Rainbow Electronics MAX1678 User Manual

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.
General Description
The MAX1678 is a high-efficiency, low-voltage, syn­chronous-rectified, step-up DC-DC converter intended for use in devices powered by 1 to 3-cell alkaline, NiMH, or NiCd batteries or a 1-cell lithium battery. It guarantees a 0.87V start-up voltage and features a low 37µA quiescent supply current.
The device includes a 1, N-channel MOSFET power switch, a synchronous rectifier that acts as the catch diode, a reference, pulse-frequency-modulation (PFM) control circuitry, and circuitry to reduce inductor ring­ing—all in an ultra-small, 1.1mm-high µMAX package.
The output voltage is preset to 3.3V or can be adjusted from +2V to +5.5V using only two resistors. Efficiencies up to 90% are achieved for loads up to 50mA. The device also features an independent undervoltage comparator (PFI/PFO) and a logic-controlled 2µA shut­down mode.
Applications
Pagers Remote Controls Pointing Devices Personal Medical Monitors Single-Cell Battery-Powered Devices
Features
0.87V Guaranteed Start-UpUp to 90% EfficiencyBuilt-In Synchronous Rectifier (no external diode)Ultra-Small µMAX Package, 1.1mm High37µA Quiescent Current (85µA from 1.5V battery)2µA Logic-Controlled ShutdownPower-Fail DetectorDual Mode™ Output: Fixed 3.3V
Adjustable 2V to 5.5V
45mA Output Current at 3.3V for 1-Cell Input90mA Output Current at 3.3V for 2-Cell InputInductor-Damping Switch Suppresses EMI
MAX1678
1-Cell to 2-Cell, Low-Noise,
High-Efficiency, Step-Up DC-DC Converter
________________________________________________________________
Maxim Integrated Products
1
1 2 3 4
8 7 6 5
OUT LX GND FBSHDN
PFO
PFI
BATT
MAX1678
µMAX
TOP VIEW
Typical Operating Circuit
19-1381; Rev 0; 7/98
PART
MAX1678EUA -40°C to +85°C
TEMP. RANGE PIN-PACKAGE
8 µMAX
EVALUATION KIT
AVAILABLE
Note: To order these devices shipped in tape-and-reel, add a -T to the part number.
Pin Configuration
Ordering Information
Dual Mode is a trademark of Maxim Integrated Products.
INPUT
0.87V TO V
OUT
ON
OFF
LOW-BATTERY
DETECTOR INPUT
LX
BATT SHDN
PFI
GND FB
OUT
MAX1678
PFO
OUTPUT
3.3V
LOW-BATTERY DETECTOR OUTPUT
MAX1678
1-Cell to 2-Cell, Low-Noise, High-Efficiency, Step-Up DC-DC Converter
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(V
BATT
= V
SHDN
= 1.3V, I
LOAD
= 0, FB = GND, TA= 0°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: The reverse battery current is measured from the
Typical Operating Circuit’s
input terminal to GND when the battery is con­nected backward. A reverse current of 220mA will not exceed package dissipation limits but, if left for an extended time (more than 10 minutes), may degrade performance.
BATT, OUT,LX, SHDN to GND..............................-0.3V to +6.0V
OUT, LX Current.......................................................................1A
FB, PFI, PFO to GND................................-0.3V to (V
OUT
+ 0.3V)
Reverse Battery Current (T
A
= +25°C) (Note 1) ...............220mA
Continuous Power Dissipation (T
A
= +70°C)
µMAX (derate 4.1mW/°C above +70°C) .......................330mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range.............................-65°C to +165°C
Lead Temperature (soldering, 10sec).............................+300°C
V
PFI
= 650mV, V
PFO
= 6V
RL= 3k, TA= +25°C
V
PFI
= 0, V
OUT
= 3.3V, I
SINK
= 1mA
V
PFI
= 650mV
Falling PFI hysteresis 2%
VFB= 1.3V
I
LOAD
= 20mA, V
BATT
= 2.5V (Figure 7)
V
BATT
= 1V
I
DIODE
= 100mA, P-channel switch off
V
OUT
= 3.5V
V
OUT
= 3.3V
V
OUT
= 3.3V
VFB< 0.1V External feedback
V
OUT
= 3.5V
External feedback
0.9V < V
BATT
< 3.3V (tON= K / V
BATT
)
CONDITIONS
V0.8 x V
BATT
V
IH
SHDN Input High Voltage
V0.2 x V
BATT
V
IL
SHDN Input Low Voltage
µA0.01 1PFO Leakage Current
V0.04 0.4V
OL
PFO Low Output Voltage
nA0.1 10PFI Input Current
mV590 614 632V
IL,PFI
PFI Trip Voltage
nA0.1 10FB Input Current
%90
η
Efficiency
µA2 3.5I
SHDN,BATT
Shutdown Current into BATT
µA0.1 1I
SHDN,OUT
Shutdown Current into OUT
µA4 8I
Q,BATT
Quiescent Current into BATT
µA37 65I
Q,OUT
Quiescent Current into OUT
V-µs5.60 8 11.2KOn-Time Constant
V0.87Start-Up Voltage (Note 2)
V5.5V
BATT(MAX)
V0.7V
BATT(MIN)
Minimum Operating Input Voltage
Maximum Operating Input Voltage
mA550I
LX(MAX)
Maximum Peak LX Current
V0.8P-Channel Catch Diode Voltage
1.5 2.2P-Channel On-Resistance
1 1.5N-Channel On-Resistance
mV/°C-2Start-Up Voltage Tempco
V3.16 3.3 3.44V
OUT
Output Voltage (Fixed Mode)
V2.0 5.5
Output Voltage Range (Adjustable Mode)
V1.19 1.23 1.26V
FB
FB Set Voltage
UNITSMIN TYP MAXSYMBOLPARAMETER
SHDN = GND or BATT
nA0.1 10
SHDN Input Current
MAX1678
1-Cell to 2-Cell, Low-Noise,
High-Efficiency, Step-Up DC-DC Converter
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS
(V
BATT
= V
SHDN
= 1.3V, I
LOAD
= 0, FB = GND, TA= -40°C to +85°C, unless otherwise noted.) (Note 3)
V
PFI
= 650mV, V
PFO
= 6V
V
PFI
= 0, V
OUT
= 3.3V, I
SINK
= 1mA
V
PFI
= 650mV
Falling PFI hysteresis 2%
VFB= 1.3V
V
BATT
= 1V
V
OUT
= 3.5V
V
OUT
= 3.3V
V
OUT
= 3.3V
VFB< 0.1V External feedback
V
OUT
= 3.5V
External feedback
0.9V < V
BATT
< 3.3V (tON= K / V
BATT
)
CONDITIONS
V0.8 x V
BATT
V
IH
SHDN Input High Voltage
V0.2 x V
BATT
V
IL
SHDN Input Low Voltage
µA1PFO Leakage Current
V0.4V
OL
PFO Low Output Voltage
nA10PFI Input Current
mV580 642V
IL,PFI
PFI Trip Voltage
nA10FB Input Current
µA3.5I
SHDN,BATT
Shutdown Current into BATT
µA1I
SHDN,OUT
Shutdown Current into OUT
µA8I
Q,BATT
Quiescent Current into BATT
µA65I
Q,OUT
Quiescent Current into OUT
V-µs5.60 11.2KOn-Time Constant
V5.5V
BATT(MAX)
Maximum Operating Input Voltage
2.2P-Channel On-Resistance
1.5N-Channel On-Resistance
V3.12 3.48V
OUT
Output Voltage (Fixed Mode)
V2.0 5.5
Output Voltage Range (Adjustable Mode)
V1.17 1.28V
FB
FB Set Voltage
UNITSMIN MAXSYMBOLPARAMETER
SHDN = GND or BATT
nA10
SHDN Input Current
Note 2: Start-up is guaranteed by correlation to measurements of device parameters (i.e., switch on-resistance, on-time, off-time,
and output voltage trip point).
Note 3: Specifications to -40°C are guaranteed by design and not production tested.
MAX1678
1-Cell to 2-Cell, Low-Noise, High-Efficiency, Step-Up DC-DC Converter
4 _______________________________________________________________________________________
Typical Operating Characteristics
(Circuit of Figure 7 (Fixed Mode, 3.3V) or Figure 8 (Adjustable Mode), TA= +25°C, unless otherwise noted.)
100
0
0.01 0.1 1 10 100
200
EFFICIENCY vs. LOAD CURRENT
(V
OUT
= 2.4V, L1 = 22µH)
20
MAX1678-01
LOAD CURRENT (mA)
EFFICIENCY (%)
40
60
80
90
70
50
30
10
VIN = 2.0V
VIN = 1.5V
L1 = 22µH SUMIDA CD43-220 R1 = 200k, R2 = 200k
VIN = 1.2V
VIN = 0.85V
100
0
0.01 0.1 1 10 100
200
EFFICIENCY vs. LOAD CURRENT
(V
OUT
= 2.4V, L1 = SUMIDA 47µH)
20
MAX1678-02
LOAD CURRENT (mA)
EFFICIENCY (%)
40
60
80
90
70
50
30
10
VIN = 2.0V
VIN = 1.5V
L1 = 47µH SUMIDA CD43-470 R1 = 200k, R2 = 200k
VIN = 1.2V
VIN = 0.85V
100
0
0.01 0.1 1 10 100
200
EFFICIENCY vs. LOAD CURRENT
(V
OUT
= 2.4V, L1 = TDK 47µH)
20
MAX1678-03
LOAD CURRENT (mA)
EFFICIENCY (%)
40
60
80
90
70
50
30
10
VIN = 2.0V
VIN = 1.5V
L1 = 47µH TDK NLC453232T-470K R1 = 200k, R2 = 200k
VIN = 1.2V
VIN = 0.85V
100
0
0.01 0.1 1 10 100
200
EFFICIENCY vs. LOAD CURRENT
(V
OUT
= 3.3V, L1 = 22µH)
20
MAX1678-04
LOAD CURRENT (mA)
EFFICIENCY (%)
40
60
80
90
70
50
30
10
VIN = 2.5V
VIN = 2.0V
L1 = 22µH SUMIDA CD43-220 FB = GND
VIN = 1.5V
VIN = 1.2V
VIN = 0.85V
100
0
0.01 0.1 1 10 100
200
EFFICIENCY vs. LOAD CURRENT
(V
OUT
= 5.0V, L1 = 22µH)
20
MAX1678-07
LOAD CURRENT (mA)
EFFICIENCY (%)
40
60
80
90
70
50
30
10
VIN = 4.5V
VIN = 2.0V
L1 = 22µH SUMIDA CD43-220 R1 = 619k, R2 = 200k
VIN = 3.0V
VIN = 1.2V
VIN = 0.85V
100
0
0.01 0.1 1 10 100
200
EFFICIENCY vs. LOAD CURRENT
(V
OUT
= 3.3V, L1 = SUMIDA 47µH)
20
MAX1678-05
LOAD CURRENT (mA)
EFFICIENCY (%)
40
60
80
90
70
50
30
10
VIN = 2.5V
VIN = 2.0V
L1 = 47µH SUMIDA CD43-470 FB = GND
VIN = 1.5V
VIN = 1.2V
VIN = 0.85V
100
0
0.01 0.1 1 10 100
200
EFFICIENCY vs. LOAD CURRENT
(V
OUT
= 3.3V, L1 = TDK 47µH)
20
MAX1678-06
LOAD CURRENT (mA)
EFFICIENCY (%)
40
60
80
90
70
50
30
10
VIN = 2.5V
VIN = 2.0V
L1 = 47µH TDK NLC453232T-470K FB = GND
VIN = 1.5V
VIN = 1.2V
VIN = 0.85V
100
0
0.01 0.1 1 10 100
200
EFFICIENCY vs. LOAD CURRENT
(V
OUT
= 5.0V, L1 = SUMIDA 47µH)
20
MAX1678-08
LOAD CURRENT (mA)
EFFICIENCY (%)
40
60
80
90
70
50
30
10
VIN = 4.5V
VIN = 3.0V
L1 = 47µH SUMIDA CD43-470 R1 = 619k, R2 = 200k
VIN = 2.0V
VIN = 1.2V
VIN = 0.85V
100
0
0.01 0.1 1 10 100
200
EFFICIENCY vs. LOAD CURRENT
(V
OUT
= 5.0V, L1 = TDK 47µH)
20
MAX1678-09
LOAD CURRENT (mA)
EFFICIENCY (%)
40
60
80
90
70
50
30
10
VIN = 4.5V
VIN = 3.0V
L1 = 47µH TDK NLC453232-470K R1 = 619k, R2 = 200k
VIN = 2.0V
V
IN
= 1.2V
V
IN
= 0.85V
Loading...
+ 8 hidden pages