DS2433 PR-35 package
DS2433S 8-pin SOIC package
DS2433S/T&R Tape & Reel version of
DS2433S
DS2433X Chip Scale Pkg., Tape &
Reel
DS2433X-SChip-Scale Pkg, 2.5k pc.,
Tape & Reel
8
7
6
5
SILICON LABEL DESCRIPTION
The DS2433 4kb 1-Wire® EEPROM identifies and stores relevant information about the product to which
it is associated. This lot or product specific information can be accessed with minimal interface, for
example a single port pin of a microcontroller. The DS2433 consists of a factory-lasered registration
1-Wire is a registered trademark of Dallas Semiconductor.
MicroLAN is a trademark of Dallas Semiconductor.
1 of 21080902
DS2433
number that includes a unique 48-bit serial number, an 8-bit CRC, and an 8-bit Family Code (23h) plus
4096 bits of user-programmable EEPROM. The power to read and write the DS2433 is derived entirely
from the 1-Wire communication line. The memory is organized as sixteen pages of 256 bits each. The
scratchpad is an additional page that acts as a buffer when writing to memory. Data is first written to the
scratchpad where it may be read back for verification. A copy scratchpad command will then transfer the
data to memory. This process insures data integrity when modifying the memory. The 64-bit registration
number provides a guaranteed unique identity which allows for absolute traceability and acts as node
address if multiple DS2433 are connected in parallel to form a local network. Data is transferred serially
via the 1-Wire protocol which requires only a single data lead and a ground return. The PR-35 and SOIC
packages provide a compact enclosure that allows standard assembly equipment to handle the device
easily for attachment to printed circuit boards or wiring. Typical applications include storage of
calibration constants, board identification and product revision status.
OVERVIEW
The block diagram in Figure 1 shows the relationships between the major control and memory sections of
the DS2433. The DS2433 has three main data components: 1) 64-bit lasered ROM, 2) 256-bit scratchpad,
and 3) 4096-bit EEPROM. The hierarchical structure of the 1-Wire protocol is shown in Figure 2. The
bus master must first provide one of the six ROM Function Commands, 1) Read ROM, 2) Match ROM,
3) Search ROM, 4) Skip ROM, 5) Overdrive-Skip ROM or 6) Overdrive-Match ROM. Upon completion
of an overdrive ROM command byte executed at standard speed, the device will enter Overdrive mode
where all subsequent communication occurs at a higher speed. The protocol required for these ROM
function commands is described in Figure 9. After a ROM function command is successfully executed,
the memory functions become accessible and the master may provide any one of the four memory
function commands. The protocol for these memory function commands is described in Figure 7. All data
is read and written least significant bit first.
PARASITE POWER
The block diagram (Figure 1) shows the parasite-powered circuitry. This circuitry “steals” power
whenever the I/O input is high. I/O will provide sufficient power as long as the specified timing and
voltage requirements are met.
2 of 21
Figure 1. DS2433 BLOCK DIAGRAM
DS2433
64-BIT LASERED ROM
Each DS2433 contains a unique ROM code that is 64 bits long. The first eight bits are a 1-Wire family
code. The next 48 bits are a unique serial number. The last eight bits are a CRC of the first 56 bits. (See
Figure 3.) The 1-Wire CRC is generated using a polynomial generator consisting of a shift register and
XOR gates as shown in Figure 4. The polynomial is X8+ X5+ X4+ 1. Additional information about the
Dallas 1-Wire Cyclic Redundancy Check is available in the Book of DS19xx iButton® Standards.
The shift register bits are initialized to zero. Then starting with the least significant bit of the family code,
one bit at a time is shifted in. After the 8th bit of the family code has been entered, then the serial number
is entered. After the 48th bit of the serial number has been entered, the shift register contains the CRC
value. Shifting in the eight bits of CRC should return the shift register to all zeros.
MEMORY
The memory map in Figure 5 shows a 32-byte page called the scratchpad and additional 32-byte pages
called memory. The DS2433 contains pages 0 through 15 that make up the 4096-bit EEPROM. The
scratch-pad is an additional page that acts as a buffer when writing to memory.
ADDRESS REGISTERS AND TRANSFER STATUS
Because of the serial data transfer, the DS2433 employs three address registers, called TA1, TA2 and E/S
(Figure 6). Registers TA1 and TA2 must be loaded with the target address to which the data will be
written or from which data will be sent to the master upon a Read command. Register E/S acts like a byte
counter and Transfer Status register. It is used to verify data integrity with write commands. Therefore,
the master only has read access to this register. The lower five bits of the E/S register indicate the address
of the last byte that has been written to the scratchpad. This address is called Ending Offset. Bit 5 of the
E/S register, called PF, is set if the number of data bits sent by the master is not an integer multiple of 8 or
if the data in the scratchpad is not valid due to a loss of power. A valid write to the scratchpad will clear
the PF bit. Bit 6 has no function; it always reads 0. Note that the lowest five bits of the target address also
determine the address within the scratchpad, where intermediate storage of data will begin. This address
is called byte offset. If the target address (TA1) for a Write command is 03CH for example, then the
scratchpad will store incoming data beginning at the byte offset 1CH and will be full after only four
iButton is a registered trademark of Dallas Semiconductor.
3 of 21
DS2433
bytes. The corresponding ending offset in this example is 1FH. For best economy of speed and efficiency,
the target address for writing should point to the beginning of a new page, i.e., the byte offset will be 0.
Thus the full 32-byte capacity of the scratchpad is available, resulting also in the ending offset of 1FH.
However, it is possible to write one or several contiguous bytes somewhere within a page. The ending
offset together with the Partial Flag support the master checking the data integrity after a Write command.
The highest valued bit of the E/S register, called AA is valid only if the PF flag reads 0. If PF is 0 and AA
is 1, a copy has taken place. The AA bit is cleared when the device receives a write scratchpad command.
WRITING WITH VERIFICATION
To write data to the DS2433, the scratchpad has to be used as intermediate storage. First the master issues
the Write Scratchpad command to specify the desired target address, followed by the data to be written to
the scratchpad. Under certain conditions (see Write Scratchpad command) the master will receive an
inverted CRC16 of the command, address and data at the end of the write scratchpad command sequence.
Knowing this CRC value, the master can compare it to the value it has calculated itself to decide if the
communication was successful and proceed to the Copy Scratchpad command. If the master could not
receive the CRC16, it has to send the Read Scratchpad command to read back the scratchpad to verify
data integrity. As preamble to the scratchpad data, the DS2433 repeats the target address TA1 and TA2
and sends the contents of the E/S register. If the PF flag is set, data did not arrive correctly in the
scratchpad or there was a loss of power since data was last written to the scratchpad. The master does not
need to continue reading; it can start a new trial to write data to the scratchpad. Similarly, a set AA flag
together with a cleared PF flag indicates that the Write command was not recognized by the device. If
everything went correctly, both flags are cleared and the ending offset indicates the address of the last
byte written to the scratchpad. Now the master can continue reading and verifying every data byte. After
the master has verified the data, it has to send the Copy Scratchpad command. This command must be
followed exactly by the data of the three address registers TA1, TA2 and E/S. The master may obtain the
contents of these registers by reading the scratchpad or derive it from the target address and the amount of
data to be written. As soon as the DS2433 has received these bytes correctly, it will copy the data to the
requested location beginning at the target address.
4 of 21
Figure 2. HIERARCHCAL STRUCTURE FOR 1-WIRE PROTOCOL
DS2433
Figure 3. 64-BIT LASERED ROM
MSBLSB
8-Bit CRC Code48-Bit Serial Number8-Bit Family Code (23h)
MSBLSBMSBLSBMSBLSB
Figure 4. 1-WIRE CRC GENERATOR
INPUT
MEMORY FUNCTION COMMANDS
The “Memory Function Flow Chart” (Figure 7) describes the protocols necessary for accessing the
memory. An example follows the flowchart. The communication between master and DS2433 takes place
either at regular speed (default, OD = 0) or at Overdrive Speed (OD = 1). If not explicitly set into the
Overdrive Mode the DS2433 assumes regular speed.
WRITE SCRATCHPAD COMMAND [0FH]
After issuing the write scratchpad command, the master must first provide the 2-byte target address,
followed by the data to be written to the scratchpad. The data will be written to the scratchpad starting at
the byte offset (T4:T0). The ending offset (E4:E0) will be the byte offset at which the master stops
5 of 21
DS2433
writing data. Only full data bytes are accepted. If the last data byte is incomplete its content will be
ignored and the partial byte flag PF will be set.
When executing the Write Scratchpad command the CRC generator inside the DS2433 (see Figure 12)
calculates a CRC over the entire data stream, starting at the command code and ending at the last data
byte sent by the master. This CRC is generated using the CRC16 polynomial by first clearing the CRC
generator and then shifting in the command code (0FH) of the Write Scratchpad command, the Target
Addresses TA1 and TA2 as supplied by the master and all the data bytes. The master may end the Write
Scratchpad command at any time. However, if the ending offset is 11111b, the master may send 16 read
time slots and will receive the CRC generated by the DS2433.
The memory address range of the DS2433 is 0000H to 01FFH. If the bus master sends a target address
higher than this, the internal circuitry of the chip will set the seven most significant address bits to zero as
they are shifted into the internal address register. The Read Scratchpad command will reveal the target
address as it will be used by the DS2433. The master will identify such address modifications by
comparing the target address read back to the target address transmitted. If the master does not read the
scratchpad, a subsequent copy scratchpad command will not work since the most significant bits of the
target address the master sends will not match the value the DS2433 expects.
READ SCRATCHPAD COMMAND [AAH]
This command is used to verify scratchpad data and target address. After issuing the read scratchpad
command, the master begins reading. The first two bytes will be the target address. The next byte will be
the ending offset/data status byte (E/S) followed by the scratchpad data beginning at the byte offset (T4:
T0). The master may read data until the end of the scratchpad after which the data read will be all logic
1’s.
COPY SCRATCHPAD [55H]
This command is used to copy data from the scratchpad to memory. After issuing the copy scratchpad
command, the master must provide a 3-byte authorization pattern which can be obtained by reading the
scratchpad for verification. This pattern must exactly match the data contained in the three address
registers (TA1, TA2, E/S, in that order). If the pattern matches, the AA (Authorization Accepted) flag
will be set and the copy will begin. Copy takes 5 ms maximum during which the voltage on the 1-Wire
bus must not fall below 2.8V. A pattern of alternating 1s and 0s will be received after the data has been
copied until a Reset Pulse is issued by the master.
The data to be copied is determined by the three address registers. The scratchpad data from the
beginning offset through the ending offset, will be copied to memory, starting at the target address.
Anywhere from 1 to 32 bytes may be copied to memory with this command.
Figure 5. DS2433 MEMORY MAP
ADDRESS
0000H TO
001FH
0020H TO
003FH
0040H TO
01DFH
1FE0H TO
01FFH
32-BIT INTERMEDIATE STORAGE SCRATCHPAD
32-BYTE FINAL STORAGE EEPROM
32-BYTE FINAL STORAGE EEPROM
FINAL STORAGE EEPROM
32-BYTE FINAL STORAGE EEPROM
PAGE 0
PAGE 1
PAGE 2
TO PAGE 14
PAGE 15
6 of 21
Figure 6. ADDRESS REGISTER
A
DS2433
TARGET ADDRESS (TA1)
TARGET ADDRESS (TA2)
ENDING ADDRESS WITH
DATA STATUS (E/S)
(READ ONLY)
T7T6T5T4T3T2T1T0
T15
T14 T13 T12 T11 T10 T9T8
A 1)PF E4E3 E2E1E0
1) THIS BIT WILL ALWAYS BE 0.
READ MEMORY [F0H]
The read memory command may be used to read the entire memory. After issuing the command, the
master must provide the 2-byte target address. After the two bytes, the master reads data beginning from
the target address and may continue until the end of memory, at which point logic 1’s will be read. It is
important to realize that the target address registers will contain the address provided. The ending
offset/data status byte is unaffected.
The hardware of the DS2433 provides a means to accomplish error-free writing to the memory section.
To safeguard reading data in the 1-Wire environment and to simultaneously speed up data transfers, it is
recommended to packetize data into data packets of the size of one memory page each. Such a packet
would typically store a 16-bit CRC with each page of data to insure rapid, error-free data transfers that
eliminate having to read a page multiple times to determine if the received data is correct or not. (See the
Book of DS19xx iButton Standards, Chapter 7 or Application Note 114 for the recommended file
structure.)
7 of 21
Loading...
+ 14 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.