Rainbow Electronics MAX19985A User Manual

General Description
The MAX19985A high-linearity, dual-channel, downcon­version mixer is designed to provide approximately
8.7dB gain, +25.5dBm of IIP3, and 9.0dB of noise fig­ure for 700MHz to 1000MHz diversity receiver applica­tions. With an optimized LO frequency range of 900MHz to 1300MHz, this mixer is ideal for high-side LO injection architectures in the cellular and new 700MHz bands. Low-side LO injection is supported by the MAX19985, which is pin-pin and functionally com­patible with the MAX19985A.
In addition to offering excellent linearity and noise per­formance, the MAX19985A also yields a high level of component integration. This device includes two double-balanced passive mixer cores, two LO buffers, a dual-input LO selectable switch, and a pair of differ­ential IF output amplifiers. On-chip baluns are also inte­grated to allow for single-ended RF and LO inputs.
The MAX19985A requires a nominal LO drive of 0dBm and a typical supply current of 330mA at VCC= +5.0V or 280mA at V
CC
= +3.3V.
The MAX19985/MAX19985A are pin compatible with the MAX19995/MAX19995A series of 1700MHz to 2200MHz mixers and pin similar with the MAX19997A/ MAX19999 series of 1850MHz to 3800MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used across multiple frequency bands.
The MAX19985A is available in a 6mm x 6mm, 36-pin thin QFN package with an exposed pad. Electrical per­formance is guaranteed over the extended temperature range of TC= -40°C to +85°C.
Applications
850MHz WCDMA and cdma2000®Base Stations
700MHz LTE/WiMAX™ Base Stations
GSM850/900 2G and 2.5G EDGE Base Stations
iDEN
®
Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
700MHz to 1000MHz RF Frequency Range
900MHz to 1300MHz LO Frequency Range
50MHz to 500MHz IF Frequency Range
8.7dB Typical Conversion Gain
9.0dB Typical Noise Figure
+25.5dBm Typical Input IP3
+12.6dBm Typical Input 1dB Compression Point
76dBc Typical 2LO-2RF Spurious Rejection at
P
RF
= -10dBm
Dual Channels Ideal for Diversity Receiver
Applications
48dB Typical Channel-to-Channel Isolation
Low -3dBm to +3dBm LO Drive
Integrated LO Buffer
Internal RF and LO Baluns for Single-Ended
Inputs
Built-In SPDT LO Switch with 46dB LO1-to-LO2
Isolation and 50ns Switching Time
Pin Compatible with the MAX19995/MAX19995A
Series of 1700MHz to 2200MHz Mixers
Pin Similar to the MAX19997A/MAX19999 Series
of 1850MHz to 3800MHz Mixers
Single +5.0V or +3.3V Supply
External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/Reduced­Performance Mode
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
________________________________________________________________
Maxim Integrated Products
1
19-4185; Rev 0; 8/08
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
cdma2000 is a registered trademark of Telecommunications Industry Association.
WiMAX is a trademark of WiMAX Forum.
iDEN is a registered trademark of Motorola, Inc.
Typical Application Circuit and Pin Configuration appear at end of data sheet.
+
Denotes a lead-free/RoHS-compliant package.
*
EP = Exposed pad.
T = Tape and reel.
Ordering Information
PART TEMP RANGE PIN-PACKAGE
MAX19985AETX+ -40°C to +85°C 36 Thin QFN-EP*
MAX19985AETX+T -40°C to +85°C 36 Thin QFN-EP*
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= 3.0V to 3.6V, TC= -40°C to +85°C. Typical values are at VCC= 3.3V, TC= +25°C, all parameters
are guaranteed by design and not production tested, unless otherwise noted.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Based on junction temperature TJ= TC+ (θJCx VCCx ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the
Applications Information
section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature T
J
= TA+ (θJAx VCCx ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial
.
Note 4: T
C
is the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
V
CC
to GND...........................................................-0.3V to +5.5V
LO1, LO2 to GND ...............................................................±0.3V
Any Other Pins to GND...............................-0.3V to (V
CC
+ 0.3V)
RFMAIN, RFDIV, and LO_ Input Power ..........................+15dBm
RFMAIN, RFDIV Current (RF is DC shorted
to GND through balun)....................................................50mA
Continuous Power Dissipation (Note 1) ..............................8.8W
θ
JA
(Notes 2, 3)..............................................................+38°C/W
θ
JC
(Note 3).....................................................................7.4°C/W
Operating Temperature Range (Note 4).....T
C
= -40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= 4.75V to 5.25V, TC= -40°C to +85°C. Typical values are at VCC= 5.0V, TC= +25°C, all parame-
ters are production tested, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
Supply Current I
LOSEL Input High Voltage V
LOSEL Input Low Voltage V
LOSEL Input Current IIH, I
CC
CC
IH
IL
IL
4.75 5 5.25 V
2V
-10 +10 µA
330 380 mA
0.8 V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
Supply Current I
LOSEL Input High Voltage V
LOSEL Input Low Voltage V
CC
CC
R2 = R5 = 600 3.0 3.3 3.6 V
Total supply current, VCC = 3.3V 280 mA
IH
IL
2V
0.8 V
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________ 3
RECOMMENDED AC OPERATING CONDITIONS
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= +4.75V to +5.25V, RF and LO ports are driven from 50sources, PLO= -3dBm to +3dBm,
P
RF
= -5dBm, fRF= 700MHz to 1000MHz, fLO= 900MHz to 1200MHz, fIF= 200MHz, fRF< fLO, TC= -40°C to +85°C. Typical values
are at V
CC
= +5.0V, PRF= -5dBm, P
LO
= 0dBm, fRF=900MHz, fLO= 1100MHz, f
IF
= 200MHz, TC=+25°C, all parameters are guaran-
teed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency f
LO Frequency f
IF Frequency f
LO Drive Level P
RF
LO
(Note 5) 700 1000 MHz
(Note 5) 900 1300 MHz
U si ng M i ni - C i r cui ts TC 4- 1W- 17 4:1 tr ansfor m er as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)
IF
Using alternative Mini-Circuits TC4-1W-7A 4:1 transformer, IF matching components affect the IF frequency range (Note 5)
(Note 5) -3 +3 dBm
LO
100 500
50 250
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Power Gain G
Conversion Power Gain Variation vs. Frequency
G ai n V ar i ati on Over Tem p er atur eTCGTC = -40°C to +85°C -0.012 dB/°C
Noise Figure NF
Noise Figure Temperature Coefficient
Noise Figure Under Blocking Condition
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
fIF = 200MHz, fRF = 824MHz to 915MHz,
= -40°C to +85°C
T
C
fIF = 200MHz, fRF = 824MHz to 915MHz,
= +25°C (Note 9)
T
C
Flatness over any one of three frequency bands: f
C
= 824MHz to 849MHz,
RF
= 869MHz to 894MHz,
f
RF
f
= 880MHz to 915MHz (Note 9)
RF
TC = -40°C to +85°C 9.2 11.5
f
= 850MHz, fIF = 200MHz,
RF
= 0d Bm , TC = + 25°C , V
P
LO
TC = -40°C to +85°C 0.018 dB/°C
+8dBm blocker tone applied to RF port,
= 900MHz, fLO = 1090MHz,
f
RF
P
= -3dBm, f
LO
= +5.0V (Note 7)
V
CC
TC = -40°C to +85°C 10.0 12.6
TC = +25°C (Note 9) 11.0 12.6
fRF = 824MHz to 915MHz, f
- f
RF2
RF1
= -5dBm/tone, TC = -40°C to +85°C
P
RF
f
= 824MHz to 915MHz,
RF
f
- f
RF2
RF1
= -5dBm/tone, TC = +25°C (Note 9)
P
RF
BLOCKER
= 1MHz, fIF = 200MHz,
= 1MHz, fIF = 200MHz,
G
TC
N
C
NF
FB
1dB
= 800MHz,
7.0 8.7 10.2
7.7 8.7 9.7
0.15 0.3 dB
= + 5.0V
C C
22.5 25.5
23.5 25.5
9.0 10.3
18.8 22 dB
MHz
dB
dB
dBm
dBm
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
4 _______________________________________________________________________________________
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
, VCC= +4.75V to +5.25V, RF and LO ports are driven from 50sources, PLO= -3dBm to +3dBm,
P
RF
= -5dBm, fRF= 700MHz to 1000MHz, fLO= 900MHz to 1200MHz, fIF= 200MHz, fRF< fLO, TC= -40°C to +85°C. Typical values
are at V
CC
= +5.0V, PRF= -5dBm, P
LO
= 0dBm, fRF=900MHz, fLO= 1100MHz, f
IF
= 200MHz, TC=+25°C, all parameters are guaran-
teed by design and characterization, unless otherwise noted.) (Note 6)
2LO-2RF Spur Rejection 2 x 2
3LO-3RF Spur Rejection 3 x 3
LO Leakage at RF Port
2LO Leakage at RF Port
3LO Leakage at RF Port
4LO Leakage at RF Port
LO Leakage at IF Port
RF-to-IF Isolation fRF = 824MHz to 915MHz (Note 10) 30 38 dB
LO-to-LO Isolation
Channel-to-Channel Isolation
LO Switching Time 50% of LOS E L to IF settl ed w i thi n 2 d eg r ees 50 1000 ns
RF Input Impedance Z
RF Input Return Loss
LO Input Impedance Z
LO Input Return Loss
IF Terminal Output Impedance Z
IF Return Loss
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
= 800MHz,
f
RF
f
= 1000MHz,
LO
= 900MHz
f
SPUR
= 800MHz,
f
RF
= 1000MHz,
f
LO
f
= 933.3MHz
SPUR
f
= 900MHz to 1300MHz, PLO = +3dBm
LO
(Note 10)
fLO = 900MHz to 1200MHz, PLO = +3dBm (Note 10)
= 1200M H z to 1300M H z, P
f
L O
(Note 10)
f
= 900MHz to 1300MHz, PLO = +3dBm
LO
(Note 10)
f
= 900MHz to 1300MHz, PLO = +3dBm
LO
(Note 9)
f
= 900MHz to 1300MHz, PLO = +3dBm
LO
(Note 10)
RF
LO
= +3dBm, P
P
LO1
f
= 900MHz, f
LO1
= -5dBm (Notes 8, 10)
P
RF
RFM AIN ( RFD IV ) conver ted p ow er m easur ed at IFD IV ( IFM AIN ) , r el ati ve to IFM AIN ( IFD IV ) , al l unused p or ts ter m i nated to 50Ω ( N ote 9)
LO on and IF terminated into matched impedance
RF and IF terminated into matched impedance, LO port selected
RF and IF terminated into matched impedance, LO port unselected
Nominal differential impedance at the IC’s
IF
IF output
RF terminated in 50Ω; transformed to 50Ω using external components shown in the
Typical Application Circuit
= +3dBm,
LO2
= 901MHz,
LO2
PRF = -10dBm -63 -76
= -5dBm
P
RF
(Note 9)
PRF = -10dBm -65 -78
= -5dBm
P
RF
(Note 9)
= + 3d Bm
L O
-58 -71
-60 -73
-40 -20 dBm
-38 -25
-35 -22
-50 -28 dBm
-25 -15 dBm
-35 -23 dBm
40 46 dB
40 48 dB
50
20 dB
50
20
20
200
18 dB
dBc
dBc
dBm
dB
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________ 5
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, RF and LO ports are driven from 50sources. Typical values are at VCC= +3.3V, PRF= -5dBm,
P
LO
= 0dBm, fRF= 900MHz, fLO= 1100MHz, fIF= 200MHz, TC=+25°C, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Conversion Power Gain G
Conversion Power Gain Variation vs. Frequency
G ai n V ar i ati on Over Tem p er atur eTCGTC = -40°C to +85°C -0.012 dB/°C
Noise Figure NF 9.0 dB
Noise Figure Temperature Coefficient
Input 1dB Compression Point IP
Third-Order Input Intercept Point IIP3
2LO-2RF Spur Rejection 2 x 2
3LO-3RF Spur Rejection 3 x 3
Maximum LO Leakage at RF Port fLO = 900MHz to 1300MHz, PLO = +3dBm -40 dBm
M axi m um 2LO Leakag e at RF P or tf
Maximum LO Leakage at IF Port fLO = 900MHz to 1300MHz, PLO = +3dBm -34 dBm
Minimum RF-to-IF Isolation fRF = 824MHz to 915MHz 38 dB
LO-to-LO Isolation
Channel-to-Channel Isolation
LO Switching Time 50% of LOS E L to IF settl ed w i thi n 2 d eg r ees 50 ns
RF Input Impedance Z
RF Input Return Loss
LO Input Impedance Z
LO Input Return Loss
8.7 dB
0.15 dB
10.6 dBm
24.7 dBm
45 dB
48 dB
50
21 dB
50
31
24
G
TC
C
NF
1dB
RF
LO
Flatness over any one of three frequency bands: f
C
= 824MHz to 849MHz,
RF
f
= 869MHz to 894MHz,
RF
= 880MHz to 915MHz
f
RF
TC = -40°C to +85°C 0.018 dB/°C
f
= 900MHz, f
RF1
= 200MHz, PRF = -5dBm/tone
f
IF
f
= 800MHz,
RF
= 1000MHz,
f
LO
f
= 900MHz
SPUR
f
= 800MHz,
RF
= 1000MHz,
f
LO
f
= 933.333MHz
SPUR
= 900MHz to 1300MHz, PLO = +3dBm -42 dBm
LO
P
= +3dBm, P
LO1
f
= 900MHz, f
LO1
RFM AIN ( RFD IV ) conver ted p ow er m easur ed at IFD IV ( IFM AIN ) , r el ati ve to IFM AIN ( IFD IV ) , al l unused p or ts ter m i nated to 50
LO on and IF terminated into matched impedance
RF and IF terminated into matched impedance, LO port selected
RF and IF terminated into matched impedance, LO port unselected
= 901MHz,
RF2
PRF = -10dBm -74.9
P
= -5dBm -69.9
RF
P
= -10dBm -78
RF
P
= -5dBm -73
RF
= +3dBm,
LO2
= 901MHz (Note 8)
LO2
dBc
dBc
dB
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
6 _______________________________________________________________________________________
Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See
the
Typical Operating Characteristics
. Performance is optimized for RF frequencies of 824MHz to 915MHz.
Note 6: All limits reflect losses of external components. Output measurements taken at IF outputs of
Typical Application Circuit
.
Note 7: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of
all SNR degradations in the mixer including the LO noise, as defined in the Application Note 2021:
Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers
.
Note 8: Measured at IF port at IF frequency. LOSEL may be in any logic state. Note 9: Limited production testing. Note 10: Guaranteed by production testing.
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
, RF and LO ports are driven from 50sources. Typical values are at VCC= +3.3V, PRF= -5dBm,
P
LO
= 0dBm, fRF= 900MHz, fLO= 1100MHz, fIF= 200MHz, TC=+25°C, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
IF Terminal Output Impedance Z
IF Output Return Loss
Nominal differential impedance at the IC’s
IF
IF output
RF terminated in 50; transformed to 50 using external components shown in the
Typical Application Circuit
200
17 dB
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________ 7
Typical Operating Characteristics
(
Typical Application Circuit
, VCC= +5.0V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
11
TC = -30°C
10
9
8
CONVERSION GAIN (dB)
TC = +85°C
7
6
700 1000
TC = +25°C
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
27
26
TC = +85°C
CONVERSION GAIN vs. RF FREQUENCY
11
10
9
8
CONVERSION GAIN (dB)
7
6
700 1000
VCC = 4.75V, 5.0V, 5.25V
900800
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
27
PRF = -5dBm/TONE
26
VCC = 5.25V
900800
PRF = -5dBm/TONE
11
10
MAX19985A toc01
9
8
CONVERSION GAIN (dB)
7
6
27
26
MAX19985A toc04
CONVERSION GAIN vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
700 1000
RF FREQUENCY (MHz)
900800
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
MAX19985A toc02
MAX19985A toc05
MAX19985A toc03
MAX19985A toc06
25
24
INPUT IP3 (dBm)
TC = -30°C
23
22
700 1000
TC = +25°C
900800
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
8
NOISE FIGURE (dB)
7
TC = -30°C
6
5
700 1000
TC = +85°C
TC = +25°C
900800
RF FREQUENCY (MHz)
INPUT IP3 (dBm)
MAX19985A toc07
NOISE FIGURE (dB)
25
24
PLO = +3dBm, 0dBm
23
22
700 1000
RF FREQUENCY (MHz)
PLO = -3dBm
900800
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
8
7
6
5
PLO = -3dBm, 0dBm, +3dBm
700 1000
RF FREQUENCY (MHz)
900800
MAX19985A toc08
25
24
INPUT IP3 (dBm)
VCC = 4.75V
23
22
700 1000
RF FREQUENCY (MHz)
VCC = 5.0V
900800
NOISE FIGURE vs. RF FREQUENCY
12
11
10
9
8
NOISE FIGURE (dB)
7
6
5
700 1000
VCC = 4.75V, 5.0V, 5.25V
900800
RF FREQUENCY (MHz)
MAX19985A toc09
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
8 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, VCC= +5.0V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
2LO-2RF RESPONSE vs. RF FREQUENCY
80
75
70
65
60
2LO-2RF RESPONSE (dBc)
55
50
700 1000
TC = +85°C
TC = +25°C
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
95
85
TC = +85°C
75
3LO-3RF RESPONSE (dBc)
65
TC = +25°C
TC = -30°C
PRF = -5dBm
900800
PRF = -5dBm
TC = -30°C
80
75
MAX19985A toc10
70
65
60
2LO-2RF RESPONSE (dBc)
55
50
700 1000
95
MAX19985A toc13
85
75
3LO-3RF RESPONSE (dBc)
65
2LO-2RF RESPONSE vs. RF FREQUENCY
PLO = 0dBm
PLO = +3dBm
RF FREQUENCY (MHz)
PRF = -5dBm
PLO = -3dBm
900800
3LO-3RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
80
75
MAX19985A toc11
70
65
60
2LO-2RF RESPONSE (dBc)
55
50
700 1000
95
MAX19985A toc14
85
75
3LO-3RF RESPONSE (dBc)
65
2LO-2RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm
MAX19985A toc12
VCC = 4.75V, 5.0V, 5.25V
900800
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm
MAX19985A toc15
VCC = 4.75V, 5.0V, 5.25V
55
700 1000
RF FREQUENCY (MHz)
INPUT P
15
14
13
(dBm)
1dB
12
INPUT P
11
TC = -30°C
10
700 1000
1dB
TC = +25°C
RF FREQUENCY (MHz)
900800
vs. RF FREQUENCY
TC = +85°C
900800
MAX19985A toc16
55
700 1000
RF FREQUENCY (MHz)
INPUT P
15
14
13
(dBm)
1dB
12
INPUT P
11
10
700 1000
1dB
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
900800
vs. RF FREQUENCY
900800
MAX19985A toc17
55
700 1000
RF FREQUENCY (MHz)
INPUT P
15
14
13
(dBm)
1dB
12
INPUT P
11
10
700 1000
1dB
VCC = 5.0V
VCC = 4.75V
RF FREQUENCY (MHz)
900800
vs. RF FREQUENCY
VCC = 5.25V
MAX19985A toc18
900800
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________ 9
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, VCC= +5.0V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
700 1000
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-20
-25
-30
CHANNEL ISOLATION vs. RF FREQUENCY
60
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
700 1000
VCC = 4.75V, 5.0V, 5.25V
900800
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-20
-25
-30
900800
TC = -30°C
CHANNEL ISOLATION vs. RF FREQUENCY
60
55
MAX19985A toc19
50
45
40
CHANNEL ISOLATION (dB)
35
30
700 1000
-20
-25
MAX19985A toc22
-30
PLO = -3dBm, 0dBm, +3dBm
900800
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
PLO = +3dBm
MAX19985A toc20
MAX19985A toc23
MAX19985A toc21
MAX19985A toc24
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
-50 900 1200
TC = +25°C, +85°C
1100 11501000 1050950
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
50
45
40
RF-TO-IF ISOLATION (dB)
35
30
700 1000
TC = +85°C
TC = -30°C TC = +25°C
800 900
RF FREQUENCY (MHz)
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
-50 900 1200
50
MAX19985A toc25
45
40
RF-TO-IF ISOLATION (dB)
35
30
700 1000
PLO = -3dBm
PLO = 0dBm
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
800 900
RF FREQUENCY (MHz)
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
1150110010501000950
-50 900 1200
VCC = 4.75V, 5.0V, 5.25V
1150110010501000950
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
50
MAX19985A toc26
45
40
RF-TO-IF ISOLATION (dB)
35
30
VCC = 4.75V, 5.0V, 5.25V
700 1000
800 900
RF FREQUENCY (MHz)
MAX19985A toc27
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
10 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, VCC= +5.0V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
-30
-40
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
TC = +25°C
TC = -30°C
MAX19985A toc28
-20
-30
-40
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
MAX19985A toc29
-20
-30
-40
-50
LO LEAKAGE AT RF PORT (dBm)
-60
TC = +85°C
-50
LO LEAKAGE AT RF PORT (dBm)
-60
-50
LO LEAKAGE AT RF PORT (dBm)
-60
MAX19985A toc30
-70 800 900 11001000
700 1200
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
-60
700 1200
TC = -30°C, +25°C, +85°C
800 900 11001000
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
50
TC = -30°C
45
-70 700 1200
-10
-20
MAX19985A toc31
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
-60 700 1200
50
MAX19985A toc34
45
800 900 11001000
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
800 900 11001000
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
-70 700 1200
-10
-20
MAX19985A toc32
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
-60 700 1200
50
MAX19985A toc35
45
800 900 11001000
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
800 900 11001000
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
MAX19985A toc33
MAX19985A toc36
40
TC = +85°C
LO SWITCH ISOLATION (dB)
35
30
900 15001000 1200 1400
1100 1300
LO FREQUENCY (MHz)
TC = +25°C
40
PLO = +3dBm
LO SWITCH ISOLATION (dB)
35
30
900 15001000 1200 1400
PLO = -3dBm, 0dBm
1100 1300
LO FREQUENCY (MHz)
40
LO SWITCH ISOLATION (dB)
35
30
900 15001000 1200 1400
1100 1300
LO FREQUENCY (MHz)
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
MAX19985A toc39
LO FREQUENCY (MHz)
LO SELECTED RETURN LOSS (dB)
11001000850
40
30
20
10
0
50
700 1300
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 11
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, VCC= +5.0V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
5
10
15
20
RF PORT RETURN LOSS (dB)
25
30
700 1000
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
0
10
IF PORT RETURN LOSS
vs. IF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
IF RETURN LOSS DEPENDS ON EXTERNAL IF COMPONENTS
140 230 320 410
IF FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (T
VCC = 5.25V
LO = 900MHz
)
C
MAX19985A toc38
MAX19985A toc41
CONVERSION GAIN vs. RF FREQUENCY
(VARIOUS LO AND IF BIAS)
11
10
1, 2, 3, 4
IF = 200MHz
900 950800750 850
0
MAX19985A toc37
MAX19985A toc40
5
10
15
20
IF PORT RETURN LOSS (dB)
25
30
50 500
370
350
MAX19985A toc42
LO UNSELECTED RETURN LOSS (dB)
INPUT IP3 (dBm)
20
30
PLO = -3dBm, 0dBm, +3dBm
40
50
700 1300
LO FREQUENCY (MHz)
11001000850
INPUT IP3 vs. RF FREQUENCY
(VARIOUS LO AND IF BIAS)
28
11
26
24
22
20
18
16
SEE TABLE 1 FOR RESISTOR AND ICC VALUES
14
700 1000
2, 3, 4
5
4
6
7
900800
RF FREQUENCY (MHz)
330
310
SUPPLY CURRENT (mA)
290
270
-35 85
80
75
MAX19985A toc43
70
65
60
2LO-2RF RESPONSE (dBc)
55
50
700
VCC = 5.0V
VCC = 4.75V
-15 25 45565 TEMPERATURE (°C)
2LO-2RF RESPONSE vs. RF FREQUENCY
(VARIOUS LO AND IF BIAS)
1
2, 3, 4
7
SEE TABLE 1 FOR RESISTOR AND ICC VALUES
RF FREQUENCY (MHz)
P
= -5dBm
RF
6
5
900800
1000
9
8
CONVERSION GAIN (dB)
7
6
700
85
80
MAX19985A toc44
75
70
65
60
3LO-3RF RESPONSE (dBc)
55
50
45
700 1000
7
SEE TABLE 1 FOR RESISTOR AND ICC VALUES
5
900800
RF FREQUENCY (MHz)
6
3LO-3RF RESPONSE vs. RF FREQUENCY
(VARIOUS LO AND IF BIAS)
1, 2, 3, 4
7
SEE TABLE 1 FOR RESISTOR AND ICC VALUES
RF FREQUENCY (MHz)
P
= -5dBm
RF
5
6
900800
1000
MAX19985A toc45
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
12 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, VCC= +5.0V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
INPUT P
(VARIOUS LO AND IF BIAS)
16
14
12
(dBm)
1dB
10
INPUT P
8
6
4
7
SEE TABLE 1 FOR RESISTOR AND ICC VALUES
700
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
1, 2, 3, 4
6
900800
MAX19985A toc46
5
1000
CONVERSION GAIN vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
11
10
9
8
CONVERSION GAIN (dB)
7
6
700 1000
L = 0Ω, 7.5nH, 15nH, 30nH
800
RF FREQUENCY (MHz)
900
L = L3 = L6
MAX19985A toc47
INPUT IP3 vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
27
26
25
24
INPUT IP3 (dBm)
23
22
700 1000
L = 0Ω, 7.5nH, 15nH
800
RF FREQUENCY (MHz)
900
L = L3 = L6
MAX19985A toc48
L = 30nH
2LO-2RF RESPONSE vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
80
75
70
65
L = 7.5nH
60
2LO-2RF RESPONSE (dBc)
55
50
700 1000
L = 30nH
L = 15nH
800
RF FREQUENCY (MHz)
P
900
= -5dBm
RF
L = L3 = L6
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
0
-10
-20
-30
-40
-50
LO LEAKAGE AT IF PORT (dBm)
-60
L = 0
L = 15nH
L = L3 = L6
L = 7.5nH
L = 30nH
L = 0
MAX19985A toc49
MAX19985A toc51
3LO-3RF RESPONSE vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
95
85
75
3LO-3RF RESPONSE (dBc)
65
55
700 1000
L = 0Ω, 7.5nH, 15nH, 30nH
800
RF FREQUENCY (MHz)
P
900
RF-TO-IF ISOLATION vs. RF FREQUENCY
(VARIOUS VALUES OF L3 AND L6)
50
L = 30nH
40
30
20
RF-TO-IF ISOLATION (dB)
L = 0
10
L = 15nH
L = 7.5nH
= -5dBm
RF
L = L3 = L6
L = L3 = L6
MAX19985A toc50
MAX19985A toc52
-70 900 12001050950 1150
LO FREQUENCY (MHz)
11001000
0
700 1000
RF FREQUENCY (MHz)
900800
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 13
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, VCC= +3.3V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
CONVERSION GAIN
vs. RF FREQUENCY
MAX19985A toc55
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
800 900
7
8
9
10
11
6
700 1000
VCC = 3.0V, 3.3V, 3.6V
NOISE FIGURE
vs. RF FREQUENCY
MAX19985A toc61
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
900800
11
8
7
10
6
9
12
5
700 1000
VCC = 3.0V, 3.3V, 3.6V
CONVERSION GAIN
vs. RF FREQUENCY
11
TC = -30°C
10
9
8
TC = +85°C
CONVERSION GAIN (dB)
7
6
700 1000
TC = +25°C
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
26
TC = +85°C
25
CONVERSION GAIN vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
800 900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
VCC = 3.3V
VCC = 3.3V
PLO = +3dBm
1000
MAX19985A toc54
MAX19985A toc57
INPUT IP3 vs. RF FREQUENCY
26
PRF = -5dBm/TONE
25
VCC = 3.6V
VCC = 3.3V
900800
PRF = -5dBm/TONE
VCC = 3.3V
11
10
MAX19985A toc53
9
8
CONVERSION GAIN (dB)
7
6
26
25
MAX19985A toc56
700
MAX19985A toc58
24
23
INPUT IP3 (dBm)
TC = -30°C
22
21
700 1000
TC = +25°C
900800
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
12
11
10
9
8
NOISE FIGURE (dB)
7
TC = -30°C
6
5
700 1000
TC = +85°C
TC = +25°C
900800
RF FREQUENCY (MHz)
VCC = 3.3V
INPUT IP3 (dBm)
MAX19985A toc59
NOISE FIGURE (dB)
24
23
22
21
700 1000
RF FREQUENCY (MHz)
PLO = 0dBm
PLO = -3dBm
900800
NOISE FIGURE
vs. RF FREQUENCY
12
11
10
9
8
7
6
5
700 1000
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
VCC = 3.3V
900800
MAX19985A toc60
24
23
INPUT IP3 (dBm)
22
21
700 1000
RF FREQUENCY (MHz)
VCC = 3.3V
900800
VCC = 3.0V
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
14 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, VCC= +3.3V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
2LO-2RF RESPONSE
vs. RF FREQUENCY
80
VCC = 3.3V
75
70
TC = +85°C
PRF = -5dBm
MAX19985A toc62
80
75
70
2LO-2RF RESPONSE
vs. RF FREQUENCY
PLO = -3dBm
PRF = -5dBm
VCC = 3.3V
MAX19985A toc63
80
75
70
2LO-2RF RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
MAX19985A toc64
65
60
2LO-2RF RESPONSE (dBc)
55
50
700 1000
TC = +25°C
RF FREQUENCY (MHz)
3LO-3RF RESPONSE
vs. RF FREQUENCY
95
VCC = 3.3V
85
TC = +85°C
75
3LO-3RF RESPONSE (dBc)
65
55
700 1000
INPUT P
13
VCC = 3.3V
12
11
(dBm)
1dB
10
INPUT P
9
TC = -30°C
8
TC = +25°C
TC = -30°C
RF FREQUENCY (MHz)
vs. RF FREQUENCY
1dB
TC = +85°C
TC = +25°C
TC = -30°C
900800
PRF = -5dBm
900800
65
60
2LO-2RF RESPONSE (dBc)
55
50
700 1000
95
MAX19985A toc65
85
75
3LO-3RF RESPONSE (dBc)
65
55
700 1000
13
12
MAX19985A toc68
11
(dBm)
1dB
10
INPUT P
9
8
RF FREQUENCY (MHz)
3LO-3RF RESPONSE
vs. RF FREQUENCY
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
INPUT P
1dB
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
PLO = +3dBm
PLO = 0dBm
900800
PRF = -5dBm
900800
vs. RF FREQUENCY
65
60
2LO-2RF RESPONSE (dBc)
55
50
700 1000
95
MAX19985A toc66
85
75
3LO-3RF RESPONSE (dBc)
65
55
700 1000
13
12
MAX19985A toc69
11
(dBm)
1dB
10
INPUT P
9
8
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
3LO-3RF RESPONSE
vs. RF FREQUENCY
VCC = 3.6V
RF FREQUENCY (MHz)
INPUT P
1dB
VCC = 3.3V
900800
PRF = -5dBm
MAX19985A toc67
VCC = 3.3V
VCC = 3.0V
900800
vs. RF FREQUENCY
VCC = 3.6V
MAX19985A toc70
VCC = 3.0V
7
700 1000
RF FREQUENCY (MHz)
900800
7
700 1000
RF FREQUENCY (MHz)
900800
7
700 1000
RF FREQUENCY (MHz)
900800
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 15
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, VCC= +3.3V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
CHANNEL ISOLATION
vs. RF FREQUENCY
60
VCC = 3.3V
55
50
45
40
CHANNEL ISOLATION (dB)
35
30
700 1000
TC = -30°C, +25°C, +85°C
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-20 VCC = 3.3V
-25
-30
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
TC = -30°C
TC = +85°C
900800
TC = +25°C
60
VCC = 3.3V
55
MAX19985A toc71
50
45
40
CHANNEL ISOLATION (dB)
35
30
700 1000
-20 VCC = 3.3V
-25
MAX19985A toc74
-30
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
CHANNEL ISOLATION
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
900800
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
60
55
MAX19985A toc72
50
45
40
CHANNEL ISOLATION (dB)
35
30
700 1000
-20
-25
MAX19985A toc75
-30
-35
-40
LO LEAKAGE AT IF PORT (dBm)
-45
CHANNEL ISOLATION
vs. RF FREQUENCY
VCC = 3.0V, 3.3V, 3.6V
900800
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
MAX19985A toc73
MAX19985A toc76
-50 900 12001050950 1150
LO FREQUENCY (MHz)
11001000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
50
VCC = 3.3V
45
40
RF-TO-IF ISOLATION (dB)
35
30
700 1000
TC = +85°C
TC = -30°C
TC = +25°C
900800
RF FREQUENCY (MHz)
-50
50
MAX19985A toc77
45
40
RF-TO-IF ISOLATION (dB)
35
30
900 12001050950 1150
LO FREQUENCY (MHz)
11001000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
700 1000
RF FREQUENCY (MHz)
900800
-50
50
MAX19985A toc78
45
40
RF-TO-IF ISOLATION (dB)
35
30
900 12001050950 1150
LO FREQUENCY (MHz)
11001000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
VCC = 3.0V, 3.3V, 3.6V
700 1000
RF FREQUENCY (MHz)
900800
MAX19985A toc79
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
16 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, VCC= +3.3V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
VCC = 3.3V
-30
TC = -30°C TC = +25°C
MAX19985A toc80
-20
-30
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.3V
MAX19985A toc81
-20
-30
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.6V
MAX19985A toc82
-40
-50
LO LEAKAGE AT RF PORT (dBm)
-60
800 1000900 1100
700 1200
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
VCC = 3.3V
-20
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
-60 700 1200
TC = -30°C, +25°C, +85°C
800 1000900 1100
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. RF FREQUENCY
50
VCC = 3.3V
45
TC = +85°C
TC = -30°C
-40
-50
LO LEAKAGE AT RF PORT (dBm)
-60 700 1200
-10
VCC = 3.3V
-20
MAX19985A toc83
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
-60 700 1200
50
VCC = 3.3V
MAX19985A toc86
45
PLO = -3dBm, 0dBm, +3dBm
800 1000900 1100
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
800 1000900 1100
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. RF FREQUENCY
-40
-50
LO LEAKAGE AT RF PORT (dBm)
-60 700 1200
-10
-20
MAX19985A toc84
-30
-40
2LO LEAKAGE AT RF PORT (dBm)
-50
-60 700 1200
50
MAX19985A toc87
45
VCC = 3.3V
VCC = 3.0V
800 1000900 1100
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
800 1000900 1100
LO FREQUENCY (MHz)
LO SWITCH ISOLATION
vs. LO FREQUENCY
VCC = 3.0V, 3.3V, 3.6V
MAX19985A toc85
MAX19985A toc88
40
LO SWITCH ISOLATION (dB)
TC = +85°C
35
30
900 1500
LO FREQUENCY (MHz)
TC = +25°C
13001000 1200 14001100
40
LO SWITCH ISOLATION (dB)
35
30
900
PLO = +3dBm
LO FREQUENCY (MHz)
PLO = -3dBm, 0dBm
13001000 1200 14001100
LO SWITCH ISOLATION (dB)
1500
40
35
30
900 1500
LO FREQUENCY (MHz)
13001000 1200 14001100
Table 1. DC Current vs. Bias Resistor Settings
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 17
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, VCC= +3.3V, PLO= 0dBm, PRF= -5dBm, LO is high-side injected for a 200MHz IF, TC=+25°C, unless
otherwise noted.)
Note: See TOCs 42–46 for performance trade-offs vs. DC bias condition.
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
VCC = 3.3V
5
10
15
20
RF PORT RETURN LOSS (dB)
25
30
PLO = -3dBm, 0dBm, +3dBm
700 1000
RF FREQUENCY (MHz)
LO UNSELECTED RETURN LOSS
0
VCC = 3.3V
10
PLO = -3dBm, 0dBm, +3dBm
20
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
0
VCC = 3.3V
PLO = -3dBm
700 13001000850
LO FREQUENCY (MHz)
SUPPLY CURRENT
VCC = 3.6V
)
C
PLO = +3dBm
PLO = 0dBm
1150
MAX19985A toc93
IF = 200MHz
900750 850 950800
vs. LO FREQUENCY
0
MAX19985A toc89
5
10
15
20
IF PORT RETURN LOSS (dB)
25
30
50 500320
IF PORT RETURN LOSS
vs. IF FREQUENCY
VCC = 3.0V, 3.3V, 3.6V
IF RETURN LOSS DEPENDS ON EXTERNAL COMPONENTS
140 230 410
IF FREQUENCY (MHz)
MAX19985A toc92
LO = 900MHz
340
320
300
280
10
MAX19985A toc90
20
30
40
LO SELECTED RETURN LOSS (dB)
50
vs. TEMPERATURE (T
MAX19985A toc91
30
40
LO UNSELECTED RETURN LOSS (dB)
50
700 13001000850
LO FREQUENCY (MHz)
1150
BIAS
CONDITION
1 359.4 698 800
2 331.8 698 1100
3 322.8 698 1200
4 311.7 698 1400
5 268.2 1100 1200
6 244.4 1400 1200
7 223.7 1820 1200
D C CU R R EN T
( m A )
R1 AND R4
VALUES (Ω)
R2 AND R5
VALUES (Ω)
260
SUPPLY CURRENT (mA)
240
220
200
VCC = 3.0V
-35 8525-15 65 TEMPERATURE (°C)
VCC = 3.3V
455
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
18 ______________________________________________________________________________________
Pin Description
PIN NAME FUNCTION
1 RFMAIN
2 TAPMAIN
3, 5, 7, 12, 20, 22,
24, 25, 26, 34
4, 6, 10, 16, 21,
30, 36
8 TAPDIV
9 RFDIV
11 IFDBIAS
13, 14 IFD+, IFD-
15 LEXTD
17 LODBIAS
18, 28 N.C. No Connection. Not internally connected.
19 LO1
23 LOSEL Local Oscillator Select. Set this pin to high to select LO1. Set to low to select LO2.
27 LO2
29 LOMBIAS
31 LEXTM
32, 33 IFM-, IFM+
35 IFMBIAS
—EP
GND Ground
V
CC
Main Channel RF input. Internally matched to 50. Requires an input DC-blocking capacitor.
Main Channel Balun Center Tap. Bypass to GND with 39pF and 0.033µF capacitors as close as possible to the pin with the smaller value capacitor closer to the part.
Power Supply. Bypass to GND with 0.01µF capacitors as close as possible to the pin. Pins 4 and 6 do not require bypass capacitors.
Diversity Channel Balun Center Tap. Bypass to GND with 39pF and 0.033µF capacitors as close as possible to the pin with the smaller value capacitor closer to the part.
Diversity Channel RF Input. Internally matched to 50. Requires an input DC-blocking capacitor.
IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity IF amplifier (see the Typical Operating Characteristics for typical performance vs. resistor value).
Diversity Mixer Differential IF Outputs. Connect pullup inductors from each of these pins to
(see the Typical Application Circuit).
V
CC
Diversity External Inductor Connection. Connect a parallel combination of an inductor and a 500 resistor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation (see the Typical Operating Characteristics for typical performance vs. inductor value).
LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity LO amplifier (see the Typical Operating Characteristics for typical performance vs. resistor value).
Local Oscillator 1 Input. This input is internally matched to 50. Requires an input DC­blocking capacitor.
Local Oscillator 2 Input. This input is internally matched to 50. Requires an input DC­blocking capacitor.
LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main LO amplifier (see the Typical Operating Characteristics for typical performance vs. resistor value).
Main External Inductor Connection. Connect a parallel combination of an inductor and a 500 resistor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation (see Typical Operating Characteristics for typical performance vs. inductor value).
Main Mixer Differential IF Outputs. Connect pullup inductors from each of these pins to V (see the Typical Application Circuit).
IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main IF amplifier (see the Typical Operating Characteristics for typical performance vs. resistor value).
Exposed Pad. Internally connected to GND. Connect to a large ground plane using multiple vias to maximize thermal and RF performance.
CC
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 19
Detailed Description
The MAX19985A is a dual-channel downconverter designed to provide 8.7dB of conversion gain, +25.5dBm of IIP3, +12.6dBm typical input 1dB com­pression point, and a 9.0dB noise figure.
In addition to its high-linearity performance, the MAX19985A achieves a high level of component inte­gration. The device integrates two double-balanced mixers for two-channel downconversion. Both the main and diversity channels include a balun and matching circuitry to allow 50single-ended interfaces to the RF ports and the two LO ports. An integrated single-pole/ double-throw (SPDT) switch provides 50ns switching time between the two LO inputs with 46dB of LO-to-LO isolation and -40dBm of LO leakage at the RF port. Furthermore, the integrated LO buffers provide a high drive level to each mixer core, reducing the LO drive required at the MAX19985A’s inputs to a range of
-3dBm to +3dBm. The IF ports for both channels incor­porate differential outputs for downconversion, which is ideal for providing enhanced 2LO-2RF performance.
Specifications are guaranteed over broad frequency ranges to allow for use in WCDMA, GSM/EDGE, iDEN, cdma2000, and LTE/WiMAX cellular and 700MHz band base stations. The MAX19985A is specified to operate over an RF input range of 700MHz to 1000MHz, an LO range of 900MHz to 1300MHz, and an IF range of 50MHz to 500MHz. The external IF components set the lower frequency range (see the
Typical Operating
Characteristics
for details). Operation beyond these
ranges is possible (see the
Typical Operating
Characteristics
for additional information). Although this device is optimized for high-side LO injection applica­tions, it can operate in low-side LO injection modes as well. However, performance degrades as f
LO
continues to decrease. For increased low-side LO performance, refer to the MAX19985 data sheet.
RF Port and Balun
The RF input ports of both the main and diversity chan­nels are internally matched to 50, requiring no exter­nal matching components. A DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. The RF port input return loss is typically 20dB over the RF frequency range of 770MHz to 915MHz.
LO Inputs, Buffer, and Balun
The MAX19985A is optimized for a 900MHz to 1300MHz LO frequency range. As an added feature, the MAX19985A includes an internal LO SPDT switch for use in frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically 50ns, which is more than adequate for typical GSM applications. If frequency hopping is not employed, simply set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL), where logic-high selects LO1 and logic-low selects LO2. LO1 and LO2 inputs are internally matched to 50, requiring only an 82pF DC-blocking capacitor. To avoid damage to the part, voltage MUST be applied to VCCbefore digital logic is applied to LOSEL. Alternatively, a 1k resistor can be placed in series at the LOSEL to limit the input current in applications where LOSEL is applied before V
CC
.
The main and diversity channels incorporate a two­stage LO buffer that allows for a wide-input power range for the LO drive. The on-chip low-loss baluns, along with LO buffers, drive the double-balanced mix­ers. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.
High-Linearity Mixer
The core of the MAX19985A dual-channel downcon­verter consists of two double-balanced, high­performance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffers. When combined with the integrated IF ampli­fiers, the cascaded IIP3, 2LO-2RF rejection, and noise figure performance are typically +25.5dBm, 76dBc, and 9.0dB, respectively.
Differential IF
The MAX19985A has an IF frequency range of 50MHz to 500MHz, where the low-end frequency depends on the frequency response of the external IF components. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF applica­tions require a 4:1 (impedance ratio) balun to transform the 200differential IF impedance to a 50single­ended system. After the balun, the return loss is typically 18dB. The user can use a differential IF ampli­fier on the mixer IF ports, but a DC block is required on both IFD+/IFD- and IFM+/IFM- ports to keep external DC from entering the IF ports of the mixer.
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
20 ______________________________________________________________________________________
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50. No matching components are required. The RF port input return loss is typically 20dB over the RF frequency range of 770MHz to 915MHz and return loss at the LO ports are typically 20dB over the entire LO range. RF and LO inputs require only DC-blocking capacitors for interfacing.
The IF output impedance is 200(differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance to a 50single-ended output (see the
Typical Application Circuit
).
Externally Adjustable Bias
Each channel of the MAX19985A has two pins (LO_BIAS, IF_BIAS) that allow external resistors to set the internal bias currents. Nominal values for these resistors are given in Table 2. Larger-value resistors can be used to reduce power dissipation at the expense of some performance loss. See the
Typical Operating Characteristics
to evaluate the power vs. performance tradeoff. If ±1% resistors are not readily available, ±5% resistors can be substituted.
LEXT_ Inductors
For applications requiring optimum RF-to-IF and LO-to­IF isolation, connect a parallel combination of a low­ESR inductor and a 500resistor from LEXT_ (pins 15 and 31) to ground. When improved isolation is not required, connect LEXT_ to ground using a 0resis­tance. See the
Typical Operating Characteristics
to
evaluate the isolation vs. inductor value tradeoff.
Layout Considerations
A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be so that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best perfor­mance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to con­nect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the
Table 2. Component Values
C9, C13, C15, C17, C18 0.01µF Microwave capacitors (0402)
C10, C11, C12, C19, C20, C21 150pF Microwave capacitors (0603)
COMPONENT VALUE DESCRIPTION
C1, C2, C7, C8 39pF Microwave capacitors (0402)
C3, C6 0.033µF Microwave capacitors (0603)
C4, C5 Not used
C14, C16 82pF Microwave capacitors (0402)
L1, L2, L4, L5 330nH Wire-wound high-Q inductors (0805)
L3, L6 30nH
R1, R4 698
R2, R5
R3, R6 0 ±1% resistors (1206)
R7, R8 500 ±1% resistors (0402)
T1, T2 4:1
U1 MAX19985A IC
1.2k
600 ±1% resistors (0402). Use for V
Wire-wound high-Q inductors (0603). Smaller values can be used at the expense of some performance loss (see the Typical Operating Characteristics).
±1% resistors (0402). Larger values can be used to reduce power at the expense of some performance loss (see the Typical Operating Characteristics).
±1% resistors (0402). Use for V to reduce power at the expense of some performance loss (see the Typical Operating Characteristics).
Transformers (200:50) Mini-Circuits TC4-1W-7A
= +5.0V applications. Larger values can be used
CC
= +3.3V applications.
CC
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 21
device package to the PCB. The MAX19985A evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for high­frequency circuit stability. Bypass each VCCpin and TAPMAIN/TAPDIV with the capacitors shown in the
Typical Application Circuit
(see Table 2 for component values). Place the TAPMAIN/TAPDIV bypass capacitors to ground within 100 mils of the pin.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX19985A’s 36-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19985A is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low­inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
22 ______________________________________________________________________________________
Typical Application Circuit
C19
RF MAIN
INPUT
C3 C2
C4
V
CC
C5
C6 C7
RF DIV
INPUT
LO2
GND
GND
GND
LOSEL
GND
V
CC
GND
LO1
IF MAIN OUTPUT
C16
C14
LO2
LO SELECT
V
CC
C15
LO1
V
V
CC
C18
+
RFMAIN
1
C1
TAPMAIN
V
CC
C8
GND
V
GND
V
GND
TAPDIV
RFDIV
C9
2
3
CC
4
5
CC
6
7
8
9
V
CC
R1
CC
IFMBIAS
V
3536 34 32 31 30
10 11
CC
V
IFDBIAS
R4
IFM+
GND
33
13 14 15 16
12
IFD+
GND
L1
CC
L3
IFM-
R3
L2
LEXTM
C21
C20
R7
CC
LOMBIAS
V
29
U1
MAX19985A
EXPOSED
PAD
17
CC
IFD-
V
LEXTD
L6
LODBIAS
R8
C11
T1
4:1
V
CC
C17
R2
N.C.
28
27
26
25
24
23
22
21
20
19
18
R5
N.C.
V
CC
C13
L5
V
CC
C12
R6
L4
C10
T2
4:1
IF DIV OUTPUT
MAX19985A
Dual, SiGe, High-Linearity, 700MHz to 1000MHz
Downconversion Mixer with LO Buffer/Switch
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
23
© 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
Pin Configuration/Functional Diagram
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages
.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
36 Thin QFN-EP T3666+2
21-0141
TOP VIEW (WITH
EXPOSED PAD ON
THE BOTTOM OF THE
PACKAGE)
RFMAIN
TAPMAIN
GND
V
CC
GND
V
CC
GND
TAPDIV
RFDIV
1
2
3
5
6
7
8
9
+
4
CC
V
10 11
CC
V
GND
IFMBIAS
3536 34 32 31 30
IFDBIAS
IFM+
33
13 14 15 16
12
IFD+
GND
THIN QFN-EP
6mm x 6mm
IFM-
IFD-
LEXTM
MAX19985A
EXPOSED
PAD
LEXTD
CC
LOMBIAS
V
CC
V
29
17
LODBIAS
N.C.
28
27
LO2
GND
26
25
GND
GND
24
23
LOSEL
GND
22
21
V
CC
20
GND
19
LO1
18
N.C.
Loading...