Rainbow Electronics DS1874 User Manual

General Description
The DS1874 controls and monitors all functions for SFF, SFP, and SFP+ modules including all SFF-8472 func­tionality. The combination of the DS1874 with the MAX3798/MAX3799 laser driver/limiting amplifier pro­vides APC loop, modulation current control, and eye safety functionality. The DS1874 continuously monitors for high output current, high bias current, and low and high transmit power to ensure that laser shutdown for eye safety requirements are met without adding external components. Six ADC channels monitor VCC, tempera­ture, and four external monitor inputs (MON1–MON4) that can be used to meet all monitoring requirements. MON3 is differential with support for common mode to VCC. Two digital-to-analog (DAC) outputs with tempera­ture-indexed lookup tables (LUTs) are available for addi­tional monitoring and control functionality.
Applications
SFF, SFP, and SFP+ Transceiver Modules
Features
Meets All SFF-8472 Control and Monitoring
Requirements
Laser Bias Controlled by APC Loop and
Temperature LUT to Compensate for Tracking Error
Laser Modulation Controlled by Temperature LUT
Six Analog Monitor Channels: Temperature, V
CC
,
MON1–MON4
MON1–MON4 Support Internal and External
Calibration Scalable Dynamic Range Internal Direct-to-Digital Temperature Sensor Alarm and Warning Flags for All Monitored
Channels
Two 9-Bit Delta-Sigma Outputs with 36 Entry
Temperature LUTs
Digital I/O Pins: Five Inputs, Five Outputs
Comprehensive Fault-Measurement System with
Maskable Laser Shutdown Capability
Flexible, Two-Level Password Scheme Provides
Three Levels of Security
256 Additional Bytes Located at A0h Slave
Address
I2C-Compatible Interface
3-Wire Master to Communicate with the MAX3798/
MAX3799 Laser Driver/Limiting Amplifier
+2.85V to +3.9V Operating Voltage Range
-40°C to +95°C Operating Temperature Range
28-Pin TQFN (5mm x 5mm) Package
DS1874
________________________________________________________________
Maxim Integrated Products
1
Pin Configuration
Ordering Information
19-4691; Rev 0; 6/09
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
+
Denotes a lead(Pb)-free/RoHS-compliant package.
T&R = Tape and reel.
*
EP = Exposed pad.
SFP+ Controller with Digital LDD Interface
TOP VIEW
N.C.
V
CC
CSELOUT
SCLOUT
SDAOUT
LOSOUT
OUT1
*EXPOSED PAD.
DAC2
GND
DAC1
2021 19 17 16 15
22
23
24
25
26
27
+
28
12
RSELOUT
(5mm × 5mm × 0.8mm)
DS1874
3
SCL
SDA
THIN QFN
REFIN
GND
18
4567
TXF
LOS
*EP
MON2
IN1
CC
V
TXD
14
MON1
MON3N
13
12
MON3P
MON4
11
10
TXDOUT
RSEL
9
8
GND
PART TEMP RANGE PIN-PACKAGE
DS1874T+ -40°C to +95°C 28 TQFN-EP*
DS1874T+T&R -40°C to +95°C 28 TQFN-EP*
DS1874
2 _______________________________________________________________________________________
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
DAC1, DAC2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Analog Quick-Trip Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Analog Voltage Monitoring Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Digital Thermometer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Timing Characteristics (Control Loop and Quick Trip) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
3-Wire Digital Interface Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
I
2
C AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Nonvolatile Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Typical Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
MAX3798/MAX3799 DAC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
BIAS Register/APC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
MODULATION Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
BIAS and MODULATION Control During Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
BIAS and MODULATION Registers as a Function of Transmit Disable (TXD) . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
APC and Quick-Trip Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Monitors and Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Five Quick-Trip Monitors and Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Six ADC Monitors and Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
ADC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Right-Shifting ADC Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Enhanced RSSI Monitoring (Dual-Range Functionality) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Low-Voltage Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Power-On Analog (POA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Delta-Sigma Outputs (DAC1 and DAC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Digital I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
LOS, LOSOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
IN1, RSEL, OUT1, RSELOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
TXF, TXD, TXDOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

TABLE OF CONTENTS

SFP+ Controller with Digital LDD Interface
DS1874
_______________________________________________________________________________________ 3
Transmit Fault (TXF) Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Die Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3-Wire Master for Controlling the MAX3798/MAX3799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3-Wire Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
DS1874 and MAX3798/MAX3799 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Manual Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
MAX3798/MAX3799 Register Map and DS1874 Corresponding Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
I
2
C Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
I2C Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
I
2
C Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Shadowed EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Lower Memory Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 01h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 02h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 04h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 05h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 06h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 07h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 08h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Auxiliary A0h Memory Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Lower Memory Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 01h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 02h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Table 04h Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Table 06h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Table 07h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Table 08h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Auxiliary Memory A0h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Power-Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
SDA and SCL Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
TABLE OF CONTENTS (continued)
SFP+ Controller with Digital LDD Interface
DS1874
SFP+ Controller with Digital LDD Interface
4 _______________________________________________________________________________________
Figure 1. Modulation LUT Loading to MAX3798/MAX3799 MOD DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 2. Power-Up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 3. TXD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Figure 4. APC Loop and Quick-Trip Sample Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Figure 5. ADC Round-Robin Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Figure 6. MON3 Differential Input for High-Side RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Figure 7. RSSI Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 8. Low-Voltage Hysteresis Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 9. Recommended RC Filter for DAC1/DAC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 10. Delta-Sigma Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 11. DAC1/DAC2 LUT Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 12. Logic Diagram 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Figure 13. Logic Diagram 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 14a. TXF Nonlatched Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 14b. TXF Latched Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 15. 3-Wire Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 16. 3-Wire State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 17. I
2
C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Figure 18. Example I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 19. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Table 1. Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Table 2. Update Rate Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 3. ADC Default Monitor Full-Scale Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 4. MON3 Hysteresis Threshold Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 5. MON3 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

LIST OF FIGURES

LIST OF TABLES

DS1874
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Voltage Range on MON1–MON4, RSEL,
IN1, LOS, TXF, and TXD Pins
Relative to Ground .................................-0.5V to (V
CC
+ 0.5V)*
Voltage Range on V
CC
, SDA, SCL, OUT1, RSELOUT, and LOSOUT Pins
Relative to Ground.................................................-0.5V to +6V
Operating Temperature Range ...........................-40°C to +95°C
Programming Temperature Range .........................0°C to +95°C
Storage Temperature Range .............................-55°C to +125°C
Soldering Temperature...........................Refer to the IPC/JEDEC
J-STD-020 Specification.

DC ELECTRICAL CHARACTERISTICS

(VCC= +2.85V to +3.9V, TA= -40°C to +95°C, unless otherwise noted.)
*
Subject to not exceeding +6V.
RECOMMENDED OPERATING CONDITIONS
(TA= -40°C to +95°C, unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

SFP+ Controller with Digital LDD Interface
_______________________________________________________________________________________ 5
Main Supply Voltage VCC (Note 1) +2.85 +3.9 V
High-Level Input Voltage (SDA, SCL, SDAOUT)
Low-Level Input Voltage (SDA, SCL, SDAOUT)
High-Level Input Voltage (TXD, TXF, RSEL, IN1, LOS)
Low-Level Input Voltage (TXD, TXF, RSEL, IN1, LOS)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
V
IH:1
V
-0.3
IL:1
V
2.0
IH:2
V
-0.3 +0.8 V
IL:2
0.7 x V
CC
VCC+
0.3
0.3 x V
CC
V
CC
0.3
V
V
+
V
Supply Current ICC (Notes 1, 2) 2.5 10 mA
Output Leakage (SDA, SDAOUT, OUT1, RSELOUT, LOSOUT, TXF)
Low-Leve l Output Voltage (SDA, SDAOUT, SCLOUT, CSELOUT, OUT1, RSELOUT, LOSOUT, TXDOUT, DAC1, DAC2, TXF)
High-Level Output Voltage (DAC1, DAC2, SCLOUT, SDAOUT, CSELOUT, TXDOUT)
TXDOUT Before EEPROM Reca ll 10 100 nA
DAC1 and DAC2 Before LUT Recall
Input Leakage Current (SCL, TXD, LOS, RSEL, IN1)
Digital Power-On Reset POD 1.0 2.2 V
Analog Power-On Reset POA 2.0 2.75 V
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
I
1 μA
LO
IOL = 4mA 0.4
V
OL
IOL = 6mA 0.6
-
V
V
IOH = 4mA
OH
Figure 11 10 100 nA
I
1 μA
LI
CC
0.4
V
V
DS1874
SFP+ Controller with Digital LDD Interface
6 _______________________________________________________________________________________
ANALOG VOLTAGE MONITORING CHARACTERISTICS
(VCC= +2.85V to +3.9V, TA= -40°C to +95°C, unless otherwise noted.)
ANALOG QUICK-TRIP CHARACTERISTICS
(VCC= +2.85V to +3.9V, TA= -40°C to +95°C, unless otherwise noted.)
DAC1, DAC2 ELECTRICAL CHARACTERISTICS
(VCC= +2.85V to +3.9V, TA= -40°C to +95°C, unless otherwise noted.)
Main Oscillator Frequency f
Delta-Sigma Input-Clock Frequency
Reference Voltage Input (REFIN) V
Output Range 0 V
Output Resolution
Output Impedance RDS 35 100
MON2, TXP HI, TXP LO Full­Scale Voltage
HBIAS, LOS Full-Scale Voltage 1.25 V
MON2 Input Resistance 35 50 65 k
Resolution 8 Bits
Error TA = +25°C ±2 %FS
Integral Nonlinearity -1 +1 LSB
Differentia l Nonl inearit y -1 +1 LSB
Temperature Drift -2.5 +2.5 %FS
LOS Offset -5 mV
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
5 MHz
OSC
f
f
DS
Minimum 0.1μF to GND 2 VCC V
REFIN
See the Delta-Sigma Outputs (DAC1 and DAC2) section for details.
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
V
2.5 V
APC
9 Bits
/2 MHz
OSC
REFIN
V
ADC Resolution 13 Bit s
Input/Supply Accuracy (MON1–MON4, V
Update Rate for Temperature, MON1–MON4, and V
Input/Supply Offset (MON1–MON4, V
Factor y Setting
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
)
CC
CC
)
CC
MON1–MON4 2.5
V
CC
MON3 Fine
ACC At factor y setting 0.25 0.50 %FS
tRR 64 75 m s
V
(Note 3) 0 5 LSB
OS
(Note 4)
6.5536
312.5 μV
V
DS1874
3-WIRE DIGITAL INTERFACE SPECIFICATION
(VCC= +2.85V to +3.9V, TA= -40°C to +95°C, timing referenced to V
IL(MAX)
and V
IH(MIN)
, unless otherwise noted. See Figure 15.)
SFP+ Controller with Digital LDD Interface
_______________________________________________________________________________________ 7
TIMING CHARACTERISTICS (CONTROL LOOP AND QUICK TRIP)
(VCC= +2.85V to +3.9V, TA= -40°C to +95°C, unless otherwise noted.)

AC ELECTRICAL CHARACTERISTICS

(VCC= +2.85V to +3.9V, TA= -40°C to +95°C, unless otherwise noted.)
DIGITAL THERMOMETER CHARACTERISTICS
(VCC= +2.85V to +3.9V, TA= -40°C to +95°C, unless otherwise noted.)
Thermometer Error T
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
-40°C to +95°C -3 +3 °C
ERR
TXD Enable t
Recovery from TXD Disable (Figure 14)
Recovery After Power-Up t
Fault Reset Time (to TXF = 0)
Fault A ss ert Time (to TXF = 1) t
LOSOUT Assert Time t
LOSOUT Deassert Time t
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
From  TXD (Notes 5, 6) 5 μs
OFF
t
From  TXD (Notes 5, 7) 1 m s
ON
INIT_DAC
LOSS_ON
LOSS_OFF
From  V
t
From  TXD 131
INITR1
From  V
t
INITR2
FAULT
After HTXP, LTXP, HBATH, IBIASMAX (Note 9)
LLOS (Notes 9, 10) 6.4 55 μs
HLOS (Notes 9, 11) 6.4 55 μs
> VCC LO alarm (Notes 5, 8) 20 ms
CC
> VCC LO alarm (Note 8) 161
CC
Output-Enable Time Following POA t
Binary Search Time t
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
(Note 8) 20 ms
INIT
(Note 12) 8 10
SEARCH
ms
6.4 55 μs
BIAS
Samples
SCLOUT Clock Frequency f
SCLOUT Duty Cycle t
SDAOUT Setup Time tDS 100 ns
SDAOUT Hold Time tDH 100 ns
CSELOUT Pulse-Width Low t
CSELOUT Leading Time Before the First SCLOUT Edge
CSELOUT Trailing Time After the Last SCLOUT Edge
SDAOUT, SCLOUT Load C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
(Note 13) 833 kHz
SCLOUT
50 %
3WDC
500 ns
CSW
t
500 ns
L
t
(Note 14) 500 ns
T
Total bus capacitance on one line (Note 14) 10 pF
B3W
Note 1: All voltages are referenced to ground. Current into the IC is positive, and current out of the IC is negative. Note 2: Inputs are at supply rail. Outputs are not loaded. Note 3: This parameter is guaranteed by design. Note 4: Full-scale is user programmable. Note 5: The DACs are the bias and modulation DACs found in the MAX3798/MAX3799 that are controlled by the DS1874. Note 6: The DS1874 is configured with TXDOUT connected to the MAX3798/MAX3799 DISABLE input. Note 7: This includes writing to the modulation DAC and the initial step written to the bias DAC. Note 8: A temperature conversion is completed and the modulation register value is recalled from the LUT and V
CC
has been
measured to be above V
CC
LO alarm.
Note 9: The timing is determined by the choice of the update rate setting (see Table 02h, Register 88h). Note 10: This specification is the time it takes from MON3 voltage falling below the LLOS trip threshold to LOSOUT asserted high. Note 11: This specification is the time it takes from MON3 voltage rising above the HLOS trip threshold to LOSOUT asserted low. Note 12: Assuming an appropriate initial step is programmed that would cause the power to exceed the APC set point within four
steps, the bias current will be within 3% within the time specified by the binary search time. See the
BIAS and MODULA-
TION Control During Power-Up
section.
Note 13: I
2
C interface timing shown is for fast mode (400kHz). This device is also backward compatible with I2C standard mode
timing.
Note 14: C
B
—the total capacitance of one bus line in pF.
Note 15: EEPROM write begins after a STOP condition occurs.
DS1874
SFP+ Controller with Digital LDD Interface
8 _______________________________________________________________________________________
NONVOLATILE MEMORY CHARACTERISTICS
(VCC= +2.85V to +3.9V, unless otherwise noted.)
I2C AC ELECTRICAL CHARACTERISTICS
(VCC= +2.85V to +3.9V, TA= -40°C to +95°C, timing referenced to V
IL(MAX)
and V
IH(MIN)
, unless otherwise noted. See Figure 17.)
SCL Clock Frequency f Cloc k Pulse-Width Low t Cloc k Pulse-Width High t Bus-Free Time Between STOP and START
Condition START Hold Time t START Setup Time t Data Out Hold T ime t Data In Setup Time t Rise Time of Both SDA and SCL Signals tR (Note 14) 20 + 0.1CB 300 ns
Fal l Time of Both SDA and SCL Signals tF (Note 14) 20 + 0.1CB 300 ns STOP Setup Time t EEPROM Write Time tW (Note 15) 20 ms Capacitive Load for Each Bus Line CB 400 pF
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
(Note 13) 0 400 kHz
SCL
1.3 μs
LOW
0.6 μs
HIGH
t
1.3 μs
BUF
0.6 μs
HD: STA
0.6 μs
SU:STA
0 0.9 μs
HD:DAT
100 ns
SU:DAT
0.6 μs
SU:STO
EEPROM Write Cycles
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
At +25°C 200,000
At +85°C 50,000
DS1874
SFP+ Controller with Digital LDD Interface
_______________________________________________________________________________________
9
Typical Operating Characteristics
(VCC= +2.85V to +3.9V, TA= +25°C, unless otherwise noted.)
SUPPLY CURRENT vs. SUPPLY VOLTAGE
SDA = SCL = V
2.9
2.7
2.5
2.3
2.1
SUPPLY CURRENT (mA)
1.9
1.7
1.5
2.85
CC
+25°C
+95°C
-40°C
VCC (V)
DS1874 toc01
3.853.603.10 3.35
SUPPLY CURRENT vs. TEMPERATURE
2.7 SDA = SCL = V
2.6
2.5
2.4
2.3
SUPPLY CURRENT (mA)
2.2
2.1
2.0
-40
MON1–MON4 DNL
1.0 USING FACTORY-PROGRAMMED
0.8 FULL-SCALE VALUE OF 2.5V
0.6
0.4
0.2
0
-0.2
-0.4
MON1–MON4 DNL (LSB)
-0.6
-0.8
-1.0 0 2.5
MON1–MON4 INPUT VOLTAGE (V)
2.01.51.00.5
1.0
0.8
DS1874 toc04
0.6
0.4
0.2
0
-0.2
-0.4
DAC1 AND DAC2 DNL (LSB)
-0.6
-0.8
-1.0 0
DAC1 AND DAC2 POSITION (DEC)
CC
VCC = 3.9V
VCC = 2.85V
VCC = 3.3V
TEMPERATURE (°C)
DAC1 AND DAC2 DNL
MON1–MON4 INL
1.0 USING FACTORY-PROGRAMMED
0.8
DS1874 toc02
806040200-20
DS1874 toc05
500400300200100
FULL-SCALE VALUE OF 2.5V
0.6
0.4
0.2
0
-0.2
-0.4
MON1–MON4 INL (LSB)
-0.6
-0.8
-1.0 0 2.5
MON1–MON4 INPUT VOLTAGE (V)
DAC1 AND DAC2 INL
2.0
1.5
1.0
0.5
0
-0.5
DAC1 AND DAC2 INL (LSB)
-1.0
-1.5
-2.0 0
DAC1 AND DAC2 POSITION (DEC)
DS1874 toc03
2.01.51.00.5
DS1874 toc06
500400100 200 300
DS1874
SFP+ Controller with Digital LDD Interface
10 ______________________________________________________________________________________

Pin Description

PIN NAME FUNCTION
1 RSELOUT Rate-Select Output
2 SCL I2C Serial-Clock Input
3 SDA I2C Serial-Data Input/Output
4 TXF Transmit-Fault Input and Output. The output is open drain.
5 LOS Loss-of-Signal Input
6 IN1 Digital Input. General-purpose input with AS1 in SFF-8079 or RS1 in SFF-8431.
7 TXD Transm it-Disab le Input
8, 17, 21 GND Ground Connection
9 RSEL Rate-Select Input
10 TXDOUT Transmit-Disable Output
11 MON4 External Monitor Input 4
12, 13
14 MON1 External Monitor Input 1 and HBATH Quick Trip
15, 23 VCC Power-Supply Input
16 MON2 External Monitor Input 2. Feedback vo ltage for APC loop and HTXP/LTXP quick trip.
18 REFIN Reference Input for DAC1 and DAC2
19, 20 DAC1, DAC2 Delta-Sigma Output 1/2
22 N.C. No Connect ion
24 CSELOUT
25 SCLOUT
26 SDAOUT
27 LOSOUT Open-Drain Receive Loss-of-Signal Output
28 OUT1 Digital Output. General-purpose output with AS1 output in SFF-8079 or RS1 output in SFF-8431.
— EP Exposed Pad
MON3P,
MON3N
Differentia l External Monitor Input 3 and LOS Quick Trip
Chip-Select Output. Part of the 3-wire interface to the MAX3798/MAX3799 laser driver/l imiting amplifier.
Serial-Clock Output. Part of the 3-wire interface to the MAX3798/MAX3799 laser driver/limiting amplifier.
Serial-Data Input/Output. Part of the 3-wire interface to the MAX3798/MAX3799 laser driver/limiting amplifier.
DS1874
SFP+ Controller with Digital LDD Interface
______________________________________________________________________________________ 11

Block Diagram

V
SDA
SCL
V
MON1
MON2
MON3P
MON3N
MON4
V
CC
CC
I2C
INTERFACE
EEPROM
256 BYTES
AT A0h
CC
ANALOG MUX
TEMPERATURE
SENSOR
MAIN MEMORY EEPROM/SRAM
ADC CONFIGURATION/RESULTS,
SYSTEM STATUS/CONTROL BITS,
ALARMS/WARNINGS,
LOOKUP TABLES,
USER MEMORY
13-BIT
ADC
INTEGRATOR
8-BIT
QTs
POWER-ON
ANALOG
INTERRUPT
APC
9-BIT
DELTA-SIGMA
9-BIT
DELTA-SIGMA
3-WIRE
INTERFACE
V
CC
REFIN
DAC1
DAC2
SDAOUT
SCLOUT
CSELOUT
TXF
TXD
RSEL
IN1
LOS
SEE
FIGURE 13
SEE
FIGURE 12
DS1874
TXDOUT
RSELOUT
OUT1
LOSOUT
GND
DS1874
SFP+ Controller with Digital LDD Interface
12 ______________________________________________________________________________________

Detailed Description

The DS1874 integrates the control and monitoring func­tionality required to implement a VCSEL-based SFP or SFP+ system using Maxim’s MAX3798/MAX3799 com­bined limiting amplifier and laser driver. Key compo­nents of the DS1874 are shown in the
Block Diagram
and described in subsequent sections.

MAX3798/MAX3799 DAC Control

The DS1874 controls two 9-bit DACs inside the MAX3798/MAX3799. One DAC is used for laser bias
control while the other is used for laser modulation con­trol. The DS1874 communicates with the MAX3798/ MAX3799 over a 3-wire digital interface (see the
3-Wire
Master for Controlling the MAX3798/MAX3799
section). The communication between the DS1874 and MAX3798/MAX3799 is transparent to the end user.

BIAS Register/APC Control

The MAX3798/MAX3799 control their laser bias current DAC using the APC loop within the DS1874. The APC loop’s feedback to the DS1874 is the monitor diode (MON2) current, which is converted to a voltage using

Typical Operating Circuit

+3.3V
100Ω
PIN-ROSA
3W
VCSEL-TOSA
BMON
LA
LDD
MAX3798/MAX3799
MODE
DAC
BIAS DAC
DISABLE
LOS
RSEL
FAULT
3W
MON1 MON2
MON3
R
BD
R
MON
DS1874
EEPROM
QUICK
TRIP
ADC
LOS
TXF
TXD
TXDOUT
SDA
I2C
SCL
RSEL
RSELOUT
LOS
LOSOUT
TX_FAULT
TX_DISABLE
MODE_DEF2 (SDA) MODE_DEF1 (SCL)
RATE SELECT
LOS
an external resistor. The feedback is sampled by a com­parator and compared to a digital set-point value. The output of the comparator has three states: up, down, or no-operation. The no-operation state prevents the output from excessive toggling once steady state is reached. As long as the comparator output is in either the up or down states, the bias is adjusted by writing increment and decrement values to the MAX3798/MAX3799 through the BIASINC register (3-wire address 13h).
The DS1874 has an LUT to allow the APC set point to change as a function of temperature to compensate for tracking error (TE). The TE LUT has 36 entries that determine the APC setting in 4°C windows between
-40°C to +100°C.

MODULATION Control

The MAX3798/MAX3799 control the laser modulation using the internal temperature-indexed LUT within the DS1874. The modulation LUT is programmed in 2°C increments over the -40°C to +102°C range to provide temperature compensation for the laser’s modulation. The modulation is updated after each temperature con­version using the 3-wire interface that connects to the MAX3798/MAX3799. The MAX3798/MAX3799 include a 9-bit DAC. The modulation LUT is 8 bits.
Figure 1 demonstrates how the 8-bit LUT controls the 9-bit DAC with the use of a temperature control bit (MODTC, Table 02h, Register C6h) and a temperature index register (MODTI, Table 02h, Register C2h).
DS1874
______________________________________________________________________________________ 13
Table 1. Acronyms
SFP+ Controller with Digital LDD Interface
Figure 1. Modulation LUT Loading to MAX3798/MAX3799 MOD DAC
ACRONYM DEFINITION
ADC Analog-to-Digital Converter
AGC Automatic Gain Control
APC Automatic Power Control
APD Avalanche Photodiode
ATB Alarm Trap Bytes
BM Burst Mode
DAC Digital-to-Analog Converter
LOS Loss of Signal
LUT Lookup Table
NV Nonvolatile
QT Quic k Trip
TE Track ing Error
TIA Transimpedance Amplif ier
ROSA Receiver Optical Subassembly
SEE Shadowed EEPROM
SFF Small Form Factor
SFF-8472
SFP Small Form Factor Pluggable
SFP+ Enhanced SFP
TOSA Transmit Optical Subassembly
TXP Transm it Power
Document Defining Register Map of SFPs and SFFs
MODTI
8
7
6
5
4
3
MAX3798/MAX3799 DAC BIT
2
1
0
MODTC = 0
MOD LUT
LOADED TO [8:1]
MOD LUT
LOADED TO [7:0]
-40 +102 TEMPERATURE (°C)
(DAC BIT 0 = 0)
MODTI
8
7
6
5
4
3
MAX3798/MAX3799 DAC BIT
2
1
0
-40 +102
MOD LUT
LOADED TO [8:1]
(DAC BIT 0 = 0)
TEMPERATURE (°C)
MODTC = 1
MOD LUT
LOADED TO [7:0]
DS1874
SFP+ Controller with Digital LDD Interface
14 ______________________________________________________________________________________
BIAS and MODULATION Control
During Power-Up
The DS1874 has two internal registers, MODULATION and BIAS, that represent the values written to the MAX3798/MAX3799’s modulation DAC and bias DAC through the 3-wire interface. On power-up, the DS1874 sets the MODULATION and BIAS registers to 0. When VCCis above POA, the DS1874 initializes the MAX3798/ MAX3799. After a temperature conversion is completed and if the VCC LO alarm is enabled, an additional V
CC
conversion above the customer-defined VCC LO alarm level is required before the MAX3798/MAX3799 MODU­LATION register is updated with the value determined by the temperature conversion and the modulation LUT.
When the MODULATION register is set, the BIAS regis­ter is set to a value equal to ISTEP (see Figure 2). The startup algorithm checks if this bias current causes a feedback voltage above the APC set point, and if not, it continues increasing the BIAS register by ISTEP until the APC set point is exceeded. When the APC set point is exceeded, the device begins a binary search to quickly reach the bias current corresponding to the proper power level. After the binary search is completed, the APC integrator is enabled and single LSB steps are used to tightly control the average power.
The TXP HI, TXP LO, HBAL, and BIAS MAX QT alarms are masked until the binary search is completed.
However, the BIAS MAX alarm is monitored during this time to prevent the BIAS register from exceeding IBIASMAX. During the bias current initialization, the BIAS register is not allowed to exceed IBIASMAX. If this occurs during the ISTEP sequence, then the binary search routine is enabled. If IBIASMAX is exceeded during the binary search, the next smaller step is acti­vated. ISTEP or binary increments that would cause the BIAS register to exceed IBIASMAX are not taken. Masking the alarms until the completion of the binary search prevents false positive alarms during startup.
ISTEP is programmed by the customer using Table 02h, Register BBh. During the first steps, the MAX3798/ MAX3799’s bias DAC is directly written using SET_IBIAS (3-wire address 09h). ISTEP should be pro­grammed to the maximum safe increase that is allow­able during startup. If this value is programmed too low, the DS1874 still operates, but it could take signifi­cantly longer for the algorithm to converge and hence to control the average power.
If a fault is detected, and TXD is toggled to reenable the outputs, the DS1874 powers up following a similar sequence to an initial power-up. The only difference is that the DS1874 already has determined the present temperature, so the t
INIT
time is not required for the DS1874 to recall the APC and MOD set points from EEPROM.
Figure 2. Power-Up Timing
V
V
CC
MODULATION REGISTER
BIAS REGISTER
BIAS SAMPLE
POA
t
INIT
ISTEP
t
SEARCH
4x ISTEP
3x ISTEP
2x ISTEP
12345678910111213
BINARY SEARCH
APC INTEGRATOR ON
BIAS and MODULATION Registers as a
Function of Transmit Disable (TXD)
If TXD is asserted (logic 1) during normal operation, the outputs are disabled within t
OFF
. When TXD is deassert­ed (logic 0), the DS1874 sets the MODULATION regis­ter with the value associated with the present temperature, and initializes the BIAS register using the same search algorithm as done at startup. When asserted, soft TXD (TXDC) (Lower Memory, Register 6Eh) would allow a software control identical to the TXD pin (see Figure 3).

APC and Quick-Trip Timing

As shown in Figure 4, the DS1874’s input comparator is shared between the APC control loop and the quick­trip alarms (TXP HI, TXP LO, LOS, and BIAS HI). The comparator polls the alarms in a multiplexed sequence. Five of every eight comparator readings are used for APC loop bias-current control. The other three updates are used to check the HTXP/LTXP (monitor diode volt­age), the HBATH (MON1), and LOS (MON3) signals against the internal APC, BIAS, and MON3 reference, respectively. If the last APC comparison was higher than the APC set point, it makes an HTXP comparison, and if it is lower, it makes an LTXP comparison. Depending on the results of the comparison, the corre­sponding alarms and warnings (TXP HI, TXP LO) are asserted or deasserted.
The DS1874 has a programmable comparator sample time based on an internally generated clock to facilitate
a wide variety of external filtering options and time delays resulting from writing values to the MAX3798/ MAX3799’s bias DAC. The UPDATE RATE register (Table 02h, Register 88h) determines the sampling time. Samples occur at a regular interval, t
REP
. Table 2 shows the sample rate options available. Any quick-trip alarm that is detected by default remains active until a subsequent comparator sample shows the condition no longer exists. A second bias current monitor (BIAS MAX) compares the MAX3798/MAX3799’s BIAS DAC’s code to a digital value stored in the IBIASMAX register. This comparison is made at every bias current update to ensure that a high-bias current is quickly detected.
An APC sample that requires an update of the BIAS register causes subsequent APC samples to be
DS1874
SFP+ Controller with Digital LDD Interface
______________________________________________________________________________________ 15
Figure 4. APC Loop and Quick-Trip Sample Timing
Table 2. Update Rate Timing
Figure 3. TXD Timing
APC_SR[2:0]
000b 800
001b 1200
010b 1600
011b 2000
100b 2800
101b 3200
110b 4400
111b 6400
SAMPLE PERIOD (t
(ns)
REP
)
TXD
BIAS REGISTER
MODULATION REGISTER
APC QUICK-TRIP SAMPLE TIMES
HBIAS
SAMPLE
APC
SAMPLE
t
REP
APC
SAMPLE
t
OFF
t
OFF
APC
SAMPLE
APC
SAMPLE
t
ON
t
ON
APC
SAMPLE
HTXP/LTXP
SAMPLE
LOS
SAMPLE
HBIAS
SAMPLE
APC
SAMPLE
DS1874
SFP+ Controller with Digital LDD Interface
16 ______________________________________________________________________________________
ignored until the end of the 3-wire communication that updates the MAX3798/MAX3799’s BIAS DAC, plus an additional 16 sample periods (t
REP
).

Monitors and Fault Detection

Monitors

Monitoring functions on the DS1874 include five quick-trip comparators and six ADC channels. This monitoring combined with the alarm enables (Table 01h/05h) deter­mines when/if the DS1874 turns off the MAX3798/ MAX3799 DACs and triggers the TXF and TXDOUT out­puts. All the monitoring levels and interrupt masks are user programmable.
Five Quick-Trip Monitors and Alarms
Five quick-trip monitors are provided to detect potential laser safety issues and LOS status. These monitor the following:
1) High Bias Current (HBATH)
2) Low Transmit Power (LTXP)
3) High Transmit Power (HTXP)
4) Max Output Current (IBIASMAX)
5) Loss-of-Signal (LOS LO)
The high-transmit and low-transmit power quick-trip reg­isters (HTXP and LTXP) set the thresholds used to com­pare against the MON2 voltage to determine if the transmit power is within specification. The HBATH quick trip compares the MON1 input (generally from the MAX3798/MAX3799 bias monitor output) against its threshold setting to determine if the present bias current is above specification. The BIAS MAX quick trip deter­mines if the BIAS register is above specification. The BIAS register is not allowed to exceed the value set in the IBIASMAX register. When the DS1874 detects that the bias is at the limit it sets the BIAS MAX status bit and holds the BIAS register setting at the IBIASMAX level. The bias and power quick trips are routed to the TXF through interrupt masks to allow combinations of these alarms to be used to trigger these outputs. The user can program up to eight different temperature­indexed threshold levels for MON1 (Table 02h, Registers D0h–D7h). The LOS LO quick trip compares the MON3 input against its threshold setting to deter­mine if the present received power is below the specifi­cation. The LOS LO quick trip can be used to set the LOSOUT pin. These alarms can be latched using Table 02h, Register 8Ah.

Six ADC Monitors and Alarms

The ADC monitors six channels that measure tempera­ture (internal temp sensor), VCC, and MON1–MON4 using an analog multiplexer to measure them round
robin with a single ADC (see the

ADC Timing

section). The five voltage channels have a customer-programma­ble full-scale range and all channels have a customer­programmable offset value that is factory programmed to default value (see Table 3). Additionally, MON1–MON4 can right-shift results by up to 7 bits before the results are compared to alarm thresholds or read over the I2C bus. This allows customers with specified ADC ranges to calibrate the ADC full scale to a factor of 1/2nof their specified range to measure small signals. The DS1874 can then right-shift the results by n bits to maintain the bit weight of their specification (see the
Right-Shifting ADC
Result
and
Enhanced RSSI Monitoring (Dual-Range
Functionality)
sections).
The ADC results (after right-shifting, if used) are com­pared to the alarm and warning thresholds after each conversion, and the corresponding alarms are set, which can be used to trigger the TXF output. These ADC thresholds are user programmable, as are the masking registers that can be used to prevent the alarms from triggering the TXF output.
ADC Timing
There are six analog channels that are digitized in a round-robin fashion in the order shown in Figure 5. The total time required to convert all six channels is tRR(see the
Electrical Characteristics
for details).

Right-Shifting ADC Result

If the weighting of the ADC digital reading must con­form to a predetermined full-scale (PFS) value defined by a standard’s specification (e.g., SFF-8472), then right-shifting can be used to adjust the PFS analog measurement range while maintaining the weighting of the ADC results. The DS1874’s range is wide enough to cover all requirements; when the maximum input value is 1/2 of the FS value, right-shifting can be used to obtain greater accuracy. For instance, the maximum voltage might be 1/8 the specified PFS value, so only 1/8 the converter’s range is effective over this range. An alternative is to calibrate the ADC’s full-scale range to 1/8 the readable PFS value and use a right-shift value of 3. With this implementation, the resolution of
Table 3. ADC Default Monitor Full-Scale Ranges
SIGNAL
Temperature (°C) 127.996 7FFF -128 8000
VCC (V) 6.5528 FFF8 0 0000
MON1–MON4 (V) 2.4997 FFF8 0 0000
+FS
SIGNAL
+FS
hex
-FS
SIGNAL
-FS
hex
DS1874
SFP+ Controller with Digital LDD Interface
______________________________________________________________________________________ 17
the measurement is increased by a factor of 8, and because the result is digitally divided by 8 by right­shifting, the bit weight of the measurement still meets the standard’s specification (i.e., SFF-8472).
The right-shift operation on the ADC result is carried out based on the contents of right-shift control registers (Table 02h, Registers 8Eh–8Fh) in EEPROM. Four analog chan­nels, MON1–MON4, each have 3 bits allocated to set the number of right-shifts. Up to seven right-shift operations are allowed and are executed as a part of every conver­sion before the results are compared to the high-alarm and low-alarm levels, or loaded into their corresponding measurement registers (Lower Memory, Registers 64h–6Bh). This is true during the setup of internal calibra­tion as well as during subsequent data conversions.
Enhanced RSSI Monitoring (Dual-Range
Functionality)
The DS1874 offers a feature to improve the accuracy and range of MON3, which is most commonly used for monitoring RSSI. The accuracy of the RSSI measure­ments is increased at the small cost of reduced range (of input signal swing). The DS1874 eliminates this trade-off by offering “dual range” calibration on the MON3 channel (see Figure 6). This feature enables right-shifting (along with its gain and offset settings) when the input signal is below a set threshold (within the
range that benefits using right-shifting) and then automat­ically disables right-shifting (recalling different gain and offset settings) when the input signal exceeds the thresh­old. Also, to prevent “chattering,” hysteresis prevents excessive switching between modes in addition to ensur­ing that continuity is maintained. Dual-range operation is enabled by default (factory programmed in EEPROM). However, it can easily be disabled through the RSSI_FC and RSSI_FF bits, which are described in the
Register Descriptions
section. When dual-range operation is dis­abled, MON3 operates identically to the other MON channels, although featuring a differential input.
Dual-range functionality consists of two modes of opera­tion: fine mode and coarse mode. Each mode is calibrat­ed for a unique transfer function, hence the term, dual range. Table 5 highlights the registers related to MON3. Fine mode is equivalent to the other MON channels. Fine mode is calibrated using the gain, offset, and right-shift­ing registers at locations shown in Table 5 and is ideal for relatively small analog input voltages. Coarse mode is automatically switched to when the input exceeds a threshold (to be discussed in a subsequent paragraph). Coarse mode is calibrated using different gain and offset registers, but lacks right-shifting (since coarse mode is only used on large input signals). The gain and offset registers for coarse mode are also shown in Table 5. Additional information for each of the registers can be found in the
Register Descriptions
section.
Dual-range operation is transparent to the end user. The results of MON3 analog-to-digital conversions are still stored/reported in the same memory locations (68h–69h, Lower Memory) regardless of whether the conversion was performed in fine mode or coarse mode. The only way to tell which mode generated the digital result is by reading the RSSIS bit.
When the DS1874 is powered up, analog-to-digital con­versions begin in a round-robin fashion. Every MON3 timeslice begins with a fine mode analog-to-digital con­version (using fine mode’s gain, offset, and right-shifting settings). See the flowchart in Figure 7 for more details.
Figure 6. MON3 Differential Input for High-Side RSSI
Figure 5. ADC Round-Robin Timing
ONE ROUND-ROBIN ADC CYCLE
TEMP V
NOTE: IF THE VCC LO ALARM IS ENABLED AT POWER-UP, THE ADC ROUND-ROBIN TIMING CYCLES BETWEEN TEMPERATURE AND VCC ONLY UNTIL VCC IS ABOVE THE V
100Ω
ROSA
ALARM LOW THRESHOLD.
CC
V
CC
MON3P
MON3N
DS1874
MON1 MON2 MON3 MON4 TEMP
CC
ADC
t
RR
DS1874
SFP+ Controller with Digital LDD Interface
18 ______________________________________________________________________________________
Then, depending on whether the last MON3 timeslice resulted in a coarse-mode conversion and also depend­ing on the value of the current fine conversion, decisions are made whether to use the current fine-mode conver­sion result or to make an additional conversion (within the same MON3 timeslice), using coarse mode (using coarse mode’s gain and offset settings and no right­shifting) and reporting the coarse-mode result. The flow­chart in Figure 7 also illustrates how hysteresis is
implemented. The fine-mode conversion is compared to one of two thresholds. The actual threshold values are a function of the number of right-shifts being used. With the use of right-shifting, the fine mode full-scale is pro­grammed to (1/2
N
th) of the coarse mode full-scale. The DS1874 now auto ranges to choose the range that gives the best resolution for the measurement. Hysteresis is applied to eliminate chatter when the input resides at the boundary of the two ranges. See Figure 7 for details. Table 4 shows the threshold values for each possible number of right-shifts.
The RSSI_FF and RSSI_FC bits are used to force fine­mode or coarse-mode conversions, or to disable the dual-range functionality. Dual-range functionality is enabled by default (both RSSI_FC and RSSI_FF are factory programmed to 0 in EEPROM). It can be dis­abled by setting RSSI_FC to 0 and RSSI_FF to 1. These bits are also useful when calibrating MON3. For addi­tional information, see Figure 19.
Table 5. MON3 Configuration Registers
Figure 7. RSSI Flowchart
Table 4. MON3 Hysteresis Threshold Values
*
This is the minimum reported coarse-mode conversion.
MON3
TIMESLICE
PERFORM FINE-
MODE CONVERSION
DID PRIOR MON3
TIMESLICE RESULT IN A
COARSE CONVERSION?
(LAST RSSI = 1?)
DID CURRENT FINE-
MODE CONVERSION
REACH MAX?
LAST RSSI = 0
REPORT FINE
CONVERSION RESULT
NUMBER OF
RIGHT-SHIFTS
0 FFF8 F000
1 7FFC 7800
2 3FFE 3C00
3 1FFF 1E00
Y
N
Y
N
N
WAS CURRENT FINE-
MODE CONVERSION
93.75% OF FS?
Y
PERFORM COARSE­MODE CONVERSION
LAST RSSI = 1
REPORT COARSE
CONVERSION RESULT
RIGHT-SHIFT
MON3 VALUE 68h–69h, Lower Memory
4 0FFF 0F00
5 07FF 0780
6 03FF 03C0
7 01FF 01E0
REGISTER FINE MODE COARSE MODE
GAIN 98h–99h, Table 02h 9Ch–9Dh, Table 04h
OFFSET A8h–A9h, Table 02h ADh–ACh, Table 04h
0
CNFGC 8Bh, Table 02h
CONFIG
(RSSIS BIT)
FINE MODE
MAX (hex)
8Fh, Table 04h
77h, Lower Memory
COARSE MODE
MIN* (hex)
END OF MON3
TIMESLICE
DS1874

Low-Voltage Operation

The DS1874 contains two power-on reset (POR) levels. The lower level is a digital POR (POD) and the higher level is an analog POR (POA). At startup, before the supply voltage rises above POA, the outputs are dis­abled, all SRAM locations are set to their defaults, shadowed EEPROM (SEE) locations are zero, and all analog circuitry is disabled. When VCCreaches POA, the SEE is recalled, and the analog circuitry is enabled. While V
CC
remains above POA, the device is in its nor­mal operating state, and it responds based on its non­volatile configuration. If during operation V
CC
falls below POA, but is still above POD, then the SRAM retains the SEE settings from the first SEE recall, but the device analog is shut down and the outputs disabled. If the supply voltage recovers back above POA, then the device immediately resumes normal operation. If the supply voltage falls below POD, then the device SRAM is placed in its default state and another SEE recall is required to reload the nonvolatile settings. The EEPROM recall occurs the next time V
CC
exceeds POA. Figure 8
shows the sequence of events as the voltage varies.
Any time VCCis above POD, the I2C interface can be used to determine if VCCis below the POA level. This is accomplished by checking the RDYB bit in the STATUS (Lower Memory, Register 6Eh) byte. RDYB is set when VCCis below POA; when VCCrises above POA, RDYB
is timed (within 500µs) to go to 0, at which point the part is fully functional.
For all device addresses sourced from EEPROM (Table 02h, Register 8Ch), the default device address is A2h until V
CC
exceeds POA, allowing the device address to
be recalled from the EEPROM.

Power-On Analog (POA)

POA holds the DS1874 in reset until VCCis at a suitable level (V
CC
> POA) for the device to accurately measure with its ADC and compare analog signals with its quick­trip monitors. Because VCCcannot be measured by the ADC when VCCis less than POA, POA also asserts the VCC LO alarm, which is cleared by a VCCADC conver­sion greater than the customer-programmable V
CC
alarm low ADC limit. This allows a programmable limit to ensure that the headroom requirements of the trans­ceiver are satisfied during a slow power-up. The TXF output does not latch until there is a conversion above VCClow limit. The POA alarm is nonmaskable. The TXF output is asserted when VCCis below POA. See the
Low-Voltage Operation
section for more information.
Delta-Sigma Outputs (DAC1 and DAC2)
Two delta-sigma outputs are provided, DAC1 and DAC2. With the addition of an external RC filter, these outputs provide two 9-bit resolution analog outputs with the full-scale range set by the input REFIN. Each output
SFP+ Controller with Digital LDD Interface
______________________________________________________________________________________ 19
Figure 8. Low-Voltage Hysteresis Example
SEE RECALL
V
POA
V
CC
V
POD
PRECHARGED
SEE RECALLED VALUE RECALLED VALUE
TO 0
SEE RECALL
PRECHARGED TO 0
PRECHARGED
TO 0
DS1874
is either manually controlled or controlled using a tem­perature-indexed LUT. A delta-sigma is a digital output using pulse-density modulation. It provides much lower output ripple than a standard digital PWM output given the same clock rate and filter components. Before t
INIT
,
the DAC1 and DAC2 outputs are high impedance.
The external RC filter components are chosen based on ripple requirements, output load, delta-sigma fre­quency, and desired response time. A recommended filter is shown in Figure 9.
The DS1874’s delta-sigma outputs are 9 bits. For illus­trative purposes, a 3-bit example is provided. Each possible output of this 3-bit delta-sigma DAC is given in Figure 10.
In LUT mode, DAC1 and DAC2 are each controlled by a separate 8-bit, 4°C-resolution, temperature-addressed LUT. The delta-sigma outputs use a 9-bit structure. The 8-bit LUTs are either loaded directly into the MSBs (8:1) or the LSBs (7:0). This is determined by DAC1TI (Table 02h, Register C3h), DAC2TI (Table 02h, Register C4h), DAC1TC (Table 02h, Register C6h, bit 6), and DAC2TC (Table 02h, Register C6h, bit 5). See Figure 11 for more details. The DAC1 LUT (Table 07h) and DAC2 LUT (Table 08h) are nonvolatile and password-2 protected.
The reference input, REFIN, is the supply voltage for the output buffer of DAC1 and DAC2. The voltage con­nected to REFIN must be able to support the edge rate requirements of the delta-sigma outputs. In a typical application, a 0.1µF capacitor should be connected between REFIN and ground.
20 ______________________________________________________________________________________
Figure 11. DAC1/DAC2 LUT Assignments
SFP+ Controller with Digital LDD Interface
Figure 10. Delta-Sigma Outputs
Figure 9. Recommended RC Filter for DAC1/DAC2
DAC1/DAC2
3.24kΩ 3.24kΩ
0.01μF 0.01μF
DS1874
0
1
2
3
4
5
6
7
OUTPUT
DAC[1/2]TI
8
7
6
5
4
3
DELTA-SIGMA DACA OR DACB
2
1
0
DAC[1/2]TC = 0
LUT LOADED TO [8:1]
(DAC BIT 0 = 0)
LUT LOADED TO [7:0]
-40 +102 TEMPERATURE (°C)
8
7
6
5
LUT LOADED TO [8:1]
4
3
DELTA-SIGMA DACA OR DACB
2
1
0
(DAC BIT 0 = 0)
-40 +102
DAC[1/2]TI
DAC[1/2]TC = 1
LUT LOADED TO [7:0]
TEMPERATURE (°C)
DS1874
SFP+ Controller with Digital LDD Interface
______________________________________________________________________________________ 21

Digital I/O Pins

Five digital input and five digital output pins are provid­ed for monitoring and control.

LOS, LOSOUT

By default (LOSC = 1, Table 02h, Register 89h), the LOS pin is used to convert a standard comparator out­put for loss of signal (LOS) to an open-collector output. This means the mux shown in the
Block Diagram
by default selects the LOS pin as the source for the LOSOUT output transistor. The output of the mux can be read in the STATUS byte (Table 01h, Register 6Eh) as the RXL bit. The RXL signal can be inverted (INV LOS = 1) before driving the open-drain output transistor using the XOR gate provided. Setting LOSC = 0 config­ures the mux to be controlled by LOS LO, which is dri­ven by the output of the LOS quick trip (Table 02h, Registers BEh and BFh). The mux setting (stored in EEPROM) does not take effect until V
CC
> POA, allow-
ing the EEPROM to recall.

IN1, RSEL, OUT1, RSELOUT

The digital input IN1 and RSEL pins primarily serve to meet the rate-select requirements of SFP and SFP+. They also serve as general-purpose inputs. OUT1 and
RSELOUT are driven by a combination of the IN1, RSEL, and logic dictated by control registers in the EEPROM (Figure 13). The levels of IN1 and RSEL can be read using the STATUS register (Lower Memory, Register 6Eh). The open-drain output OUT1 can be controlled and/or inverted using the CNFGB register (Table 02h, Register 8Ah). The open-drain RSELOUT output is software-controlled and/or inverted through the Status register and CNFGA register (Table 02h, Register 89h). External pullup resistors must be provid­ed on OUT1 and RSELOUT to realize high logic levels.

TXF, TXD, TXDOUT

TXDOUT is generated from a combination of TXF, TXD, and the internal signal FETG. A software control identi­cal to TXD is available (TXDC, Lower Memory, Register 6Eh). A TXD pulse is internally extended (TXD
EXT
) by
time t
INITR1
to inhibit the latching of low alarms and warnings related to the APC loop to allow for the loop to stabilize. The nonlatching alarms and warnings are TXP LO, LOS LO, and MON1–MON4 LO alarms and warn­ings. In addition, TXP LO is disabled from creating FETG. TXF is both an input and an output (Figure 12). See the
Transmit Fault (TXF) Output
section for a
detailed explanation of TXF. Figure 12 shows that the
Figure 12. Logic Diagram 1
V
CC
R
PU
TXD
TXDC
TXP HI FLAG
TXP HI ENABLE
BIAS MAX
BIAS MAX ENABLE
HBAL FLAG
HBAL ENABLE
TXP LO FLAG
TXP LO ENABLE
TXDS
TXD
EXT
FAULT RESET TIMER
(130ms)
OUT IN
IN
OUT
SET BIAS REGISTER TO 0 AND MAX3798/MAX3799 SET_IMOD TO 0
R
C
Q
C
Q
D
S
POWER-ON
FETG
MINT
HBAL FLAG
TXP LO FLAG TXP LO FLAG
BIAS MAX FLAG
RESET
TXD
TXDIO
TXDFG
TXDFLT
TXDOUT
TXF
TXF
DS1874
same signals and faults can also be used to generate the internal signal FETG (Table 01h/05h, Registers FAh and FBh). FETG is used to send a fast “turn-off” com­mand to the laser driver. The intended use is a direct connection to the MAX3798/MAX3799’s TXD input if this is desired. When V
CC
< POA, TXDOUT is high
impedance.

Transmit Fault (TXF) Output

TXF can be triggered by all alarms, warnings, and quick trips (Figure 12). The six ADC alarms, warnings, and the LOS quick trips require enabling (Table 01h/05h, Registers F8h and FDh). See Figures 14a and 14b for nonlatched and latched operation. Latching of the alarms is controlled by the CNFGB and CNFGC registers (Table 02h, Registers 8Ah–8Bh).

Die Identification

The DS1874 has an ID hardcoded in its die. Two regis­ters (Table 02h, Registers CEh–CFh) are assigned for this feature. The CEh register reads 74h to identify the part as the DS1874, while the CFh register reads the current device version.
3-Wire Master for Controlling
the MAX3798/MAX3799
The DS1874 controls the MAX3798/MAX3799 over a proprietary 3-wire interface. The DS1874 acts as the master, initiating communication with and generating the clock for the MAX3798/MAX3799. It is a 3-pin inter­face consisting of SDAOUT (a bidirectional data line), an SCLOUT clock signal, and a CSELOUT chip-select output (active high).

Protocol

The DS1874 initiates a data transfer by asserting the CSELOUT pin. It then starts to generate a clock signal
22 ______________________________________________________________________________________
Figure 14b. TXF Latched Operation
SFP+ Controller with Digital LDD Interface
Figure 14a. TXF Nonlatched Operation
Figure 13. Logic Diagram 2
IN1S OUT1
INVOUT1
IN1C
IN1
RSEL
LOS
LOS LO
RSELS
RSELC
INV LOSLOSC
MUX
RXL
RSELOUT
LOSOUT
DETECTION OF TXF FAULT
TXF
DETECTION OF TXF FAULT
TXD
TXF
after the CSELOUT has been set to 1. Each operation consists of 16-bit transfers (15-bit address/data, 1-bit RWN). All data transfers are MSB first.
Write Mode (RWN = 0): The master generates 16 clock cycles at SCLOUT in total. It outputs 16 bits (MSB first) to the SDAOUT line at the falling edge of the clock. The master closes the transmission by setting the CSELOUT to 0.
Read Mode (RWN = 1): The master generates 16 clock cycles at SCLOUT in total. It outputs 8 bits (MSB first) to the SDAOUT line at the falling edge of the clock. The SDAOUT line is released after the RWN bit has been transmitted. The slave outputs 8 bits of data (MSB first) at the rising edge of the clock. The master samples SDAOUT at the falling edge of SCLOUT. The master closes the transmission by setting the CSELOUT to 0.

3-Wire Interface Timing

Figure 15 shows the 3-wire interface timing. Figure 16 shows the 3-wire state machine. See the
3-Wire Digital
Interface Specification
table for more information.
DS1874 and MAX3798/MAX3799
Communication

Normal Operation

The majority of the communication between the two devices consists of bias adjustments for the APC loop. After each temperature conversion, the laser modula­tion setting must be updated. Status registers TXSTAT1 and TXSTAT2 are read between temperature updates at a regular interval: tRR(see the
Electrical Characteristics
table). The results are stored in TXSTAT1 and TXSTAT2 (Table 02h, F4h–F5h).

Manual Operation

The MAX3798/MAX3799 are manually controllable using four registers in the DS1874: 3WCTRL, ADDRESS, WRITE, and READ. Commands can be manually issued while the DS1874 is in normal opera­tion mode. It is also possible to suspend normal 3-wire commands so that only manual operation commands are sent (3WCTRL, Table 02h, Register F8h).
DS1874
SFP+ Controller with Digital LDD Interface
______________________________________________________________________________________ 23
Figure 15. 3-Wire Timing
BIT NAME DESCRIPTION
15:9 Address 7-bit internal register address
8 RWN 0: write; 1: read
7:0 Data 8-bit read or write data
WRITE MODE
CSELOUT
SCLOUT
SDAOUT
READ MODE
CSELOUT
SCLOUT
SDAOUT
t
L
t
L
A6 A5 A4 A3 A2 A1 A0
12345678A69 1011121314150
t
DS
A5 A4 A3 A2 A1 RWN D7 D6 D5 D4 D3 D2 D1 D0
t
DH
1234567891011121314150
t
DS
t
DH
A0
D7 D6 D5 D4 D3 D2 D1 D0RWN
t
T
t
T
DS1874
24 ______________________________________________________________________________________
Figure 16. 3-Wire State Machine
SFP+ Controller with Digital LDD Interface
RESET FLAGS HERE
POR
YES
SET TXD FLAG HERE
TXD_LATCHED = 1
SET RTXPOR2_FLAG HERE
READ TXPOR1
TX_POR = 1?
NO
WRITE MOD, BIAS = 00
UPDATE CTRL
TXD = = 0?
YES
READ TXPOR2
UPDATE
MODULATION
YES
NO
TXD HIGH_STDBY
1011
YES
TXD = = 0?
NO
NO
READ TXPOR3
TX_POR = = 1?
START APC
LOOP
APC_BINARY = = 1?
YES
BIASINC = = 1?
YES
TXDIS = 1?
STROBE
NO
NO
READ TXPOR4
TX_POR = = 1?
NO
MAN_MODE_RDWR = 1?
TXD_FLAG = = 1 OR TXDIS = 1 OR
RTXPOR2 FLAG
NO
MODINC = = 1?
NO
YES
YES
READ/WRITE
MANMODE
INCREMENT
MODULATION
NO
TX_POR = = 1?
NO
MODINC = 1?
MAN_MODE_RDWR = 1?
YES
BIASINC = = 1?
YES YES
UPDATE BIAS
APC_BINARY = = 1?
NO
STANDBY
NO
TXD_FLAG = = 1? OR
RTXPOR2 FLAG = 1
NO
BIASINC = = 1?
NO
TEMP_CONV_START = = 1?
AND TXDIS = 0
UPDATE
TXSTAT, BIAS, MOD
YES YES

Initialization

During initialization, the DS1874 transfers all its 3-wire EEPROM control registers to the MAX3798/MAX3799.
The 3-wire control registers include the following:
• RXCTRL1
• RXCTRL2
• SET_CML
• SET_LOS
• TXCTRL
• IMODMAX
• IBIASMAX
• SET_PWCTRL
• SET_TXDE
The control registers are first written when V
CC
exceeds POA. They are also written if the MAX3798/MAX3799 TX_POR bit is set high (visible in 3W TXSTAT1, bit 7). In the MAX3798/MAX3799, this bit is “sticky” (latches high and is cleared on a read). They are also updated on a rising edge of TXD. Any time one of these events occurs, the DS1874 reads and updates TXSTAT1 and TXSTAT2 and sets SET_IBIAS and SET_IMOD in the MAX3798/MAX3799 to 0.
DS1874
SFP+ Controller with Digital LDD Interface
______________________________________________________________________________________ 25
MAX3798/MAX3799 Register Map and DS1874 Corresponding Location
Note: This register is not present in the DS1874. To access this register, use manual operation (see the
Manual Operation
section).
MAX3798/MAX3799 REGISTER FUNCTION REGISTER NAME DS1874 LOCATION
Receiver Control 1 RXCTRL1 Table 02h, E8h
Receiver Control 2 RXCTRL2 Table 02h, E9h
Receiver Status RXSTAT Lower Memory, 6Eh, Bit1
Output CML Level Setting SET_CML Table 02h, EAh
LOS Threshold Level Setting SET_LOS Table 02h, EBh
Transm itter Control TXCTRL Table 02h, ECh
Transm itter Status 1 TXSTAT1 Table 02h, FCh
Transm itter Status 2 TXSTAT2 Table 02h, FDh
Bias Current Setting SET_IBIAS/BIAS Table 02h, CBh –CCh
Modulation Current Setting SET_IMOD/MODULATION Table 02h, 8Ah–8Bh
Maximum Modulation Current Setting IMODMAX Table 02h, EDh
Max imum Bias Current Setting IBIASMAX Table 02h, EEh
Modulation Current Increment Setting MODINC (see Note)
Automatical ly performed by APC loop. Disable
Bias Current Increment Setting BIASINC
Mode Control MODECTRL (see Note)
Transm itter Pulse-Width Control SET_PWCTRL Table 02h, EFh
Transm itter Deemphasis Control SET_TXDE Table 02h, F0h
APC before using 3-wire manual mode. Manual Mode: Table 02h, F8h–FAh
DS1874
SFP+ Controller with Digital LDD Interface
26 ______________________________________________________________________________________
Figure 17. I2C Timing

I2C Communication

I2C Definitions

The following terminology is commonly used to describe I2C data transfers.
Master device: The master device controls the slave devices on the bus. The master device gen­erates SCL clock pulses and START and STOP conditions.
Slave devices: Slave devices send and receive data at the master’s request.
Bus idle or not busy: Time between STOP and START conditions when both SDA and SCL are inac­tive and in their logic-high states.
START condition: A START condition is generated by the master to initiate a new data transfer with a slave. Transitioning SDA from high to low while SCL remains high generates a START condition. See Figure 17 for applicable timing.
STOP condition: A STOP condition is generated by the master to end a data transfer with a slave. Transitioning SDA from low to high while SCL remains high generates a STOP condition. See Figure 17 for applicable timing.
Repeated START condition: The master can use a repeated START condition at the end of one data transfer to indicate that it will immediately initiate a new data transfer following the current one. Repeated STARTs are commonly used during read
operations to identify a specific memory address to begin a data transfer. A repeated START condition is issued identically to a normal START condition. See Figure 17 for applicable timing.
Bit write: Transitions of SDA must occur during the low state of SCL. The data on SDA must remain valid and unchanged during the entire high pulse of SCL plus the setup and hold time requirements (Figure
17). Data is shifted into the device during the rising edge of the SCL.
Bit read: At the end a write operation, the master must release the SDA bus line for the proper amount of setup time (Figure 17) before the next rising edge of SCL during a bit read. The device shifts out each bit of data on SDA at the falling edge of the previous SCL pulse and the data bit is valid at the rising edge of the current SCL pulse. Remember that the master generates all SCL clock pulses, including when it is reading bits from the slave.
Acknowledgement (ACK and NACK): An acknowl­edgement (ACK) or not acknowledge (NACK) is always the ninth bit transmitted during a byte trans­fer. The device receiving data (the master during a read or the slave during a write operation) performs an ACK by transmitting a zero during the ninth bit. A device performs a NACK by transmitting a one dur­ing the 9th bit. Timing (Figure 17) for the ACK and NACK is identical to all other bit writes. An ACK is the acknowledgment that the device is properly receiving data. A NACK is used to terminate a read
SDA
t
BUF
t
LOW
SCL
t
HD:STA
STOP START REPEATED
NOTE: TIMING IS REFERENCED TO V
IL(MAX)
AND V
IH(MIN)
t
R
t
HD:DAT
.
t
HIGH
t
F
t
SU:DAT
START
t
SU:STA
t
HD:STA
t
SP
t
SU:STO
sequence or as an indication that the device is not receiving data.
Byte write: A byte write consists of 8 bits of informa­tion transferred from the master to the slave (most significant bit first) plus a 1-bit acknowledgement from the slave to the master. The 8 bits transmitted by the master are done according to the bit-write definition and the acknowledgement is read using the bit-read definition.
Byte read: A byte read is an 8-bit information trans­fer from the slave to the master plus a 1-bit ACK or NACK from the master to the slave. The 8 bits of information that are transferred (most significant bit first) from the slave to the master are read by the master using the bit-read definition, and the master transmits an ACK using the bit-write definition to receive additional data bytes. The master must NACK the last byte read to terminate communication so the slave returns control of SDA to the master.
Slave address byte: Each slave on the I2C bus responds to a slave address byte sent immediately following a START condition. The slave address byte contains the slave address in the most significant 7 bits and the R/W bit in the least significant bit.
The DS1874 responds to two slave addresses. The auxiliary memory always responds to a fixed I2C slave address, A0h. The Lower Memory and Tables 00h–08h respond to I2C slave addresses that can be configured to any value between 00h–FEh using the DEVICE ADDRESS byte (Table 02h, Register 8Ch). The user also must set the ASEL bit (Table 02h, Register 89h) for this address to be active. By writing the correct slave address with R/W = 0, the master indicates it will write data to the slave. If R/W = 1, the master reads data from the slave. If an incorrect slave address is written, the DS1874 assumes the master is communicating with another I2C device and ignores the communications until the next START condition is sent. If the main device’s slave address is programmed to be A0h, access to the auxiliary memory is disabled.
Memory address: During an I2C write operation to the DS1874, the master must transmit a memory address to identify the memory location where the slave is to store the data. The memory address is always the second byte transmitted during a write operation following the slave address byte.

I2C Protocol

Writing a single byte to a slave: The master must generate a START condition, write the slave address byte (R/W = 0), write the memory address, write the
byte of data, and generate a STOP condition. Remember the master must read the slave’s acknowledgement during all byte-write operations.
Writing multiple bytes to a slave: To write multiple bytes to a slave, the master generates a START con­dition, writes the slave address byte (R/W = 0), writes the memory address, writes up to 8 data bytes, and generates a STOP condition. The DS1874 writes 1 to 8 bytes (one page or row) with a single write transaction. This is internally controlled by an address counter that allows data to be written to consecutive addresses without transmitting a memory address before each data byte is sent. The address counter limits the write to one 8-byte page (one row of the memory map). Attempts to write to additional pages of memory without sending a STOP condition between pages results in the address counter wrapping around to the beginning of the present row.
For example, a 3-byte write starts at address 06h and writes 3 data bytes (11h, 22h, and 33h) to three “consecutive” addresses. The result is that address­es 06h and 07h would contain 11h and 22h, respec­tively, and the third data byte, 33h, would be written to address 00h.
To prevent address wrapping from occurring, the master must send a STOP condition at the end of the page, then wait for the bus-free or EEPROM write time to elapse. Then the master can generate a new START condition and write the slave address byte (R/W = 0) and the first memory address of the next memory row before continuing to write data.
Acknowledge polling: Any time a EEPROM page is written, the DS1874 requires the EEPROM write time (t
W
) after the STOP condition to write the contents of the page to EEPROM. During the EEPROM write time, the DS1874 will not acknowledge its slave address because it is busy. It is possible to take advantage of that phenomenon by repeatedly addressing the DS1874, which allows the next page to be written as soon as the DS1874 is ready to receive the data. The alternative to acknowledge polling is to wait for maximum period of tWto elapse before attempting to write again to the DS1874.
EEPROM write cycles: When EEPROM writes occur, the DS1874 writes the whole EEPROM memory page, even if only a single byte on the page was modified. Writes that do not modify all 8 bytes on the page are allowed and do not corrupt the remaining bytes of memory on the same page. Because the whole page is written, bytes on the page that were not modified during the transaction are still subject to a write
DS1874
______________________________________________________________________________________ 27
SFP+ Controller with Digital LDD Interface
Loading...
+ 61 hidden pages