Rainbow Electronics MAX19995 User Manual

General Description
The MAX19995 dual-channel downconverter provides up to 9dB of conversion gain, +24.8dBm input IP3, +13.3dBm 1dB input compression point, and a noise figure as low as 9dB for 1700MHz to 2200MHz diversity receiver applications. With an optimized LO frequency range of 1400MHz to 2000MHz, this mixer is ideal for low-side LO injection architectures. High-side LO injec­tion is supported by the MAX19995A, which is pin-pin and functionally compatible with the MAX19995.
In addition to offering excellent linearity and noise per­formance, the MAX19995 also yields a high level of component integration. This device includes two dou­ble-balanced passive mixer cores, two LO buffers, a dual-input LO selectable switch, and a pair of differen­tial IF output amplifiers. Integrated on-chip baluns allow for single-ended RF and LO inputs.
The MAX19995 requires a nominal LO drive of 0dBm and a typical supply current of 297mA at V
CC
= 5.0V or
212mA at V
CC
= 3.3V.
The MAX19995/MAX19995A are pin compatible with the MAX19985/MAX19985A series of 700MHz to 1000MHz mixers and pin similar with the MAX19997A/ MAX19999 series of 1800MHz to 4000MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used across multiple frequency bands.
The MAX19995 is available in a 6mm x 6mm, 36-pin thin QFN package with an exposed pad. Electrical per­formance is guaranteed over the extended temperature range, from TC= -40°C to +85°C.
Applications
UMTS/WCDMA/LTE Base Stations
cdma2000®Base Stations
DCS1800 and EDGE Base Stations
PCS1900 and EDGE Base Stations
PHS/PAS Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
o 1700MHz to 2200MHz RF Frequency Range
o 1400MHz to 2000MHz LO Frequency Range
o 1750MHz to 2700MHz LO Frequency Range
(MAX19995A)
o 50MHz to 500MHz IF Frequency Range
o 9dB Typical Conversion Gain
o 9dB Typical Noise Figure
o +24.8dBm Typical Input IP3
o +13.3dBm Typical Input 1dB Compression Point
o 79dBc Typical 2RF-2LO Spurious Rejection at
P
RF
= -10dBm
o Dual Channels Ideal for Diversity Receiver
Applications
o 49dB Typical Channel-to-Channel Isolation
o Low -3dBm to +3dBm LO Drive
o Integrated LO Buffer
o Internal RF and LO Baluns for Single-Ended
Inputs
o Built-In SPDT LO Switch with 56dB LO-to-LO
Isolation and 50ns Switching Time
o Pin Compatible with the MAX19985/MAX19985A/
MAX19995A Series of 700MHz to 2200MHz Mixers
o Pin Similar to the MAX19997A/MAX19999 Series
of 1800MHz to 4000MHz Mixers
o Single +5.0V or +3.3V Supply
o External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/Reduced­Performance Mode
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-4253; Rev 0; 12/08
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
cdma2000 is a trademark of Telecommunications Industry Association.
PART
PIN-PACKAGE
MAX19995ETX+
36 Thin QFN-EP*
36 Thin QFN-EP*
Pin Configuration and Typical Application Circuit appear at end of data sheet.
+
Denotes a lead(Pb)-free/RoHS-compliant package.
*
EP = Exposed pad.
T = Tape and reel.
TEMP RANGE
-40°C to +85°C
MAX19995ETX+T -40°C to +85°C
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the DCS/PCS band, VCC= +4.75V to +5.25V, TC= -40°C to +85°C. R1 = R4 = 806, R2 =
R5 = 2.32k. Typical values are at V
CC
= +5.0V, TC= +25°C, unless otherwise noted. All parameters are production tested.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Based on junction temperature TJ= TC+ (θJCx VCCx ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the
Applications Information
section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature T
J
= TA+ (θJAx VCCx ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TCis the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
V
CC
to GND...........................................................-0.3V to +5.5V
LO1, LO2 to GND ...............................................................±0.3V
Any Other Pins to GND...............................-0.3V to (V
CC
+ 0.3V)
RFMAIN, RFDIV, and LO_ Input Power ..........................+15dBm
RFMAIN, RFDIV Current (RF is DC shorted to GND
through a balun)...............................................................50mA
Continuous Power Dissipation (Note 1) ...............................8.7W
θ
JA
(Notes 2, 3)..............................................................+38°C/W
θ
JC
(Notes 1, 3)...............................................................7.4°C/W
Operating Case Temperature Range
(Note 4).............................................................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= +3.0V to +3.6V, TC= -40°C to +85°C, R1 = R4 = 909, R2 = R5 = 2.49k. Typical values are at
V
CC
= +3.3V, TC= +25°C, unless otherwise noted. All parameters are guaranteed by design and not production tested.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
Supply Current I
LOSEL Input High Voltage V
LOSEL Input Low Voltage V
LOSEL Input Current IIH and I
CC
CC
Total supply current, VCC = +5.0V 297 370 mA
IH
IL
IL
4.75 5 5.25 V
2V
0.8 V
-10 +10 µA
Supply Voltage V
Supply Current I
LOSEL Input High Voltage V
LOSEL Input Low Voltage V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
CC
CC
Total supply current, VCC = +3.3V 212 mA
IH
IL
3.0 3.3 3.6 V
2V
0.8 V
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________ 3
RECOMMENDED AC OPERATING CONDITIONS
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
optimized for the DCS/PCS band, R1 = R4 = 806, R2 = R5 = 2.32k, VCC= +4.75V to +5.25V, RF and
LO ports are driven from 50sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 1700MHz to 2000MHz, fLO= 1510MHz to
1810MHz, f
IF
= 190MHz, fRF> fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm,
fRF= 1800MHz, f
LO
= 1610MHz, fIF= 190MHz, TC= +25°C, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency fRF (Note 5) 1700 2200 MHz
LO Frequency fLO (Note 5) 1400 2000 MHz
Using Mini-Circuit s TC4-1W-17 4:1 transformer as defined in the typical application circuit, IF matching components
IF Frequency f
LO Drive Le vel PLO -3 +3 dBm
IF
affect the IF frequency range (Note 5)
Using alternative Mini-Circuits TC4-1W-7A 4:1 tran sformer, IF matching component s affect the IF frequency range (Note 5)
100 500 MHz
50 250 MHz
Conversion Gain G
Conversion Gain Flatness
Gain Variation Over Temperature TC
Input Compression Point (Note 7)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
7911
TC = +25°C 7.8 9 10.2
C
Typical Application Circuit optimized for UMTS band (R1 = R4 = 681, R2 = R5 =
1.5k), f
Flatness over any one of three frequency bands: fRF = 1710MHz to 1785MHz
= 1850MHz to 1910MHz
f
RF
f
= 1920MHz to 1980MHz
RF
fRF = 1700MHz to 2000MHz, f
CG
IP
1dB
LO
= 190MHz, TC = -40°C to +85°C
f
IF
f
RF
Typical Application Circuit optimized for UMTS band (R1 = R4 = 681, R2 = R5 =
1.5k), f f
= 1950MHz
RF
= 1760MHz, fRF = 1950MHz
LO
= 1510MHz to 1810MHz ,
= 1700MHz for min value 9.5 12.5
= 1760MHz, fIF = 190MHz,
LO
8.9
±0.1 dB
-0.009 dB/°C
13.3
dB
dBm
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
4 _______________________________________________________________________________________
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the DCS/PCS band, R1 = R4 = 806, R2 = R5 = 2.32k, VCC= +4.75V to +5.25V, RF and
LO ports are driven from 50sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 1700MHz to 2000MHz, fLO= 1510MHz to
1810MHz, f
IF
= 190MHz, fRF> fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm,
fRF= 1800MHz, f
LO
= 1610MHz, fIF= 190MHz, TC= +25°C, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Input Intercept Point IIP3
Input Intercept Variation Over Temperature
f
- f
= 1MHz, PRF = -5dBm per tone,
RF2
= 2000MHz for min value
- f
RF1
RF2
RF2
= 1MHz,
= -5dBm per tone, TC = +25°C to
= 1760MHz, fIF = 190MHz,
LO
= 1950MHz, f
= -5dBm per tone
- f
= 1MHz, PRF = -5dBm per tone,
RF2
= -40°C to +85°C
RF1
- f
= 1MHz,
20.5 23.7
21.5 23.7
24.8
0.0035 dBm/°C
911
TC
RF1
f
RF
fIF = 190MHz, fLO = 1810MHz, fRF = 2000MHz for min value, f P
RF
+85°C
Typical Application Circuit optimized for UMTS band (R1 = R4 = 681, R2 = R5 =
1.5k), f f
RF
P
RF
f
IIP3
RF1
T
C
Single sideband, no blockers present (Note 8)
dBm
Noise Figure NF
Noise Figure Temperature Coefficient
Noise Figure with Blocker NF
TC
SSB
NF
B
fLO = 1610MHz, fIF = 190MHz, f
= 1800MHz, TC = +25°C, PLO = 0dBm,
RF
single sideband, no blockers present (Note 8)
Typical Application Circuit optimized for UMTS band (R1 = R4 = 681 , R2 = R5 =
1.5k), f f
RF
blockers present
Single sideband, no blockers present, T
C
f
BLOCKER
+8dBm, f P
LO
(Notes 8, 9)
= 190MHz, fLO = 1760MHz,
IF
= 1950MHz, single sideband, no
= -40°C to +85°C
= 1900MHz, P
= 1800MHz, fLO = 1610MHz,
RF
= 0dBm, VCC = +5.0V, TC = +25°C
BLOCKER
=
9 9.6
dB
9.3
0.016 dB/°C
19 20.5 dB
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________ 5
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the DCS/PCS band, R1 = R4 = 806, R2 = R5 = 2.32k, VCC= +4.75V to +5.25V, RF and
LO ports are driven from 50sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 1700MHz to 2000MHz, fLO= 1510MHz to
1810MHz, f
IF
= 190MHz, fRF> fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm,
fRF= 1800MHz, f
LO
= 1610MHz, fIF= 190MHz, TC= +25°C, unless otherwise noted.) (Note 6)
2RF-2LO Spur Rejection 2 x 2
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
fRF = 1800MHz, fLO = 1610MHz, P
= -10dBm (Note 8)
RF
fRF = 1800MHz, fLO = 1610MHz, P
= -5dBm (Note 8)
RF
fRF = 1800MHz, fLO = 1610MHz, P
= 0dBm, PRF = -10dBm,
LO
= +5.0V, TC = +25°C (Note 8)
V
CC
fRF = 1800MHz, fLO = 1610MHz,
= 0dBm, PRF = -5dBm, VCC = +5.0V,
P
LO
T
= +25°C (Note 8)
C
Typical Application Circuit optimized for UMTS band (R1 = R4 = 681, R2 = R5 =
1.5k), f f
RF
Typical Application Circuit optimized for UMTS band (R1 = R4 = 681, R2 = R5 =
1.5k), f f
RF
fRF = 1800MHz, f P
RF
fRF = 1800MHz, f P
RF
fRF = 1800MHz, f P
LO
V
CC
= 190MHz, fLO = 1760MHz,
IF
= 1950MHz, PRF = -10dBm
= 190MHz, fLO = 1760MHz,
IF
= 1950MHz, PRF = -5dBm
= 1610MHz,
= -10dBm (Note 8)
= -5dBm (Note 8)
= 0dBm, P
= +5.0V, TC = +25oC (Note 8)
LO
= 1610MHz,
LO
= 1610MHz,
LO
= -10dBm,
RF
54 79
49 74
56 79
51 74
79
74
77 91
67 81
79 91
dBc
3RF-3LO Spur Rejection 3 x 3
fRF = 1800MHz, fLO = 1600MHz,
= 0dBm, P
P
LO
= +25°C (Note 8)
T
C
Typical Application Circuit optimized for UMTS band (R1 = R4 = 681, R2 = R5 =
1.5k), f f
Typical Application Circuit optimized for UMTS band (R1 = R4 = 681, R2 = R5 =
1.5k), f f
IF
= 1950MHz, PRF = -10dBm
RF
IF
= 1950MHz, PRF = -5dBm
RF
= -5dBm, VCC = +5.0V,
RF
= 190MHz, fLO = 1760MHz,
= 190MHz, f
= 1760MHz,
LO
69 81
86
76
dBc
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
6 _______________________________________________________________________________________
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
optimized for the DCS/PCS band, R1 = R4 = 806, R2 = R5 = 2.32k, VCC= +4.75V to +5.25V, RF and
LO ports are driven from 50sources, P
LO
= -3dBm to +3dBm, PRF= -5dBm, fRF= 1700MHz to 2000MHz, fLO= 1510MHz to
1810MHz, f
IF
= 190MHz, fRF> fLO, TC= -40°C to +85°C. Typical values are at VCC= +5.0V, PRF= -5dBm, PLO= 0dBm,
fRF= 1800MHz, f
LO
= 1610MHz, fIF= 190MHz, TC= +25°C, unless otherwise noted.) (Note 6)
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
. Typical values are at VCC= +3.3V, PRF= -5dBm, PLO= 0dBm, fRF= 1800MHz, fLO= 1610MHz,
f
IF
= 190MHz, TC= +25°C, unless otherwise noted.) (Note 6)
RF Input Return Loss
LO Input Return Loss
IF Output Impedance Z
IF Return Loss
RF-to-IF Isolation fRF = 1700MHz for min value 30 39 dB
LO Leakage at RF Port (Notes 8, 10) -31 -24.7 dBm
2LO Leakage at RF Port (Note 8) -20 -16 dBm
LO Leakage at IF Port (Note 8) -40 -27 dBm
Channel Isolation
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
LO and IF terminated into matched impedance, LO on
LO port selected, RF and IF terminated into matched impedance
LO port unselected, RF and IF terminated into matched impedance
Nominal differential impedance of the IC’s
IF
IF outputs
RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50 using external components shown in Typical
Application Circuit
RFMAIN converted power measured at IFD_, relative to IFM_, all unused ports terminated to 50
RFDIV converted power measured at IFM_, relative to IFD_, all unused ports terminated to 50
40 49
40 49
21 dB
20
19
200
12.5 dB
dB
dB
LO-to-LO Isolation
LO Switching Time
= +3dBm, P
LO1
f
= 1610MHz, f
LO1
50% of LOSEL to IF settled within 2 degrees
= +3dBm,
LO2
= 1611MHz
LO2
40 56 dB
50 ns
P
Conversion Gain G
Conversion Gain Flatness
G ai n V ar i ati on Over Tem p er atur eTCCGTC = -40°C to +85°C -0.009 dB/°C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
C
Flatness over any one of three frequency bands: fRF = 1710MHz to 1785MHz
= 1850MHz to 1910MHz
f
RF
f
= 1920MHz to 1980MHz
RF
8.4 dB
±0.1 dB
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________ 7
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
. Typical values are at VCC= +3.3V, PRF= -5dBm, PLO= 0dBm, fRF= 1800MHz, fLO= 1610MHz,
f
IF
= 190MHz, TC= +25°C, unless otherwise noted.) (Note 6)
Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See
the
Typical Operating Characteristics
.
Note 6: All limits reflect losses of external components, including a 0.65dB loss at f
IF
= 190MHz due to the 4:1 impedance trans-
former. Output measurements were taken at IF outputs of the
Typical Application Circuit
.
Note 7: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50source. Note 8: Guaranteed by design and characterization. Note 9: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of
all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021:
Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 10: Limited production testing.
Input Compression Point IP
Input Intercept Point IIP3 f
Input Intercept Variation Over Temperature
Noise Figure NF
Noise Figure Temperature Coefficient
2RF-2LO Spur Rejection 2 x 2
3RF-3LO Spur Rejection 3 x 3
RF Input Return Loss LO on and IF terminated 21 dB
LO Input Return Loss
IF Return Loss
RF-to-IF Isolation 42 dB
LO Leakage at RF Port -40 dBm
2LO Leakage at RF Port -29 dBm
LO Leakage at IF Port -43 dBm
Channel Isolation
LO-to-LO Isolation
LO Switching Time 50% of LO S E L to IF settl ed w i thi n 2 d eg r ees 50 ns
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
1dB
TC
TC
(Note 7) 8.9 dBm
- f
RF1
IIP3fRF1
Single sideband, no blockers present 9.0 dB
SSB
Single sideband, no blockers present,
NF
T
C
PRF = -10dBm 73
P
RF
PRF = -10dBm 70
P
RF
LO port selected, RF and IF terminated into matched impedance
LO port unselected, RF and IF terminated into matched impedance
RF terminated into 50, LO driven by 50 source, IF transformed to 50Ω using external components shown in Typical Application Circuit, f
RFMAIN converted power measured at IFD_, relative to IFM_, all unused ports terminated to 50
RFDIV converted power measured at IFM_, relative to IFD_, all unused ports terminated to 50
P
LO1
f
LO1
= 1MHz 18.5 dBm
RF2
- f
= 1MHz, TC = -40°C to +85°C 0.0034 dBm/°C
RF2
= -40°C to +85°C
= -5dBm 68
= -5dBm 60
= 190MHz
IF
= +3dBm, P
= 1610MHz, f
= +3dBm,
LO2
= 1611MHz
LO2
0.016 dB/°C
16
20
12.5 dB
49
49
55 dB
dBc
dBc
dB
dB
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
8 _______________________________________________________________________________________
Typical Operating Characteristics
(
Typical Application Circuit
, optimized for the DCS/PCS band, R1 = R4 = 806Ω, R2 = R5 = 2.32kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
11
10
9
8
CONVERSION GAIN (dB)
7
6
1700 2500
TC = -30°C
TC = +85°C
TC = +25°C
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
25
24
23
TC = -30°C
22
INPUT IP3 (dBm)
21
20
1700 2500
TC = +25°C
RF FREQUENCY (MHz)
230021001900
PRF = -5dBm/TONE
TC = +85°C
230021001900
11
MAX19995 toc01
10
9
8
CONVERSION GAIN (dB)
7
6
25
MAX19995 toc04
24
23
22
INPUT IP3 (dBm)
21
20
CONVERSION GAIN vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
1700 2500
RF FREQUENCY (MHz)
230021001900
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
PLO = -3dBm
PLO = 0dBm
PLO = +3dBm
1700 2500
RF FREQUENCY (MHz)
230021001900
11
10
MAX19995 toc02
9
8
CONVERSION GAIN (dB)
7
6
1700 2500
25
MAX19995 toc05
24
23
22
INPUT IP3 (dBm)
21
20
1700 2500
CONVERSION GAIN vs. RF FREQUENCY
MAX19995 toc03
VCC = 4.75V, 5.0V, 5.25V
230021001900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
MAX19995 toc06
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
230021001900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
NOISE FIGURE (dB)
8
7
6
1700 2500
TC = +85°C
TC = +25°C
TC = -30°C
230021001900
RF FREQUENCY (MHz)
MAX19995 toc07
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
NOISE FIGURE (dB)
8
7
6
PLO = -3dBm, 0dBm, +3dBm
1700 2500
RF FREQUENCY (MHz)
230021001900
MAX19995 toc08
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
NOISE FIGURE (dB)
8
7
6
1700 2500
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
MAX19995 toc09
230021001900
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________
9
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the DCS/PCS band, R1 = R4 = 806Ω, R2 = R5 = 2.32kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
2RF-2LO RESPONSE vs. RF FREQUENCY
90
80
70
2RF-2LO RESPONSE (dBc)
60
50
1700 2500
TC = +85°C
TC = -30°C
RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY
95
85
2RF-2LO RESPONSE vs. RF FREQUENCY
TC = +25°C
PRF = -5dBm
230021001900
90
MAX19995 toc10
80
70
2RF-2LO RESPONSE (dBc)
60
50
1700 2500
PLO = -3dBm
PLO = 0dBm
RF FREQUENCY (MHz)
PRF = -5dBm
PLO = +3dBm
230021001900
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX19995 toc13
95
85
PRF = -5dBm
PRF = -5dBm
TC = +25°C
2RF-2LO RESPONSE vs. RF FREQUENCY
90
MAX19995 toc11
80
70
2RF-2LO RESPONSE (dBc)
60
50
1700 2500
3RF-3LO RESPONSE vs. RF FREQUENCY
95
MAX19995 toc14
85
PRF = -5dBm
MAX19995 toc12
VCC = 4.75V, 5.0V, 5.25V
230021001900
RF FREQUENCY (MHz)
PRF = -5dBm
MAX19995 toc15
VCC = 5.25V
TC = +85°C
75
3RF-3LO RESPONSE (dBc)
65
TC = -30°C
55
1700 2500
RF FREQUENCY (MHz)
INPUT P
15
14
13
(dBm)
1dB
12
INPUT P
11
TC = -30°C
10
1700 2500
vs. RF FREQUENCY
1dB
TC = +85°C
TC = +25°C
RF FREQUENCY (MHz)
230021001900
230021001900
75
3RF-3LO RESPONSE (dBc)
65
55
1700 2500
15
MAX19995 toc16
14
13
(dBm)
1dB
12
INPUT P
11
10
1700 2500
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
75
3RF-3LO RESPONSE (dBc)
VCC = 4.75V
65
230021001900
55
1700 2500
INPUT P
15
MAX19995 toc17
14
VCC = 5.0V
13
(dBm)
1dB
12
INPUT P
11
230021001900
10
1700 2500
VCC = 5.0V
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
VCC = 5.25V
VCC = 4.75V
RF FREQUENCY (MHz)
230021001900
MAX19995 toc18
230021001900
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
10 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the DCS/PCS band, R1 = R4 = 806Ω, R2 = R5 = 2.32kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
1700 2500
-20
-25
-30
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = -30°C, +25°C, +85°C
CHANNEL ISOLATION vs. RF FREQUENCY
60
55
MAX19995 toc19
50
45
40
CHANNEL ISOLATION (dB)
35
230021001900
30
PLO = -3dBm, 0dBm, +3dBm
1700 2500
RF FREQUENCY (MHz)
230021001900
MAX19995 toc20
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-20
-25
MAX19995 toc22
-30
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
PLO = -3dBm, 0dBm, +3dBm
MAX19995 toc23
CHANNEL ISOLATION vs. RF FREQUENCY
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
VCC = 4.75V, 5.0V, 5.25V
1700 2500
RF FREQUENCY (MHz)
230021001900
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-20
-25
-30
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX19995 toc21
MAX19995 toc24
-50 1500 2300
LO FREQUENCY (MHz)
210019001700
RF-TO-IF ISOLATION vs. RF FREQUENCY
50
TC = -30°C, +25°C, +85°C
45
40
RF-TO-IF ISOLATION (dB)
35
30
1700 2500
RF FREQUENCY (MHz)
230021001900
-50 1500 2300
50
MAX19995 toc25
45
40
RF-TO-IF ISOLATION (dB)
35
30
1700 2500
210019001700
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
230021001900
RF FREQUENCY (MHz)
-50
50
MAX19995 toc26
45
40
RF-TO-IF ISOLATION (dB)
35
30
1500 2300
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
1700 2500
RF FREQUENCY (MHz)
210019001700
MAX19995 toc27
230021001900
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
11
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the DCS/PCS band, R1 = R4 = 806Ω, R2 = R5 = 2.32kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-30
-40
-50
LO LEAKAGE AT RF PORT (dBm)
-60
-70 1400 2400
TC = -30°C, +25°C, +85°C
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
-20
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
MAX19995 toc28
-30
-40
-50
LO LEAKAGE AT RF PORT (dBm)
-60
-70
22001800 20001600
1400 2400
PLO = -3dBm, 0dBm, +3dBm
22001800 20001600
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
TC = -30°C
MAX19995 toc31
-20
-20
MAX19995 toc29
-30
-40
-50
LO LEAKAGE AT RF PORT (dBm)
-60
-70 1400 2400
-10
MAX19995 toc32
-20
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX19995 toc30
VCC = 4.75V, 5.0V, 5.25V
22001800 20001600
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX19995 toc33
-30
TC = +25°C
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
-60 1400 2400
TC = +85°C
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
70
TC = -30°C
60
50
LO SWITCH ISOLATION (dB)
40
TC = +85°C
1400 2300
LO FREQUENCY (MHz)
TC = +25°C
2000 21501700 18501550
-30
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
-60
22001800 20001600
1400 2400
PLO = -3dBm, 0dBm, +3dBm
22001800 20001600
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
70
MAX19995 toc34
60
50
LO SWITCH ISOLATION (dB)
40
1400 2300
P
= -3dBm, 0dBm, +3dBm
LO
2000 21501700 18501550
LO FREQUENCY (MHz)
-30
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
-60 1400 2400
70
MAX19995 toc35
60
50
LO SWITCH ISOLATION (dB)
40
1400 2300
VCC = 4.75V, 5.0V, 5.25V
22001800 20001600
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
MAX19995 toc36
VCC = 4.75V, 5.0V, 5.25V
2000 21501700 18501550
LO FREQUENCY (MHz)
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
12 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the DCS/PCS band, R1 = R4 = 806Ω, R2 = R5 = 2.32kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
5
10
PLO = -3dBm, 0dBm, +3dBm
15
fIF = 190MHz
MAX19995 toc37
0
5
VCC = 4.75V, 5.0V, 5.25V
10
IF PORT RETURN LOSS
vs. IF FREQUENCY
fLO = 1610MHz
MAX19995 toc38
10
15
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
0
5
PLO = +3dBm
PLO = 0dBm
MAX19995 toc39
20
RF PORT RETURN LOSS (dB)
25
30
1700 2500
RF FREQUENCY (MHz)
23001900 2100
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
0
5
10
15
20
25
LO UN SELECTED RETURN LOSS (dB)
30
1400
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
25
24
PRF = -5dBm/TONE
IF PORT RETURN LOSS (dB)
15
20
50 500
IF FREQUENCY (MHz)
410140 230 320
SUPPLY CURRENT
340
vs. TEMPERATURE (T
VCC = 5.25V
MAX19995 toc40
320
300
SUPPLY CURRENT (mA)
280
VCC = 4.75V
2200 24001600 1800 2000
260
-35 TEMPERATURE (°C)
)
C
VCC = 5.0V
65 85-15 5 25 45
2RF-2LO RESPONSE vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
3.6nH
MAX19995 toc43
90
0
80
PRF = -5dBm
20
LO SELECTED RETURN LOSS (dB)
25
30
1400 2400
CONVERSION GAIN vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
11
MAX19995 toc41
10
9
8
CONVERSION GAIN (dB)
7
6
1700
3RF-3LO RESPONSE vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
95
MAX19995 toc44
85
PLO = -3dBm
LO FREQUENCY (MHz)
0Ω, 3.6nH, 6.8nH, 10nH
RF FREQUENCY (MHz)
0
3.6nH
22001600 1800 2000
MAX19995 toc42
25001900 2100 2300
PRF = -5dBm
MAX19995 toc45
23
0
22
INPUT IP3 (dBm)
21
20
1700
RF FREQUENCY (MHz)
6.8nH
10nH
25001900 2100 2300
70
2RF-2LO RESPONSE (dBc)
60
6.8nH, 10nH
50
1700
RF FREQUENCY (MHz)
3.6nH
25001900 2100 2300
75
3RF-3LO RESPONSE (dBc)
65
55
6.8nH
1700
RF FREQUENCY (MHz)
10nH
25001900 2100 2300
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
13
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the DCS/PCS band, R1 = R4 = 806Ω, R2 = R5 = 2.32kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
1700
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
-20
0
6.8nH
10nH
3.6nH
25001900 2100 2300
MAX19995 toc46
-30
-40
6.8nH
-50
LO LEAKAGE AT IF PORT (dBm)
-60 1500
0
3.6nH
10nH
LO FREQUENCY (MHz)
MAX19995 toc47
23001700 1900 2100
RF-TO-IF ISOLATION vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
60
50
40
RF-TO-IF ISOLATION (dB)
30
3.6nH
20
1700
6.8nH
0
RF FREQUENCY (MHz)
MAX19995 toc48
10nH
25001900 2100 2300
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
14 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the UMTS band, R1 = R4 = 681, R2 = R5 = 1.5kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
11
TC = -30°C
10
9
8
TC = +85°C
CONVERSION GAIN (dB)
7
6
1700 2500
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
26
25
24
23
INPUT IP3 (dBm)
22
21
TC = +25°C
TC = +25°C
230021001900
PRF = -5dBm/TONE
TC = +85°C
TC = -30°C
11
10
MAX19995 toc49
9
8
CONVERSION GAIN (dB)
7
6
1700 2500
26
25
MAX19995 toc52
24
23
INPUT IP3 (dBm)
22
21
CONVERSION GAIN vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
230021001900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
11
MAX19995 toc50
10
9
8
CONVERSION GAIN (dB)
7
6
26
25
MAX19995 toc53
24
23
INPUT IP3 (dBm)
22
21
CONVERSION GAIN vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
1700 2500
RF FREQUENCY (MHz)
230021001900
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
MAX19995 toc51
MAX19995 toc54
MAX19995 toc56
NOISE FIGURE (dB)
20
1700 2500
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
8
7
6
1700 2500
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
20
1700 2500
RF FREQUENCY (MHz)
230021001900
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
NOISE FIGURE (dB)
8
7
6
1700 2500
TC = +85°C
TC = +25°C
TC = -30°C
230021001900
RF FREQUENCY (MHz)
MAX19995 toc55
NOISE FIGURE (dB)
20
1700 2500
RF FREQUENCY (MHz)
230021001900
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
8
7
6
PLO = -3dBm, 0dBm, +3dBm
1700 2500
RF FREQUENCY (MHz)
230021001900
230021001900
MAX19995 toc57
230021001900
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
15
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the UMTS band, R1 = R4 = 681, R2 = R5 = 1.5kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
2RF-2LO RESPONSE vs. RF FREQUENCY
90
80
70
2RF-2LO RESPONSE (dBc)
60
50
1700 2500
TC = +85°C
TC = +25°C
RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY
95
TC = +25°C
85
2RF-2LO RESPONSE vs. RF FREQUENCY
TC = -30°C
230021001900
PRF = -5dBm
90
MAX19995 toc58
80
70
2RF-2LO RESPONSE (dBc)
60
50
1700 2500
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
RF FREQUENCY (MHz)
PRF = -5dBm
230021001900
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm
MAX19995 toc61
95
85
PRF = -5dBm
90
MAX19995 toc59
80
70
2RF-2LO RESPONSE (dBc)
60
50
1700 2500
95
MAX19995 toc62
85
2RF-2LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
230021001900
RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm
VCC = 5.0V
MAX19995 toc60
MAX19995 toc63
75
3RF-3LO RESPONSE (dBc)
65
55
TC = -30°C
1700 2500
INPUT P
16
15
14
(dBm)
1dB
13
INPUT P
12
TC = -30°C
11
10
1700 2500
TC = +85°C
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
TC = +85°C
TC = +25°C
RF FREQUENCY (MHz)
230021001900
230021001900
75
3RF-3LO RESPONSE (dBc)
65
55
1700 2500
16
15
MAX19995 toc64
14
(dBm)
1dB
13
INPUT P
12
11
10
1700 2500
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
INPUT P
vs. RF FREQUENCY
1dB
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
75
3RF-3LO RESPONSE (dBc)
65
VCC = 4.75V
MAX19995 toc65
55
1700 2500
16
15
VCC = 5.0V
14
(dBm)
1dB
13
INPUT P
12
11
10
1700 2500
230021001900
230021001900
RF FREQUENCY (MHz)
INPUT P
RF FREQUENCY (MHz)
VCC = 5.25V
vs. RF FREQUENCY
1dB
VCC = 5.25V
VCC = 4.75V
230021001900
MAX19995 toc66
230021001900
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
16 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the UMTS band, R1 = R4 = 681, R2 = R5 = 1.5kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY
60
CHANNEL ISOLATION vs. RF FREQUENCY
60
CHANNEL ISOLATION vs. RF FREQUENCY
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
1700 2500
-20
-25
-30
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
-50 1500 2300
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = +85°C
TC = -30°C, +25°C
LO FREQUENCY (MHz)
55
MAX19995 toc67
50
45
40
CHANNEL ISOLATION (dB)
35
230021001900
30
PLO = -3dBm, 0dBm, +3dBm
1700 2500
RF FREQUENCY (MHz)
230021001900
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-20
PLO = -3dBm, 0dBm, +3dBm
-25
MAX19995 toc70
-30
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
-50
210019001700
1500 2300
LO FREQUENCY (MHz)
210019001700
55
MAX19995 toc68
50
45
40
CHANNEL ISOLATION (dB)
35
30
1700 2500
-20
-25
MAX19995 toc71
-30
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
-50 1500 2300
VCC = 4.75V, 5.0V, 5.25V
230021001900
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
210019001700
LO FREQUENCY (MHz)
MAX19995 toc69
MAX19995 toc72
RF-TO-IF ISOLATION vs. RF FREQUENCY
50
TC = -30°C, +25°C, +85°C
45
40
RF-TO-IF ISOLATION (dB)
35
30
1700 2500
RF FREQUENCY (MHz)
230021001900
RF-TO-IF ISOLATION vs. RF FREQUENCY
50
MAX19995 toc73
45
40
RF-TO-IF ISOLATION (dB)
35
30
1700 2500
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
MAX19995 toc74
230021001900
RF-TO-IF ISOLATION vs. RF FREQUENCY
50
45
40
RF-TO-IF ISOLATION (dB)
35
30
1700 2500
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
MAX19995 toc75
230021001900
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
17
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the UMTS band, R1 = R4 = 681, R2 = R5 = 1.5kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-30
-40
-50
LO LEAKAGE AT RF PORT (dBm)
-60
-70
TC = -30°C, +25°C, +85°C
1400 2400
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
-20
-30
-40 TC = +85°C
-50
2LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-30
MAX19995 toc76
-40
-50
LO LEAKAGE AT RF PORT (dBm)
-60
2000 220018001600
-70 1400 2400
PLO = -3dBm, 0dBm, +3dBm
2000 220018001600
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -30°C
TC = +25°C
-10
MAX19995 toc79
-20
-30
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
PLO = 0dBm, +3dBm
PLO = -3dBm
-20
-30
MAX19995 toc77
-40
-50
LO LEAKAGE AT RF PORT (dBm)
-60
-70 1400 2400
-10
MAX19995 toc80
-20
-30
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX19995 toc78
VCC = 4.75V, 5.0V, 5.25V
2000 220018001600
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX19995 toc81
VCC = 4.75V, 5.0V, 5.25V
-60 1400 2400
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
70
TC = -30°C
60
50
LO SWITCH ISOLATION (dB)
40
TC = +85°C
1400 2300
LO FREQUENCY (MHz)
TC = +25°C
2000 21501700 18501550
-60
22001800 20001600
1400 2400
LO FREQUENCY (MHz)
22001800 20001600
LO SWITCH ISOLATION
vs. LO FREQUENCY
70
MAX19995 toc82
60
50
LO SWITCH ISOLATION (dB)
40
1400 2300
P
= -3dBm, 0dBm, +3dBm
LO
2000 21501700 18501550
LO FREQUENCY (MHz)
-60 1400 2400
70
MAX19995 toc83
60
50
LO SWITCH ISOLATION (dB)
40
1400 2300
22001800 20001600
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
MAX19995 toc84
VCC = 4.75V, 5.0V, 5.25V
2000 21501700 18501550
LO FREQUENCY (MHz)
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
18 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the UMTS band, R1 = R4 = 681, R2 = R5 = 1.5kΩ, VCC= +5.0V, PLO= 0dBm,
P
RF
= -5dBm, LO is low-side injected for a 190MHz IF, TC= +25°C, unless otherwise noted.)
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
PLO = -3dBm, 0dBm, +3dBm
10
20
30
RF PORT RETURN LOSS (dB)
40
50
1700 2500
RF FREQUENCY (MHz)
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
0
5
PLO = +3dBm
1400 2400
LO FREQUENCY (MHz)
PLO = 0dBm
PLO = -3dBm
22001600 1800 2000
fIF = 190MHz
23001900 2100
0
MAX19995 toc85
5
VCC = 4.75V, 5.0V, 5.25V
10
IF PORT RETURN LOSS (dB)
15
20
50 500
IF PORT RETURN LOSS
vs. IF FREQUENCY
fLO = 1610MHz
IF FREQUENCY (MHz)
MAX19995 toc86
10
15
20
LO SELECTED RETURN LOSS (dB)
25
410140 230 320
30
MAX19995 toc87
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
0
5
10
15
20
25
LO UN SELECTED RETURN LOSS (dB)
30
1400
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
SUPPLY CURRENT
400
vs. TEMPERATURE (T
VCC = 5.25V
MAX19995 toc88
2200 24001600 1800 2000
380
360
SUPPLY CURRENT (mA)
340
320
-35
VCC = 4.75V
TEMPERATURE (°C)
)
C
VCC = 5.0V
MAX19995 toc89
65 85-15 5 25 45
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
19
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, R1 = R4 = 909Ω, R2 = R5 = 2.49k, VCC= +3.3V, PLO= 0dBm, PRF= -5dBm, LO is low-side injected
for a 190MHz IF, T
C
= +25°C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
11
10
9
8
7
TC = +85°C
CONVERSION GAIN (dB)
6
5
1700
TC = -30°C
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
22
20
TC = +85°C
CONVERSION GAIN vs. RF FREQUENCY
11
10
9
8
7
CONVERSION GAIN (dB)
6
5
1700
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
22
20
VCC = 3.6V
VCC = 3.3V
= -5dBm/TONE
P
RF
TC = +25°C
VCC = 3.3V
= -5dBm/TONE
P
RF
VCC = 3.3V
MAX19995 toc90
25001900 2100 2300
MAX19995 toc93
CONVERSION GAIN vs. RF FREQUENCY
11
10
9
8
7
CONVERSION GAIN (dB)
PLO = -3dBm, 0dBm, +3dBm
6
5
1700
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
22
20
VCC = 3.3V
VCC = 3.3V
= -5dBm/TONE
P
RF
MAX19995 toc91
25001900 2100 2300
MAX19995 toc94
MAX19995 toc92
25001900 2100 2300
MAX19995 toc95
18
16
INPUT IP3 (dBm)
TC = -30°C
14
12
1700
TC = +25°C
230021001900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
13
VCC = 3.3V
12
11
10
9
NOISE FIGURE (dB)
8
7
6
1700 2500
TC = +85°C
TC = +25°C
TC = -30°C
230021001900
RF FREQUENCY (MHz)
2500
INPUT IP3 (dBm)
MAX19995 toc96
NOISE FIGURE (dB)
18
PLO = -3dBm, 0dBm, +3dBm
16
14
12
1700
RF FREQUENCY (MHz)
230021001900
NOISE FIGURE vs. RF FREQUENCY
13
12
11
10
9
8
7
6
1700 2500
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
VCC = 3.3V
230021001900
2500
MAX19995 toc97
18
16
INPUT IP3 (dBm)
VCC = 3.0V
14
12
1700
VCC = 3.3V
230021001900
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
13
12
11
10
9
NOISE FIGURE (dB)
8
7
6
1700 2500
RF FREQUENCY (MHz)
VCC = 3.0V
VCC = 3.3V, 3.6V
230021001900
2500
MAX19995 toc98
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
20 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, R1 = R4 = 909Ω, R2 = R5 = 2.49k, VCC= +3.3V, PLO= 0dBm, PRF= -5dBm, LO is low-side injected
for a 190MHz IF, T
C
= +25°C, unless otherwise noted.)
2RF-2LO RESPONSE vs. RF FREQUENCY
80
70
TC = +85°C
60
2RF-2LO RESPONSE (dBc)
50
40
1700 2500
70
60
50
3RF-3LO RESPONSE (dBc)
40
T
= +25°
C
C
RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY
TC = +85°C
TC = +25°C
TC = -30°C
TC = -30°C
PRF = -5dBm VCC = 3.3V
230021001900
PRF = -5dBm VCC = 3.3V
80
MAX19995 toc99
70
60
2RF-2LO RESPONSE (dBc)
50
40
1700 2500
70
MAX19995 toc102
60
50
3RF-3LO RESPONSE (dBc)
40
2RF-2LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm VCC = 3.3V
PLO = -3dBm
PLO = 0dBm, +3dBm
230021001900
RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
80
MAX19995 toc100
70
60
2RF-2LO RESPONSE (dBc)
50
40
1700 2500
70
MAX19995 toc103
60
50
3RF-3LO RESPONSE (dBc)
40
2RF-2LO RESPONSE vs. RF FREQUENCY
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
RF FREQUENCY (MHz)
PRF = -5dBm
230021001900
3RF-3LO RESPONSE vs. RF FREQUENCY
VCC = 3.6V
VCC = 3.0V
PRF = -5dBm
VCC = 3.3V
MAX19995 toc101
MAX19995 toc104
MAX19995 toc106
30
1700 2500
RF FREQUENCY (MHz)
INPUT P
12
11
10
(dBm)
9
1dB
8
INPUT P
7
6
5
1700 2500
1dB
VCC = 3.3V
VCC = 3.0V
RF FREQUENCY (MHz)
30
1700 2500
RF FREQUENCY (MHz)
INPUT P
12
11
vs. RF FREQUENCY
1dB
TC = +85°C
230021001900
VCC = 3.3V
10
(dBm)
9
1dB
8
7
6
5
1700
TC = -30°C
RF FREQUENCY (MHz)
TC = +25°C
230021001900
INPUT P
2500
MAX19995 toc105
(dBm)
INPUT P
30
1700 2500
RF FREQUENCY (MHz)
12
11
10
9
1dB
8
PLO = -3dBm, 0dBm, +3dBm
7
6
5
1700
INPUT P
vs. RF FREQUENCY
1dB
RF FREQUENCY (MHz)
230021001900
VCC = 3.3V
230021001900
2500
230021001900
vs. RF FREQUENCY
VCC = 3.6V
MAX19995 toc107
230021001900
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
21
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, R1 = R4 = 909Ω, R2 = R5 = 2.49k, VCC= +3.3V, PLO= 0dBm, PRF= -5dBm, LO is low-side injected
for a 190MHz IF, T
C
= +25°C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
TC = -30°C, +25°C, +85°C
1700 2500
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-30
-35
-40
-45
CHANNEL ISOLATION vs. RF FREQUENCY
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
VCC = 3.0V, 3.3V, 3.6V
1700 2500
RF FREQUENCY (MHz)
230021001900
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-30
-35
-40
-45
VCC = 3.6V
VCC = 3.3V
230021001900
VCC = 3.3V
TC = +85°C
60
55
MAX19995 toc108
50
45
40
CHANNEL ISOLATION (dB)
35
30
1700 2500
-30
-35
MAX19995 toc111
-40
-45
CHANNEL ISOLATION vs. RF FREQUENCY
VCC = 3.3V
MAX19995 toc109
PLO = -3dBm, 0dBm, +3dBm
230021001900
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
VCC = 3.3V
MAX19995 toc112
PLO = -3dBm
MAX19995 toc110
MAX19995 toc113
-50
LO LEAKAGE AT IF PORT (dBm)
-55
-60 1500 2300
TC = +25°C
TC = -30°C
210019001700
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
VCC = 3.3V
55
50
45
40
RF-TO-IF ISOLATION (dB)
35
30
1700 2500
TC = -30°C
TC = +25°C
TC = +85°C
230021001900
RF FREQUENCY (MHz)
-50
LO LEAKAGE AT IF PORT (dBm)
-55
-60 1500 2300
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
VCC = 3.3V
55
MAX19995 toc114
50
45
40
RF-TO-IF ISOLATION (dB)
35
30
1700 2500
PLO = 0dBm
PLO = +3dBm
LO FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
-50
LO LEAKAGE AT IF PORT (dBm)
210019001700
VCC = 3.0V
-55
-60 1500 2300
LO FREQUENCY (MHz)
VCC = 3.3V
210019001700
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
55
MAX19995 toc115
50
45
40
RF-TO-IF ISOLATION (dB)
35
30
230021001900
1700 2500
VCC = 3.0V, 3.3V, 3.6V
230021001900
RF FREQUENCY (MHz)
MAX19995 toc116
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
22 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, R1 = R4 = 909Ω, R2 = R5 = 2.49k, VCC= +3.3V, PLO= 0dBm, PRF= -5dBm, LO is low-side injected
for a 190MHz IF, T
C
= +25°C, unless otherwise noted.)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20 VCC = 3.3V
-30
-40
TC = -30°C
MAX19995 toc117
-20
-30
-40
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.3V
MAX19995 toc118
-20
-30
-40
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.6V
MAX19995 toc119
-50
LO LEAKAGE AT RF PORT (dBm)
-60
-70
1400 2400
TC = +25°C
TC = +85°C
2000 220018001600
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10 VCC = 3.3V
-20
-30
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
-60
1400 2400
TC = -30°C, +25°C, +85°C
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
70
VCC = 3.3V
-50
LO LEAKAGE AT RF PORT (dBm)
-60
-70 1400 2400
PLO = -3dBm, 0dBm, +3dBm
2000 220018001600
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10 VCC = 3.3V
-20
MAX19995 toc120
-30
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
22001800 20001600
-60
1400 2400
PLO = -3dBm, 0dBm, +3dBm
22001800 20001600
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
70
VCC = 3.3V
-50
LO LEAKAGE AT RF PORT (dBm)
-60
-70 1400 2400
-10
-20
MAX19995 toc121
-30
-40
-50
2LO LEAKAGE AT RF PORT (dBm)
-60
1400 2400
70
VCC = 3.0V
VCC = 3.3V
2000 220018001600
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
22001800 20001600
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
MAX19995 toc122
TC = -30°C
60
50
LO SWITCH ISOLATION (dB)
TC = +85°C
TC = +25°C
40
1400 2300
LO FREQUENCY (MHz)
2000 21501700 18501550
MAX19995 toc123
60
50
LO SWITCH ISOLATION (dB)
40
1400 2300
PLO = -3dBm, 0dBm, +3dBm
2000 21501700 18501550
LO FREQUENCY (MHz)
MAX19995 toc124
60
50
LO SWITCH ISOLATION (dB)
40
1400 2300
VCC = 3.0V, 3.3V, 3.6V
LO FREQUENCY (MHz)
MAX19995 toc125
2000 21501700 18501550
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
23
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, R1 = R4 = 909Ω, R2 = R5 = 2.49k, VCC= +3.3V, PLO= 0dBm, PRF= -5dBm, LO is low-side injected
for a 190MHz IF, T
C
= +25°C, unless otherwise noted.)
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
10
PLO = -3dBm, 0dBm, +3dBm
20
30
RF PORT RETURN LOSS (dB)
40
50
1700
RF FREQUENCY (MHz)
0
5
10
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
0
5
10
15
20
25
30
PLO = 0dBm
1400 2400
LO FREQUENCY (MHz)
VCC = 3.6V
PLO = -3dBm
)
C
PLO = +3dBm
fIF = 190MHz VCC = 3.3V
MAX19995 toc126
23001900 2100
2500
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
VCC = 3.3V
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
5
VCC = 3.0V, 3.3V, 3.6V
10
IF PORT RETURN LOSS (dB)
15
20
50 500
IF FREQUENCY (MHz)
MAX19995 toc129
fLO = 1610MHz
410140 230 320
260
240
MAX19995 toc86
LO SELECTED RETURN LOSS (dB)
SUPPLY CURRENT
vs. TEMPERATURE (T
VCC = 3.3V
VCC = 3.3V
22001600 1800 2000
MAX19995 toc130
MAX19995 toc128
15
20
25
LO UN SELECTED RETURN LOSS (dB)
30
1400
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
220
SUPPLY CURRENT (mA)
200
VCC = 3.0V
180
2200 24001600 1800 2000
-35 TEMPERATURE (°C)
65 85-15 5 25 45
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
24 ______________________________________________________________________________________
Pin Description
PIN NAME FUNCTION
1 RFMAIN Main Channel RF Input. Internally matched to 50. Requires an input DC-blocking capacitor.
2 TAPMAIN
3, 5, 7, 12, 20, 22, 24,
25, 26, 34
4, 6, 10,
16, 21,
30, 36
8 TAPDIV
9 RFDIV Diversity Channel RF Input. Internally matched to 50. Requires an input DC-blocking capacitor.
11 IFD_SET
13, 14 IFD+, IFD-
15 IND_EXTD
17 LO_ADJ_D
18, 28 N.C. No Connection. Not internally connected.
19 LO1
23 LOSEL Local Oscillator Select. Set this pin to high to select LO1. Set to low to select LO2.
27 LO2
29 LO_ADJ_M
31 IND_EXTM
32, 33 IFM-, IFM+
35 IFM_SET
—EP
GND Ground
V
CC
Main Channel Balun Center Tap. Bypass to GND with 39pF and 0.033µF capacitors as close as possible to the pin with the smaller value capacitor closer to the part.
Power Supply. Bypass to GND with capacitors shown in the Typical Application Circuit as close as possible to the pin.
Diversity Channel Balun Center Tap. Bypass to GND with 39pF and 0.033µF capacitors as close as possible to the pin with the smaller value capacitor closer to the part.
IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity IF amplifier.
Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to V Typical Application Circuit).
Diversity External Inductor Connection. Connect this pin to ground. For improved RF-to-IF and LO-to-IF isolation, connect a low-ESR 10nH inductor from this pin to ground (see the Typical Operating Characteristics for typical performance vs. inductor value).
LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity LO amplifier.
Local Oscillator 1 Input. This input is internally matched to 50. Requires an input DC-blocking capacitor.
Local Oscillator 2 Input. This input is internally matched to 50. Requires an input DC-blocking capacitor.
LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main LO amplifier.
Main External Inductor Connection. Connect this pin to ground. For improved RF-to-IF and LO-to-IF isolation, connect a low-ESR 10nH inductor from this pin to ground (see the Typical Operating Characteristics for typical performance vs. Inductor value).
Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to V Typical Application Circuit).
IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main IF amplifier.
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance.
CC
(see the
CC
(see the
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 25
Detailed Description
The MAX19995 is a dual-channel downconverter designed to provide 9dB of conversion gain, +24.8dBm input IP3, +13.3dBm 1dB input compres­sion point, and a noise figure of 9dB.
In addition to its high-linearity performance, the MAX19995 achieves a high level of component integra­tion. The device integrates two double-balanced mixers for two-channel downconversion. Both the main and diversity channels include a balun and matching cir­cuitry to allow 50single-ended interfaces to the RF ports and the two LO ports. An integrated single-pole, double-throw (SPDT) switch provides 50ns switching time between the two LO inputs, with 56dB of LO-to-LO isolation and -31dBm of LO leakage at the RF port. Furthermore, the integrated LO buffers provide a high drive level to each mixer core, reducing the LO drive required at the MAX19995’s inputs to a range of -3dBm to +3dBm. The IF ports for both channels incorporate differential outputs for downconversion, which is ideal for providing enhanced 2RF-2LO performance.
Specifications are guaranteed over broad frequency ranges to allow for use in WCDMA/LTE, DCS1800/ PCS1900 GSM/EDGE, and cdma2000 base stations. The MAX19995 is specified to operate over an RF input range of 1700MHz to 2200MHz, an LO range of 1400MHz to 2000MHz, and an IF range of 50MHz to 500MHz. The external IF components set the lower fre­quency range. Operation beyond these ranges is pos­sible; see the
Typical Operating Characteristics
for additional information. Although this device is opti­mized for low-side LO injection applications, it can operate in high-side LO injection modes as well. However, performance degrades as f
LO
continues to increase. For increased high-side LO performance, refer to the MAX19995A data sheet.
RF Port and Balun
The RF input ports of both the main and diversity chan­nels are internally matched to 50, requiring no exter­nal matching components. A DC-blocking capacitor is
required as the input is internally DC shorted to ground through the on-chip balun. The RF port input return loss is typically better than 16dB over the RF frequency range of 1700MHz to 2200MHz.
LO Inputs, Buffer, and Balun
The MAX19995 is optimized for a 1400MHz to 2000MHz LO frequency range. As an added feature, the MAX19995 includes an internal LO SPDT switch for use in frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically 50ns, which is more than adequate for typical GSM applications. If frequency hopping is not employed, simply set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL), where logic-high selects LO1 and logic-low selects LO2. LO1 and LO2 inputs are internally matched to 50, requir­ing only 39pF DC-blocking capacitors.
If LOSEL is connected directly to a logic source, then voltage MUST be applied to VCCbefore digital logic is applied to LOSEL to avoid damaging the part. Alternatively, a 1kresistor can be placed in series at the LOSEL to limit the input current in applications where LOSEL is applied before VCC.
The main and diversity channels incorporate a two­stage LO buffer that allows for a wide-input power range for the LO drive. The on-chip low-loss baluns, along with LO buffers, drive the double-balanced mix­ers. All interfacing and matching components from the LO inputs to the IF outputs are integrated on chip.
High-Linearity Mixer
The core of the MAX19995 dual-channel downconverter consists of two double-balanced, high-performance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffers. When com­bined with the integrated IF amplifiers, the cascaded IIP3, 2RF-2LO rejection, and noise figure performance are typically +24.8dBm, 79dBc, and 9dB, respectively.
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
26 ______________________________________________________________________________________
Differential IF
The MAX19995 has an IF frequency range of 50MHz to 500MHz, where the low-end/high-end frequency depends on the frequency response of the external IF components. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single­ended IF applications require a 4:1 (impedance ratio) balun to transform the 200differential IF impedance to a 50single-ended system. After the balun, the return loss is typically 12.5dB. The user can use a dif­ferential IF amplifier on the mixer IF ports, but a DC block is required on both IFD+/IFD- and IFM+/IFM­ports to keep external DC from entering the IF ports of the mixer.
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50Ω. No matching components are required. The RF port input return loss is typically better than 16dB over the RF frequency range of 1700MHz to 2200MHz and return loss at the LO ports are typically better than 16dB over the entire LO range. RF and LO inputs require only DC-blocking capacitors for interfacing.
The IF output impedance is 200(differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance to a 50single-ended output (see the
Typical Application Circuit
).
Reduced-Power Mode
Each channel of the MAX19995 has two pins (LO_ADJ_, IF_SET) that allow external resistors to set the internal bias currents. Nominal values for these resistors are given in Table 1. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. See the
Typical
Operating Characteristics
to evaluate the biasing vs. performance tradeoff. If ±1% resistors are not readily available, ±5% resistors may be substituted.
Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of +3.3V. Doing so reduces the overall power consumption by up to 62%. See the
+3.3V Supply AC
Electrical Characteristics
and the relevant +3.3V curves
in the
Typical Operating Characteristics
section.
IND_EXT_ Inductors
For applications requiring optimum RF-to-IF and LO-to­IF isolation, connect low-ESR inductors from IND_EXT_ (pins 15 and 31) to ground. When improved isolation is not required, connect IND_EXT_ to ground using a 0 resistance. See the
Typical Operating Characteristics
to
evaluate the isolation vs. inductor value tradeoff.
Layout Considerations
A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19995 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for high­frequency circuit stability. Bypass each VCCpin and TAPMAIN/TAPDIV with the capacitors shown in the
Typical Application Circuit
(see Table 1 for component values). Place the TAPMAIN/TAPDIV bypass capacitors to ground within 100 mils of the pin.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX19995’s 36-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19995 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low­inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 27
Table 1. Component Values
COMPONENT VALUE DESCRIPTION
C1, C2, C7, C8, C14, C16 39pF Microwave capacitors (0402)
C3, C6 0.033µF Microwave capacitors (0603)
C4, C5 Not used
C9, C13, C15, C17, C18 0.01µF Microwave capacitors (0402)
C10, C11, C12, C19, C20, C21 150pF Microwave capacitors (0603)
L1, L2, L4, L5 330nH Wire-wound high-Q inductors (0805)
Wire-wound high-Q inductors (0603). Smaller values can be
L3, L6 10nH
806
R1, R4
681
909 ±1% resistors (0402). Used for V
2.32k
R2, R5
1.5k
2.49k ±1% resistors (0402). Used for V
R3, R6 0 0Ω resistors (1206)
T1, T2 4:1
U1 MAX19995 IC
used at the expense of some performance loss (see the Typical Operating Characteristics).
± 1% r esi stor s ( 0402) . U sed for D C S/PC S b a n d , V ap p l i cati ons. Lar g er val ues can b e used to r ed uce p ow er at the exp ense of som e p er for m ance l oss.
±1% resistors (0402). Used for UMTS band, V applications. Larger values can be used to reduce power at the expense of some performance loss.
± 1% r esi stor s ( 0402) . U sed for D C S/PC S b a n d , V ap p l i cati ons. Lar g er val ues can b e used to r ed uce p ow er at the exp ense of som e p er for m ance l oss.
±1% resistors (0402). Used for UMTS band, V applications. Larger values can be used to reduce power at the expense of some performance loss.
Transformers (200:50)
= +5 .0 V
C C
= +5.0V
CC
= +3.3V applications.
CC
= +5 .0 V
C C
= +5.0V
CC
= +3.3V applications.
CC
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
28 ______________________________________________________________________________________
Typical Application Circuit
C19
RF MAIN INPUT
V
CC
C4
C5
RF DIV INPUT
T1
4:1
V
CC
C17
LO2
27
GND
26
GND
25
GND
24
LOSEL
23
GND
22
V
CC
21
GND
20
LO1
19
V
CC
C16
V
C14
IF MAIN OUTPUT
LO2
LO SELECT
CC
C15
LO1
R3
31
EXPOSED
PAD
15
V
CC
V
CC
L1
L2
L3
30
16
C21
R2
LO_ADJ_M
29
17
LO_ADJ_D
R5
C20
N.C.
28
18
N.C.
V
CC
R1
V
CC
C18
CC
V
IFM_SET
36
GND
V
GND
V
GND
RFDIV
V
CC
+
1
2
3
CC
4
5
CC
6
7
8
9
10
CC
V
IFD_SET
R4
C1
RFMAIN
TAPMAIN
C2C3
V
CC
C7C6
TAPDIV
C8
C9
IFM+
GND
35
34
11
12
IFD+
GND
IND_EXTM
IFM-
33
32
MAX19995
13
14
IFD-
IND_EXTD
L6
V
CC
R6
C11
L5
C12
L4
C10
C13
T2
4:1
IF DIV OUTPUT
MAX19995
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz
Downconversion Mixer with LO Buffer/Switch
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
29
© 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
Pin Configuration/Functional Diagram
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages
.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
36 Thin QFN-EP T3666+2
21-0141
TOP VIEW
RFMAIN
TAPMAIN
GND
V
CC
GND
V
CC
GND
TAPDIV
RFDIV
CC
IFM_SET
V
36
+
1
2
3
4
5
6
7
8
9
10
CC
V
35
11
IFD_SET
GND
34
12
GND
IFM+
33
13
IFD+
IFM-
32
14
IFD-
IND_EXTM
31
MAX19995
EXPOSED
PAD
15
IND_EXTD
CC
V
30
16
CC
V
LO_ADJ_M
N.C.
29
28
17
18
N.C.
LO_ADJ_D
27
LO2
26
GND
25
GND
24
GND
23
LOSEL
22
GND
21
V
CC
20
GND
19
LO1
THIN QFN (EXPOSED PAD)
6mm x 6mm
EXPOSED PAD ON THE BOTTOM OF THE PACKAGE
Loading...