LO LEAKAGE AT IF PORT (dBm)
-30 1850 2650
MAX19997A toc135
VCC = 3.0V, 3.3V, 3.6V
280026002400
RF FREQUENCY (MHz)
MAX19997A toc138
VCC = 3.0V, 3.3V, 3.6V
245022502050
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
30
TC = +85°C
25
20
RF-TO-IF ISOLATION (dB)
15
10
TC = +25°C
2200 3000
RF FREQUENCY (MHz)
TC = -30°C
280026002400
VCC = 3.3V
30
MAX19997A toc139
25
20
RF-TO-IF ISOLATION (dB)
15
10
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
2200 3000
RF FREQUENCY (MHz)
280026002400
MAX19997A toc140
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
30
25
VCC = 3.0V, 3.3V, 3.6V
20
RF-TO-IF ISOLATION (dB)
15
10
2200
RF FREQUENCY (MHz)
MAX19997A toc141
280026002400
3000
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is low-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
27
Y
Y
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-10
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 1900
TC = -30°C, +25°C, +85°C
LO FREQUENCY (MHz)
VCC = 3.3V
2500 270023002100
2900
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-10
-20
VCC = 3.3V
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX19997A toc142
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 1900
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
-10
MAX19997A toc145
-20
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
2500 270023002100
LO FREQUENCY (MHz)
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
MAX19997A toc143
2900
MAX19997A toc146
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-10
-20
-30
-40
LO LEAKAGE AT RF PORT (dBm)
-50 1900
VCC = 3.0V, 3.3V, 3.6V
2500 270023002100
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENC
(RF > LO, STANDARD RF BAND)
-10
-20
MAX19997A toc144
2900
MAX19997A toc147
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 1900
TC = -30°C, +25°C, +85°C
LO FREQUENCY (MHz)
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
2500 270023002100
2900
1900
PLO = -3dBm, 0dBm, +3dBm
2500 270023002100
LO FREQUENCY (MHz)
2900
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50 1900
VCC = 3.0V, 3.3V, 3.6V
LO FREQUENCY (MHz)
2500 270023002100
2900
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, standard RF band (see Table 1), VCC= +5.0V, LO is low-side injected for a 350MHz IF, PLO= 0dBm,
P
RF
= -5dBm, TC= +25°C, unless otherwise noted.)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
28 ______________________________________________________________________________________
RF PORT RETURN LOSS vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
0
VCC = 3.3V
5
10
PLO = -3dBm, 0dBm, +3dBm
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
0
10
VCC = 3.3V
fLO = 2650MHz
fIF = 350MHz
MAX19997A toc148
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
0
10
fLO = 2250MHz
MAX19997A toc149
MAX19997A toc150
15
20
RF PORT RETURN LOSS (dB)
25
30
2200 3000
2600 28002400
RF FREQUENCY (MHz)
10
15
LO PORT RETURN LOSS (dB)
20
25
20
IF PORT RETURN LOSS (dB)
VCC = 3.0V, 3.3V, 3.6V
30
40
50 500
LO PORT RETURN LOSS vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
0
5
1900
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
2400 2650 2900 31502150
LO FREQUENCY (MHz)
VCC = 3.3V
230 320 410140
IF FREQUENCY (MHz)
300
290
MAX19997A toc151
280
270
SUPPLY CURRENT (mA)
260
3400
250
20
fLO = 1850MHz
IF PORT RETURN LOSS (dB)
30
40
50 500
IF FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
(RF > LO, STANDARD RF BAND)
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
-35 85 TEMPERATURE (°C)
6545255-15
fLO = 2250MHz
230 320 410140
MAX19997A toc152
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________ 29
Detailed Description
The MAX19997A dual, downconversion mixer provides high linearity and low noise figure for a multitude of 1800MHz to 2900MHz base-station applications. The device fully supports both low-side and high-side LO injection architectures for the 2300MHz to 2900MHz WiMAX, LTE, WCS, and MMDS bands. WCDMA, cdma2000, and PCS1900 applications utilizing high­side LO injection architectures are also supported by adding one additional tuning element (a shunt inductor) on each RF port.
The MAX19997A operates over an LO range of 1950MHz to 3400MHz and an IF range of 50MHz to 500MHz. Integrated baluns and matching circuitry allow 50Ω single-ended interfaces to the RF and LO ports. The integrated LO buffer provides a high drive
level to the mixer core, reducing the LO drive required at the MAX19997A’s input to a range of -3dBm to +3dBm. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF-2LO (low­side injection) and 2LO-2RF (high-side injection) perfor­mance.
RF Input and Balun
The MAX19997A’s two RF inputs (RFMAIN and RFDIV) provide a 50Ω match when combined with a series DC­blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through each channel’s on-chip balun. When using a 22pF DC-blocking capacitor, the RF port input return loss is typically 15dB over the RF frequency range of 2600MHz to 2900MHz.
Pin Description
PIN NAME FUNCTION
1 RFMAIN
2, 5, 6, 8, 12, 15,
18, 23, 28, 31, 34
3, 7, 20, 22, 24–27 GND
4, 10, 16, 21, 30,
36
9 RFDIV Diversity Channel RF Input. Internal matched to 50Ω. Requires a DC-blocking capacitor.
11 IFD_SET
13, 14 IFD+, IFD-
17 LO_ADJ_D
19 LO
29 LO_ADJ_M
32, 33 IFM-, IFM+
35 IFM_SET
GND Ground. Not internally connected. Ground these pins or leave unconnected.
V
CC
Main Channel RF Input. Internally matched to 50Ω. Requires an input DC-blocking capacitor.
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together.
Power Supply. Connect bypass capacitors as close as possible to the pin (see the Typical Application Circuit).
IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity IF amplifier.
Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to V
(see the Typical Application Circuit).
CC
LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity LO amplifier.
Local Oscillator Input. This input is internally matched to 50Ω. Requires an input DC­blocking capacitor.
LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main LO amplifier.
Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to
(see the Typical Application Circuit).
V
CC
IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main IF amplifier.
E xp osed P ad . Inter nal l y connected to GN D . S ol d er thi s exp osed p ad to a P C B p ad that
—EP
uses m ul ti p l e g r ound vi as to p r ovi d e heat tr ansfer out of the d evi ce i nto the P C B g r ound p l anes. These m ul ti p l e g r ound vi as ar e al so r eq ui r ed to achi eve the noted RF p er for m ance.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
30 ______________________________________________________________________________________
The MAX19997A’s RF range can be further extended down to 1800MHz by adding one additional tuning ele­ment on each RF port. For 1950MHz RF applications, connect a 12nH shunt inductor from pins 1 and 9 to ground. Also, change the value of the DC-blocking capacitors (C1 and C8) from 22pF to 1pF. See the
Typical Application Circuit
for details.
LO Input, Buffer, and Balun
A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifica­tions are for an LO signal power from -3dBm to +3dBm. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO input to the IF out­puts are integrated on-chip.
High-Linearity Mixer
The core of the MAX19997A is a pair of double­balanced, high-performance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, the cascaded IIP3, 2RF-2LO rejection, and NF performance are typically +24dBm IIP3, -67dBc, and 10.3dB, respectively for low-side LO injection architectures covering the 2300MHz to 2900MHz band. Cascaded performance levels are comparable for high-side LO injection architectures; IIP3, 2LO-2RF rejection, and NF levels are typically rated at +24dBm IIP3, -73dBc, and 10.4dB, respective­ly over the same 2300MHz to 2900MHz band.
Differential IF Output Amplifier
The MAX19997A mixers have an IF frequency range of 50MHz to 500MHz. The differential, open-collector IF output ports require external pullup inductors to V
CC
. These pullup inductors are also used to resonate out the parasitic shunt capacitance of the IC, PCB components, and PCB to provide an optimized IF match at the fre­quency of interest. Note that differential IF outputs are ideal for providing enhanced 2RF-2LO and 2LO-2RF rejection performance. Single-ended IF applications require a 4:1 balun to transform the 200Ω differential output impedance to a 50Ω single-ended output. After the balun, voltage standing-wave ratio (VSWR) is typi­cally 1.2:1.
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50Ω. No matching components are required for RF frequencies ranging from 2400MHz to 2900MHz. RF and LO inputs require only DC-blocking capacitors for interfacing.
If desired, the RF band can be extended down to 1800MHz by adding two external matching compo­nents on each RF port. See the
Typical Application
Circuit
and Table 2 for details.
The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50Ω single­ended output (see the
Typical Application Circuit
).
Reduced-Power Mode
Each channel of the MAX19997A has two pins (LO_ADJ_, IF_SET) that allow external resistors to set the internal bias currents. Nominal values for these resistors are shown in Tables 1 and 2. Larger-value resistors can be used to reduce power dissipation at the expense of some performance loss. If ±1% resistors are not readily available, ±5% resistors may be substituted.
Significant reductions in power consumption can be realized by operating the mixer with an optional supply voltage of +3.3V. Doing so reduces the overall power consumption by up to 53%. See the
+3.3V Supply AC
Electrical Characteristics
table and the relevant +3.3V
curves in the
Typical Operating Characteristics
section
to evaluate the power vs. performance tradeoffs.
Layout Considerations
A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package.
The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/ther­mal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19997A evaluation kit can be used as a refer­ence for board layout. Gerber files are available upon request at www.maxim-ic.com.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________ 31
Table 1. Standard RF Band Application Circuit Component Values (Optimized for Frequencies Ranging from 2400MHz to 2900MHz)
*
Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.
Power-Supply Bypassing
Proper voltage supply bypassing is essential for high­frequency circuit stability. Bypass each VCCpin with the capacitors shown in the
Typical Application Circuit
.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX19997A’s 36-pin thin QFN-EP package provides a low thermal-resistance
path to the die. It is important that the PCB on which the MAX19997A is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low­inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
C1, C8 2 22pF microwave capacitors (0402)
C14 1 1.5pF microwave capacitor (0402)
C4, C9, C13, C15,
C17, C18
C10, C11, C12,
C19, C20, C21
L1, L2, L3, L4 4 120nH wire-wound high-Q inductors* (0805) Coilcraft, Inc.
L7, L8 0 Not used
R1, R4 2
6 0.01µF microwave capacitors (0402)
6 82pF microwave capacitors (0603)
750Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section.
1.1kΩ ±1% resistors (0402). Use for V values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section.
= +3.3V applications. Larger
CC
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Digi-Key Corp.
Digi-Key Corp.
698Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger values can be used to reduce power at the expense of some
R2, R5 2
R3, R6 2
T1, T2 2 4:1 IF baluns (TC4-1W-17+) Mini-Circuits
U1 1 MAX19997A IC (36 TQFN-EP)
performance loss. See the Typical Operating Characteristics section.
845Ω ±1% resistors (0402). Use for V values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section.
0Ω resistors (1206). These resistors can be increased in value to reduce power dissipation in the device, but reduces the compression point. Full
performance achieved using 0Ω.
P
1dB
= +3.3V applications. Larger
CC
Digi-Key Corp.
Digi-Key Corp.
Digi-Key Corp.
Maxim Integrated Products, Inc.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
32 ______________________________________________________________________________________
Table 2. Extended RF Band Application Circuit Component Values (Optimized for 1950MHz Operation)
*
Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER
C1, C8 2 1pF microwave capacitors (0402)
C14 1 1.5pF microwave capacitor (0402)
C4, C9, C13, C15,
C17, C18
C10, C11, C12,
C19, C20, C21
L1, L2, L3, L4 4 120nH wire-wound high-Q inductors* (0805) Coilcraft, Inc.
L7, L8 2
6 0.01µF microwave capacitors (0402)
6 82pF microwave capacitors (0603)
12nH i nd uctor ( 0402) . U se to i m p r ove RF m atch fr om 1800M H z to 2400M H z. C onnect L7 and L8 fr om p i ns 1 and 9, r esp ecti vel y, to g r ound .
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Coilcraft, Inc.
750Ω ±1% resistors (0402). Use for V
R1, R4 2
R2, R5 2
R3, R6 2
T1, T2 2 4:1 IF balun (TC4-1W-17+) Mini-Circuits
U1 1 MAX19997A IC (36 TQFN-EP)
values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section.
698Ω ±1% resistors (0402). Use for V values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section.
0Ω resistors (1206). These resistors can be increased in value to reduce power dissipation in the device, but reduces the compression point. Full
performance achieved using 0Ω.
P
1dB
= +5.0V applications. Larger
CC
= +5.0V applications. Larger
CC
Digi-Key Corp.
Digi-Key Corp.
Digi-Key Corp.
Maxim Integrated Products, Inc.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________ 33
Typical Application Circuit
RF MAIN INPUT
RF DIV INPUT
C1
C8
C9
C13
C17
C18
R1
V
CC
L2*
L1*
R3
C20
C19
IF MAIN OUTPUT
T1
R2
C14
LO
4:1
4:1
V
CC
V
CC
V
CC
V
CC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
28
29
30
31
32
33
34
35
36
19
20
21
22
23
24
25
26
27
GND
V
CC
GND
GND
GND
GND
GND
GND
RFMAIN
RFDIV
EXPOSED
PAD
IFD_SET
GND
GND
LO_ADJ_D
GND
V
CC
V
CC
GND
LO_ADJ_M
V
CC
GND
GND
IFM_SET
IFD+
IFD-
V
CC
IFM+
IFM-
LO
*USE 390nH (0805) INDUCTORS FOR AN IF FREQUENCY OF 200MHz. CONTACT FACTORY FOR DETAILS.
**CONNECT INDUCTORS TO IMPROVE RF MATCH FROM 1800MHz TO 2400MHz. SEE TABLE 2 FOR DETAILS.
GND
GND
GND
GND
GND
V
CC
MAX19997A
C4
V
CC
C21
C15
V
CC
R5
R4
V
CC
L3*
L4*
R6
C10
C11
T2
IF DIV OUTPUT
C12
+
L7**
L8**
GND
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
36 Thin QFN-EP T3666+2
21-0141
1
+
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
28
29
30
31
32
33
34
35
36
19
20
21
22
23
24
25
26
27
GND
V
CC
GND
GND
GND
GND
GND
GND
RFMAIN
RFDIV
EXPOSED
PAD
IFD_SET
GND
GND
LO_ADJ_D
GND
V
CC
V
CC
GND
LO_ADJ_M
V
CC
GND
GND
IFM_SET
IFD+
IFD-
V
CC
IFM+
IFM-
LO
GND
GND
GND
GND
GND
GND
V
CC
MAX19997A
EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.
6mm x 6mm THIN QFN (EXPOSED PAD)
TOP VIEW
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages
.
Pin Configuration/
Functional Block Diagram
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
34
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2008 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer
MAX19997A
Loading...