The MAX1584/MAX1585 provide a complete powersupply solution for slim digital cameras. They improve
performance, component count, and size compared to
conventional multichannel controllers in 2-cell AA, 1-cell
Li+, and dual-battery designs. On-chip MOSFETs provide up to 95% efficiency for critical power supplies,
while additional channels operate with external FETs for
optimum design flexibility. This optimizes overall efficiency and cost, while also reducing board space.
The MAX1584/MAX1585 include 5 high-efficiency DCDC conversion channels:
• Step-up DC-DC converter with on-chip FETs
• Step-down DC-DC converter with on-chip FETs
• Three PWM DC-DC controllers for CCD, LCD, LED,
or other functions
The step-down DC-DC converter can operate directly
from the battery or from the step-up output, providing
boost-buck capability with a compound efficiency of up
to 90%. Both devices include three PWM DC-DC controllers: the MAX1584 includes two step-up controllers
and one step-down controller, while the MAX1585
includes one step-up controller, one inverting controller,
and one step-down controller. All DC-DC channels
operate at one fixed frequency—settable from 100kHz
to 1MHz—to optimize size, cost, and efficiency. Other
features include soft-start, power-OK outputs, and overload protection. The MAX1584/MAX1585 are available
in space-saving, 32-pin thin QFN packages. An evaluation kit is available to expedite designs.
Applications
Digital Cameras
PDAs
Features
♦ Step-Up DC-DC Converter, 95% Efficient
♦ Step-Down DC-DC Converter
Operate from Battery for 95% Efficient
Step-Down
90% Efficient Boost-Buck with Step-Up
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
PV, PVSU, PVSD, SDOK, AUX1OK, SCF, ON_, FB_ to
GND..........................................................................-0.3V to +6V
PGND to GND....................................................…-0.3V to +0.3V
INDL2, DL1, DL3 to GND.........................-0.3V to (PVSU + 0.3V)
DL2 to GND ............................................-0.3V to (INDL2 + 0.3V)
PV to PVSU ...........................................................-0.3V to + 0.3V
LXSU Current (Note 1) ..........................................................3.6A
LXSD Current (Note 1) ........................................................2.25A
REF, OSC, CC_ to GND...........................-0.3V to (PVSU + 0.3V)
FB_ to CC_ TransconductanceFB_ = CC_80135185µSFB_ Input Leakage CurrentFB_ = 1.25V-100+1+100nADL_ Driver ResistanceOutput high or low2.510ΩDL_ Drive CurrentSourcing or sinking0.5A
Soft-Start Interval4096
AUX1OK Output Low Voltage0.1mA into AUX1OK0.010.1VAUX1OK Leakage CurrentONSU = GND0.011µAOVERLOAD AND THERMAL PROTECTION
Note 2: The MAX1584/MAX1585 are powered from the step-up output (PVSU). An internal low-voltage startup oscillator drives the
step-up starting at about 0.9V until PVSU reaches approximately 2.5V. When PVSU reaches 2.5V, the main control circuitry
takes over. Once the step-up is up and running, it can maintain operation with very low input voltages; however, output current is limited.
Note 3: Since the device is powered from PVSU, a Schottky rectifier, connected from the input battery to PVSU, is required for low-
voltage startup, or if PVSD is connected to V
IN
instead of PVSU.
Note 4: The step-up regulator is in startup mode until this voltage is reached. Do not apply full load current during startup. A power-
OK output can be used with an external PFET to gate the load until the step-up is in regulation. See the ApplicationsInformation section.
PARAMETERCONDITIONSMINMAXUNITSFBSD Regulation Voltage1.2251.275VFBSD to CCSD
(Circuit of Figure 1, TA= +25°C, unless otherwise noted.)
Note 5: The step-up current limit in startup refers to the LXSU switch current limit, not an output current limit.
Note 6: The idle mode current threshold is the transition point between fixed-frequency PWM operation and idle mode operation
(where switching rate varies with load). The specification is given in terms of inductor current. In terms of output current, the
idle mode transition varies with input-output voltage ratio and inductor value. For the step-up, the transition output current is
approximately 1/3 the inductor current when stepping from 2V to 3.3V. For the step-down, the transition current in terms of
output current is approximately 3/4 the inductor current when stepping down from 3.3V to 1.8V.
Note 7: Operation in dropout (100% duty cycle) can only be maintained for 100,000 OSC cycles before the output is considered
faulted, triggering global shutdown.
Note 8: Specifications to -40°C are guaranteed by design, not production tested.