Rainbow Electronics MAX16841 User Manual

19-6028; Rev 0; 10/11
MAX16841
Controller IC for Dimmable Offline LED Lamps

General Description

The MAX16841 is an LED driver for AC line (100V, 120V, 220V, and 230V AC) input lamps. It features proprietary control of the input current that allows lamps to dim smoothly from full to zero light intensity, while providing active power factor correction (PFC). It is a very flexible product that can be used in isolated (e.g., flyback) and nonisolated (e.g., buck) configurations. The conventional use of an optocoupler in isolated configurations can be avoided in MAX16841-based designs.
The constant frequency-control technique of the device allows maximization of the conversion efficien­cy at both low and high AC line by operating at the conduction mode that minimizes total conduction and switching losses.
The device can be configured for universal input (90V to 264V AC) dimmable applications, allowing the design of an LED lamp that can be operated and dimmed worldwide.
This device can be used without electrolytic capacitors, thus maximizing the lamp lifetime. In this case, the LED current is a rectified sinusoid with a frequency that is twice the AC line frequency.
The device also features thermal shutdown, current limit, open LED protection, and VCC undervoltage lockout. The MAX16841 is available in an 8-pin SO package and operates over the -40NC to +125NC temperature range.

Features

S Smooth Dimming with Leading-Edge (Triac) and
Trailing-Edge Dimmers
S Active Power Factor Correction
S Nonisolated (e.g., Buck) and Isolated
(e.g., Flyback) Topologies
S Universal 90V to 264V AC Input Range
S Constant Frequency-Control Scheme Maximizes
Efficiency at High and Low AC Line Voltage
S Constant Power Control with No Need for
Optocouplers
S Very-Low Quiescent Current
S Output Open and Short Protection
S Thermal Shutdown
S Available in an 8-Pin SO Package
Ordering Information appears at end of data sheet.
Typical Operating Circuits appear at end of data sheet.
For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX16841.related.

Applications

Retrofit LED Lamps with Triac Dimming
Universal Input LED Retrofit Lamps
Industrial and Commercial Lighting
Residential LED Lighting
����������������������������������������������������������������� Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
MAX16841
Controller IC for Dimmable Offline LED Lamps

ABSOLUTE MAXIMUM RATINGS

IN to GND .............................................................. -0.3V to +26V
NDRV, DIMOUT to GND ........................... -0.3V to (VIN + 0.3V)
All Other Pins to GND .............................................-0.3V to +6V
NDRV Continuous Current .............................................. Q10mA
DIMOUT Continuous Current ............................................ Q2mA
Continuous Power Dissipation (TA = +70NC)
8 SO (derate 7mW/NC above +70NC) ..................588.2mW
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera­tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
PACKAGE THERMAL CHARACTERISTICS (Note 1)
8 SO
Junction-to-Ambient Thermal
Resistance (BJA) (based on S8+2) ...........................136NC/W
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

(VIN = 12V, TA = TJ = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
IN Operating Range V
IN Undervoltage Threshold UVLOR
IN Overvoltage Threshold OVLOR
IN Input Supply Current I
TH
TH Operating Range 0 4 V
TH Threshold Voltage V
TH Input Supply Current VTH = 0V 0.16 0.3
REFI
REFI Operating Range V
REFI Input Supply Current V
DIMOUT
DIMOUT On-Resistance
TH to DIMOUT Propagation Delay
INTERNAL OSCILLATOR
Oscillator Frequency
IN
IN
TH
REFI
INVIN
INVIN
rising, V
rising, V
NDRV not switching, VTH = 0V 0.7 1.3 2.6
NDRV switching, 177.5kW/330pF on NDRV, VTH = 5V, V VCS = 0V, V
VIN = 8V 1.6
VTH rising, hysteresis = 150mV 1.17 1.215 1.26 V
= 2V 48.5 50 51.5
REFI
DIMOUT = IN DIMOUT = GND
VTH rising 40 80
VTH falling 40 80
RT = 47.5KI
RT = 177.5kI
RT = 297.5kI
Operating Temperature Range ........................ -40NC to +125NC
Junction Temperature .....................................................+150NC
Storage Temperature Range ............................ -65NC to +150NC
Lead Temperature (soldering, 10s) ................................+300NC
Soldering Temperature (reflow) ......................................+260NC
Junction-to-Case Thermal
Resistance (BJC) (based on S8+2) .............................38NC/W
11 20 V
= 1V 9.5 10 10.5 V
HYST
= 1.8V 21 22 23 V
HYST
1.7 2.7 4.2
0.5 3.25 V
20 40 20 40
50
160 180 200
270 300 330
REFI
COMP
= 2.35V
= 2V,
mA
FA
FA
I
ns
kHz
����������������������������������������������������������������� Maxim Integrated Products 2
MAX16841
Controller IC for Dimmable Offline LED Lamps
ELECTRICAL CHARACTERISTICS (continued)
(VIN = 12V, TA = TJ = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RT Resistance Range 47.5 297.5 Oscillator Decode Resolution 6 Bits Dither Frequency Range 45kHz to 330kHz 1.875 % Frequency Dither Ramping DAC 7 Bits Dither Frequency 1.5 kHz
CURRENT SENSE
CS Input Bias Current
CS Voltage at Current Limit V
CS Voltage at Current Limit Soft-Start
CS Voltage at Hiccup Current Limit
CS Hiccup Shutdown CS > hiccup 1.2 s Hiccup Detection Cycles 3 Times
CS Regulation Voltage
TRANSCONDUCTANCE AMPLIFIER
Transconductance G
COMP Sink Current I
COMP Source Current I
NDRV
NDRV Operating Range 0 V
NDRV On-Resistance
NDRV Dead Time Rising or falling 5 Ns
NDRV Rise Time NDRV = 1nF, 10% to 90% 15 ns
NDRV Fall Time NDRV = 1nF, 90% to 10% 15 ns
NDRV Reference Current Startup only 7.5 8 8.5
THERMAL SHUTDOWN
Thermal-Shutdown Threshold TJ rising 164
Thermal Hysteresis 20
Note 2: All parameters are tested at TA = +25NC only. Limits over temperature are guaranteed by design.
CS_LIMIT
m
SINK
SOURCE
VCS = 2V, V
VCS = 2V, V
V
= 2V, V
COMP
VCS = 0.45V
V
= 2.2V, V
COMP
VCS = 0.45V Q0.05V
V
= 2V, V
COMP
V
= 2V, V
COMP
VCS = 0.9V
I
= 50mA to 100mA 2 5.0
NDRV
I
= -50mA to -100mA 1.25 2.5
NDRV
= 4V -1 0 +1
COMP
= 0.7V 60 90 130
COMP
2.1 2.2 2.3 V
2.6 2.7 2.8 V
= 2.35V,
REFI
= 2.35V,
REFI
= 2.35V, VCS = 0V 45 65 85
REFI
= 2.35V,
REFI
448 450 462 V
95 135 175
45 65 85
10 ms
IN
kW
FA
FS
FA
FA
V
I
FA
NC
NC
����������������������������������������������������������������� Maxim Integrated Products 3
Controller IC for Dimmable Offline LED Lamps
04
(TA = TJ = +25NC, 12 series LED load.)
MAX16841

Typical Operating Characteristics

AVERAGE VCS vs. TEMPERATURE
310
CURRENT-SENSE
309
RESISTOR = 3.3I
308
307
(mV)
306
CS
305
304
AVERAGE V
303
302
301
300
-40 120 TEMPERATURE (°C)
CS (mV)
1008040 600 20-20
MAX16841 toc01
(mV)
CS
V
800
700
600
500
400
300
200
100
CURRENT-SENSE RESISTOR = 3.3I
0
VCS vs. V
V
REFI
REFI
MAX16841 toc02
QUIESCENT CURRENT
CS (mV)
321
(V)
QUIESCENT CURRENT vs. V
3.0
2.5
2.0
1.5
1.0
0.5
0
9
V
(V)
IN
IQ mA (VTH = 0V) IQ mA (VTH = 5V)
IN
MAX16841 toc03
1917151311
����������������������������������������������������������������� Maxim Integrated Products 4
MAX16841
Controller IC for Dimmable Offline LED Lamps

Pin Configuration

TOP VIEW
REFI
COMP
TH
PIN NAME FUNCTION
1 REFI
2 COMP
3 TH
4
5 GND Ground 6 CS Switch Current-Sense Input
7 NDRV
8 IN
DIMOUT
Current Reference Input. The IC sources 50FA current out of this pin. Connect a resistor from REFI to GND to set the input-current reference.
Compensation Component Connection for the Switching Stage. Connect a suitable RC network to ground. This is the output of the Gm amplifier.
Sets the Voltage Threshold on the Input at Which Switching Starts. This threshold is set at 1.24V. Connect a resistor-divider from the bridge rectifier output, TH, and GND.
DIMOUT Drives an External FET to Provide a Resistive Path for the Triac when Input is Low. DIMOUT is also used to drive an external FET that sets the programmed current to zero when the input voltage is low.
Gate Drive for the Switching MOSFET. Connect a resistor across NDRV and GND to set the switching frequency.
Input. Bypass with a 0.1FF or a higher value ceramic capacitor to ground.
+
1
2
3
4
MAX16841
SO
IN
8
NDRV
7
CS
6
GND
5DIMOUT

Pin Description

����������������������������������������������������������������� Maxim Integrated Products 5
MAX16841
Controller IC for Dimmable Offline LED Lamps

Functional Diagram

COMP
OSCILLATOR
10ms
2.2V
200ns
VIN OV
VIN UVLO
2.7V
2.4V
P-P
CS LIMIT
COMPARATOR
HICCUP
COMPARATOR
1s TIMER
SET
SQ
RQ
CLR
IN
NDRV
GND
CS
V
CC
IN
BIAS
VCC2.2V 2.3V 1.24V
MAX16841
G
m
THERMAL SHUTDOWN
NDRV
SOFT-START
BLANKING
GND
100mV
1/5
TH
1.24V
50µA
REFI
DIMOUT
����������������������������������������������������������������� Maxim Integrated Products 6
MAX16841
Controller IC for Dimmable Offline LED Lamps

Detailed Description

The MAX16841 is a fixed-frequency offline LED driver IC that is compatible with both leading-edge triac dim­mers and trailing-edge transistor dimmers. The device uses a fixed-frequency average current-mode control scheme to control the switching current in the MOSFET. In addition, a peak-limit comparator is used to limit the peak switching current during overload and transient conditions. The peak-limit comparator has a threshold of
2.2V. For the active PFC, the device uses a proprietary current-control scheme where the averaged switch cur­rent on a cycle-by-cycle basis is set to a programmed DC value. This maximizes the efficiency of the converter by operating in continuous-conduction mode (CCM) at low AC line voltage (100V to 120V) and in discontinuous­conduction mode (DCM) at high AC line voltage (220V to 240V). Switching is initiated when the voltage on the TH pin exceeds a threshold of 1.24V. In the case of the buck configuration, the VTH falling threshold should be set in such a way so that the input voltage exceeds the maximum forward voltage of the LED string. In the case of the buck-boost or flyback configuration, this threshold can be set lower.
The device also uses a proprietary current-sense scheme to regulate the LED current.
The device switching frequency is adjustable from 50kHz to 300kHz using a single resistor from NDRV to ground. The device operates over a wide 11V to 20V supply voltage. The device’s switching MOSFET gate driver sources and sinks up to 1A, making it capable of driving high-voltage MOSFETs in offline LED driver applica­tions for power ranges up to 25W. The device allows for dimming with leading-edge and trailing-edge dimmers.
Additional features include thermal shutdown and overvoltage protection.
IN
The device is powered up by the voltage at IN. All the internal regulators derive power from IN. The operational voltage is between 11V and 20V.
TH
TH sets the threshold for switching. Switching is initi­ated once TH crosses 1.24V. The TH comparator has a 150mV hysteresis. In a buck configuration, the VTH falling threshold should be set in such a way so that the input voltage is equal to the maximum forward voltage of the LED string. In a buck-boost configuration, the VTH falling threshold can be set to a lower level.

DIMOUT

For proper operation with triac dimmers, the load con­nected to the dimmer should draw at least the startup current when the dimmer is in the off state. For proper operation of the timing circuit of the dimmer, there should always be a close-current path. To ensure this, a bleeder resistor is connected across IN and GND with the help of an external FET. DIMOUT drives this external FET on when VTH goes below the falling threshold. The bleeder resistor is disconnected when VTH crosses its rising threshold, resulting in better performance and efficiency.

Internal Oscillator

The internal oscillator of the device is programmable from 50kHz to 300kHz. Connect a single resistor from NDRV to GND to set the oscillator frequency. Upon power-up, an 8FA of current sinks into this resistor. An internal ramp is then compared against the voltage on NDRV to determine the oscillator frequency.

Frequency Dithering

The device incorporates a frequency-dithering feature. This feature helps to reduce EMI.

n-Channel MOSFET Switch Driver (NDRV)

The NDRV driver drives the gate of an external n-channel switching MOSFET. NDRV switches between IN and GND. NDRV is capable of sourcing/sinking 1A of peak current, allowing the device to switch MOSFETs in an offline LED driver application. The average current drawn from the supply to drive the external MOSFET depends on the MOSFET gate charge and switching frequency. Use the following equation to calculate the MOSFET driver supply current:
I Qf= ×
NDRV G SW

Switching MOSFET Current Sense (CS)

The switching MOSFET current-sense resistor should be connected to the CS pin of the device. The device con­trols the average of the CS signal to a level determined by the REFI voltage. Internal leading-edge blanking of 200ns (typ) is provided to avoid premature turn-off of the switching MOSFET in each switching cycle. A peak­limit comparator is used to limit the peak switch current during overload and transient conditions. The peak-limit comparator has a threshold of 2.2V (typ).
����������������������������������������������������������������� Maxim Integrated Products 7
MAX16841
Controller IC for Dimmable Offline LED Lamps

Input-Current Setting (REFI)

REFI is the external reference for programming the input current of the LED driver. The input current is proportinal to the REFI voltage. The IC sources 50FA current out of this pin and the voltage at the REFI pin can also be set by connecting a resistor from REFI to GND. Internally, the REFI signal is downshifted by 100mV and then attenua­ted by a factor of 5. The attenuated signal is applied to the positive terminal of the internal error amplifier and this signal sets the reference for the controller.

Error-Amplifier Output (COMP)

The device includes an internal transconductance current error amplifier with a typical Gm of 150FS. The output of the error amplifier is controlled by the TH comparator output. When the TH comparator is high, the output of the error amplifier connects to COMP. When the TH comparator is low, the error amplifier is disconnected from COMP, preserving the charge on the compensation capacitor. COMP is connected to the positive terminal of the PWM comparator.
The device incorporates an average current-mode control scheme to regulate the input current. The control loop regulates the average of the CS signal to a level determined by the REFI voltage. The control loop consists of the current-sense resistor (RCS) connected across CS and GND, the transconductance current error amplifier, an oscillator providing a 2.4V ramp at switching frequency, the control voltage on the positive input of the Gm amplifier, and the PWM comparator.

Overvoltage-Protection Input (OVP)

This is the protection feature in a flyback converter during an open LED condition. The IN pin is connected to the auxiliary winding of the flyback transformer. During an open LED condition, the IN voltage increases and NDRV is disabled once the IN voltage reaches 22.5V (typ). When the IN voltage drops by 2V, NDRV is enabled.

Short-Circuit Protection

During an output short condition, the inductor current keeps increasing with input voltage as there is no nega­tive voltage across the inductor during the off period of the switching cycle. During this condition, the CS voltage signal peak is at a higher level because the inductor current is at a higher level than during the normal condi­tion. Once the CS signal exceeds the hiccup threshold of 2.7V (typ), Switching is disabled for 1s (typ) if CS exceeds 2.7V (typ) for three times.
the internal hiccup block gets activated.

Thermal Protection

The device enters into thermal-shutdown mode when junction temperature exceeds +160NC. During thermal shutdown, NDRV is disabled. The device recovers from thermal-shutdown mode once the junction temperature drops by 20NC.

Applications Information

Figure 1 shows a MAX16841-based, triac-dimmable, PFC, nonisolated-buck offline LED driver. Components L1, L2, L3, and C1 provide EMI filtering. During the turn­on instant of triac dimming, there would be significant ringing due to high inrush current to charge the input capacitor (C9). The ringing could cause the line current to fall to zero and this would turn off the triac. R3, R22, and C14 act as a damper and help to limit the inrush current and ringing. Due to R3, the efficiency of the sup­ply decreases. The damper circuit can be omitted in nondimming applications. The circuit, consisting of D4, R5, C2, D3, R6, R4, and Q5, bypasses R3 with Q1 after 1ms of dimming instant, thereby reducing the power dissipation in R3 and improving efficiency. During the turn-on instant, capacitor C2 is charged by a constant­current source formed by D3, R6, R4, and Q5. Within 1ms time, sufficient voltage develops across C2 to fire the SCR Q1. Diode D4 provides fast discharge of C2. Resistors R8, R9, and R10 program the switching thresh­old. The rising threshold should be set at a voltage higher than the maximum LED string voltage. When the input voltage is below the falling threshold, DIMOUT drives the Q3 FET on, connecting R7 across the diode-bridge positive and GND. Thus, a close circuit is formed for the timing circuit of the triac. Diode D2 blocks capacitors C9 and C14 to discharge through R7. This helps to reduce the inrush current during the triac turn-on instant.
The circuit consisting of R23, R24, D6, and Q2 is a linear regulator and provides bias to the device.
The buck-converter circuit is formed by C9, LED+, LED-, C10, L5, Q4, D10, D11, and R20. Capacitor C9 provides a path for the switching frequency currents. Maximum value of this capacitor is limited by the input power-factor requirements. The higher the value of C9, the lower the input power factor.
Since the input-voltage waveform to the buck converter is a rectified sinusoid at line frequency, the LED current has a ripple at double-line frequency. Electrolytic capacitors C11 and C12 filter this double-line frequency ripple.
����������������������������������������������������������������� Maxim Integrated Products 8
MAX16841
Controller IC for Dimmable Offline LED Lamps
Circuit components R11, R12, C15, Q6, Q7, R13, and R14 are used to control the input current. Q6 and Q7 are matched transistors. The voltage on C15 represents the average input voltage. The average voltage is then used to control the current in the current-mirror circuit formed by R12, R13, R14, Q6, and Q7. The current flowing into R12 is approximately proportional to the
DB+
L3D1D2
3
AC1
F1
R26
AC2
L1
R1
C1
R2
L2
1
DB-
R3
2
4
Q1
voltage across C15 and is now reflected on the collector of Q6, and sinks the same amount of current from the collector of Q7 that flows into R12. Inside the device is a 50FA current source. The current flowing into R16 sets the input current, or the average current flowing into R20. The circuit tries to keep the input power over the line volt­age almost constant.
LED+
C9
R22
C14
C2
R5
G
Q2
D4
R34
R23
R24
D6
15V
C8
C13
C10 C11 C12
LED-
D10
L5
DB+
DB+
R11
C15
DB-
R4
R12
Q5
G
R13
REFI
Q7Q6
R14
D3
18V
R6

Figure 1. Nonisolated (Buck) Topology

����������������������������������������������������������������� Maxim Integrated Products 9
R10
DB+
R7
U1
R8
R9
Q3
C16
R16
C4C3
R17
4
3
REFI
1
DIMOUT
MAX16841
TH
REFI
COMP GND
NDRV
IN
8
IN
7
6
CS
52
C5
D12
R21
Q4
R20R18
MAX16841
( )
Controller IC for Dimmable Offline LED Lamps

Resistors R16 and R20

The average current in resistor R16 is the average input current of the buck converter.
If P
is the output power, then the input power is given by:
OUT
P
OUT
P
=
IN
η
P
×π
IN
I
=
IN
2V
×
M
V 2V
= ×
M INrms
I R20 0.1V
×+
IN
R16
=
10µA
V 80%
×
CS
CS
=
IL
P
R
I I 0.5 I
= + ×∆
LP IN Lmax
ILP is the switch peak current. Maximum peak in the switch current occurs at the peak level of the highest input voltage.
VCS is 2.2V. Allow 80% margin for tolerances.

Inductor Selection

For optimum efficiency, inductor L5 must be operated in continuous-conduction mode.
The current in the inductor would be at its maximum level at peak of the highest input voltage. LED string voltage is assumed constant. Calculate the duty cycle at peak of the highest input voltage.
V
D
The percentage peak-to-peak ripple is considered between 30% and 60% of the inductor current. Assuming 60% peak-to-peak inductor current ripple, the maximum inductor current is given by:
I
Lmax
The minimum value of the inductor is given by:
2V V D
=
Lmin
LED
=
2V
×
INmax
P
×π
OUT
=
2V
×
LED
× −×
INmax LED
××
0.6 I f
Lmax SW
Figure 2 shows a PFC triac, dimmable, isolated (flyback topology) offline LED driver.
Here the current through the Q4 MOSFET is controlled. Current through Q4 is the same as the input current of the flyback converter. The input-side circuitry is the same as in the nonisolated buck LED driver that was previously described. During startup, the device is powered up from Q2, R10, R11, and D8. Bootstrap from the bias winding on the transformer turns off the Q2 MOSFET, thus saving power from high-voltage line. Here the switching threshold programmed by R15, R16, and R18 can be lower than the LED string voltage.
Output-side electrolytic capacitors C8 and C9 are used for filtering the double-line frequency current ripple in LED current.
During an open LED condition, the voltage across the output capacitors increases and is reflected on the bias­winding side.
Once the bias-winding voltage goes above 22.5V (typ), NDRV is disabled and the Q4 MOSFET turns off.
Choose the transformer turns ratio based on the voltage rating of the MOSFET. Use the following expression to calculate primary-secondary turns ratio:
0.8 V V
×−
N
=
PS
where: NPS is the primary-secondary turns ratio V V V
Factor 0.8 is taken into account for the voltage spikes, due to transformer-leakage inductance.
Use the following equation to calculate bias-secondary turns ratio:
where NAS is the bias-secondary turns ratio and 18V is the bias voltage for the device.
is the voltage rating of the Q4 MOSFET
DSmax
is the maximum peak input voltage
INmax
LEDmax
is the maximum voltage of the LED string
DSmax INmax
V
NV=
AS
LEDmax
18V
LEDmax
���������������������������������������������������������������� Maxim Integrated Products 10
AC1
AC2
MAX16841
Controller IC for Dimmable Offline LED Lamps
DB+
L3D1D6
C5
R7 R10
F1
R24
L1
R1
DB-
C1
R2
L2
R3
Q1
C6
G
C2
R5
Q2
D7
D4
R12
C12
R11
D8
15V
C7
D9
C15
R9
D11
T1
C14
D2
C10
C9
C8
D3
18V
R6
DB-
DB+
R11
C15
R12
REFI
Q6
Q7

Figure 2. Flyback Configuration

R19
R15
R4
Q3
Q5
R16
G
R18
REFI
R21
R17
C3
C4
4
3
1
2
U1
DIMOUT
TH
REFI
COMP
MAX16841
NDRV
GND
8
IN
7
6
CS
5
C13
D12
R14
Q4
R20R23
���������������������������������������������������������������� Maxim Integrated Products 11
MAX16841
Controller IC for Dimmable Offline LED Lamps
Choose the transformer’s magnetizing inductance (Lm) in such a way so that the transformer operates in DCM above 120V AC input. DCM operation at higher voltages reduces switching losses in the Q4 MOSFET. Use the fol­lowing equation to calculate Lm:
2
×
170V D
=
Lm
××
If 2
IN SW
×π
P
IN
=
I
IN
340V
where D is the switching duty cycle at 170V DC and fSW is the switching frequency.
In DCM conditions, the peak current in Lm can be calculated with the help of the following equation:
2I V
××
IN INmax
Lm f
×
SW
where V
I
=
P
is the maximum peak input voltage.
INmax

Feedback Compensation

Loop Compensation for
Nonisolated Buck (R17, C3, C4)
The switching converter small-signal transfer function contains a pole at origin and a zero. The zero location is inversely related to inductor current and inductance value. The minimum frequency of the zero location is:
V
f
Zmin
=
LED
2 LI
×π× ×
Lmax
Design the loop compensation in such a way so that the loop crossover is near f zero formed by R17 and C4 at f
R17
C4
=
2 f R17
. Place the compensation
Zmin
I R20
Lmax
=
GV
m PP
/5. R20 is given by:
Zmin
×
×
5
×π× ×
Zmin
where Gm is the transconductance of the internal error amplifier and V
P-P
is 2.4V.
Place the compensation pole formed by R17 and C3 at 5 x f
Zmin
:
C3
=
2 5 f R1 7
×π× × ×
1
Zmin
Loop Compensation
for Flyback Driver (R17, C3, C4)
The switching converter small-signal transfer function is identical to the buck transfer function. The zero location is inversely related to primary-magnetizing inductance and its current. The minimum frequency of the zero location is:
VN
f
= ×
Zmin
2 Lm I N
LED P
×π× ×
Lmax S
Design the loop compensation in such a way so that the loop crossover is near f zero formed by R17 and C4 at f
R17
C4
=
2 f R17
. Place the compensation
Zmin
I R20
Lmmax
=
GV
m PP
/5. R20 is given by:
Zmin
×
×
5
×π× ×
Zmin
where Lm is the magnetizing inductance of the flyback transformer, Gm is the transconductance of the internal error amplifier, and V
P-P
is 2.4V.
Place the compensation pole formed by R17 and C3 at 5 x f
Zmin
:
C3
=
2 5 f R1 7
×π× × ×
1
Zmin
���������������������������������������������������������������� Maxim Integrated Products 12
MAX16841
Controller IC for Dimmable Offline LED Lamps

Layout Recommendations

Careful PCB layout is critical to achieve low switching losses, and clean, stable operation. The switching­converter portion of the circuit has nodes with very fast voltage changes that could lead to undesirable effects on the sensitive parts of the circuit.
Follow the guidelines below to reduce noise as much as possible:
1) Ensure that all heat-dissipating components have adequate cooling.
2) Isolate the power components and high-current paths from the sensitive analog circuitry.
3) Have a power ground plane for the switching­converter power circuit under the power compo­nents (input filter capacitor, output filter capacitor, inductor, MOSFET, rectifier diode, and current-sense resistor). Connect GND to the power ground plane as close as possible to GND. Connect all other ground
connections to the power ground plane using vias close to the terminals
4) There are two loops in the power circuit that carry high-frequency switching currents. One loop is when the MOSFET is on (from the input filter capacitor posi­tive terminal, through the output capacitor, inductor, switching MOSFET, and current-sense resistor, to the input capacitor negative terminal). The other loop is when the MOSFET is off (from the output capacitor negative terminal, through the inductor, the rectifier diode, and output filter capacitor positive terminal). Analyze these two loops and make the loop areas as small as possible. Wherever possible, have a return path on the power ground plane for the switching currents on the top-layer copper traces or through power components. This reduces the loop area con­siderably and provides a low-inductance path for the switching currents. Reducing the loop area also reduces radiation during switching.
���������������������������������������������������������������� Maxim Integrated Products 13
MAX16841
Controller IC for Dimmable Offline LED Lamps

Typical Operating Circuits

D2
AC1
AC2
R3
R4
D1
L1
R2
4
Q2
R5
R6
C2
DIMOUT
3
1
2
MAX16841
TH
REFI
COMP GND
C1
NDRV
R1
D7
Q1
D4
D3
8
IN
7
6
CS
5
C4
D5
Q3
R8R7
T1
LED+
C5
LED-

Figure 3. Flyback LED Driver

���������������������������������������������������������������� Maxim Integrated Products 14
MAX16841
Controller IC for Dimmable Offline LED Lamps
Typical Operating Circuits (continued)
AC1
AC2
R3
R4
D2
D1
L1
R2
4
Q2
R5
R6
C2
DIMOUT
MAX16841
3
TH
1
REFI
2
COMP GND
C1
NDRV
R1
Q1
D4
8
IN
C4
7
6
CS
5
D3
L2
Q3
R8R7
LED+
C5
LED-

Figure 4. Buck LED Driver

���������������������������������������������������������������� Maxim Integrated Products 15
MAX16841
Controller IC for Dimmable Offline LED Lamps
Typical Operating Circuits (continued)
AC1
AC2
R3
R4
D2
D1
L1
R2
4
Q2
R5
R6
C2
DIMOUT
MAX16841
3
TH
1
REFI
2
COMP GND
C1
NDRV
R1
Q1
D4
8
IN
7
6
CS
5
C4
L2
D3
Q3
R8R7
LED-
C5
LED+

Figure 5. Buck-Boost LED Driver

���������������������������������������������������������������� Maxim Integrated Products 16
MAX16841
Controller IC for Dimmable Offline LED Lamps

Ordering Information

PART TEMP. RANGE PIN-PACKAGE
MAX16841ASA+
+Denotes a lead(Pb)-free/RoHS-compliant package.
-40NC to +125NC
8 SO

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
8 SO S8+2
PACKAGE
CODE
OUTLINE
NO.
21-0041 90-0096
LAND
PATTERN NO.
���������������������������������������������������������������� Maxim Integrated Products 17
MAX16841
Controller IC for Dimmable Offline LED Lamps

Revision History

REVISION
NUMBER
0 10/11 Initial release
REVISION
DATE
DESCRIPTION
PAGES
CHANGED
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 18
©
2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Loading...