– Allows Receiving of Data while Reprogramming the Flash Array
• Continuous Read Capability through Entire Array
– Ideal for Code Shadowing Applications
• Low-power Dissipation
– 7mA Active Read Current Typical
– 25µA Standby Current Typical
– 15µA Deep Power Down Typical
• Hardware and Software Data Protection Features
– Individual Sector
• Sector Lockdown for Secure Code and Data Storage
– Individual Sector
• Security: 128-byte Security Register
– 64-byte User Programmable Space
– Unique 64-byte Device Identifier
• JEDEC Standard Manufacturer and Device ID Read
• 100,000 Program/Erase Cycles Per Page Minimum
• Data Retention – 20 Years
• Industrial Temperature Range
• Green (Pb/Halide-free/RoHS Compliant) Packaging Options
8-megabit
2.5V or 2.7V
DataFlash
AT45DB081D
1.Description
The Adesto®AT45DB081D is a 2.5V or 2.7V, serial-interface Flash memory
ideally suited for a wide variety of digital voice-, image-, program code- and data-storage applications. The AT45DB081D supports RapidS™serial interface for
applications requiring very high speed operations. RapidS serial interface is SPI compatible for frequencies up to 66MHz. Its 8,650,752-bits of memory are organized as
4,096 pages of 256-bytes or 264-bytes each. In addition to the main memory, the
AT45DB081D also contains two SRAM buffers of 256-/264-bytes each. The buffers
allow the receiving of data while a page in the main Memory is being reprogrammed,
as well as writing a continuous data stream. EEPROM emulation (bit or byte alterability) is easily handled with a self-contained three step read-modify-write operation.
Unlike conventional Flash memories that are accessed randomly with multiple
3596N–DFLASH–11/2012
address lines and a parallel interface, the Adesto™DataFlash®uses a RapidS serial interface to
sequentially access its data. The simple sequential access dramatically reduces active pin
count, facilitates hardware layout, increases system reliability, minimizes switching noise, and
reduces package size. The device is optimized for use in many commercial and industrial applications where high-density, low-pin count, low-voltage and low-power are essential.
To allow for simple in-system reprogrammability, the AT45DB081D does not require high input
voltages for programming. The device operates from a single power supply, 2.5V to 3.6V or 2.7V
to 3.6V, for both the program and read operations. The AT45DB081D is enabled through the
chip select pin (CS) and accessed via a three-wire interface consisting of the Serial Input (SI),
Serial Output (SO), and the Serial Clock (SCK).
All programming and erase cycles are self-timed.
2.Pin Configurations and Pinouts
Figure 2-1.MLF (VDFN) Top View
SI
SCK
RESET
CS
1
2
3
4
8
7
6
5
SO
GND
VCC
WP
Figure 2-2.SOIC Top View
1
SI
SCK
RESET
CS
Note:1. The metal pad on the bottom of the MLF package is floating. This pad can be a “No Connect”
or connected to GND
2
3
4
SO
8
GND
7
VCC
6
WP
5
2
AT45DB081D
3596N–DFLASH–11/2012
Table 2-1.Pin Configurations
SymbolName and Function
Chip Select: Asserting the
will be deselected and normally be placed in the standby mode (not Deep Power-Down mode),
and the output pin (SO) will be in a high-impedance state. When the device is deselected, data
CS
SCK
SI
SO
WP
RESET
V
CC
GND
will not be accepted on the input pin (SI).
A high-to-low transition on the
transition is required to end an operation. When ending an internally self-timed operation such as
a program or erase cycle, the device will not enter the standby mode until the completion of the
operation.
Serial Clock: This pin is used to provide a clock to the device and is used to control the flow of
data to and from the device. Command, address, and input data present on the SI pin is always
latched on the rising edge of SCK, while output data on the SO pin is always clocked out on the
falling edge of SCK.
Serial Input: The SI pin is used to shift data into the device. The SI pin is used for all data input
including command and address sequences. Data on the SI pin is always latched on the rising
edge of SCK.
Serial Output: The SO pin is used to shift data out from the device. Data on the SO pin is always
clocked out on the falling edge of SCK.
Write Protect: When the
Protection Register will be protected against program and erase operations regardless of whether
the Enable Sector Protection command has been issued or not. The
independently of the software controlled protection method. After the
content of the Sector Protection Register cannot be modified.
If a program or erase command is issued to the device while the
will simply ignore the command and perform no operation. The device will return to the idle state
once the
Lockdown command, however, will be recognized by the device when the
The
not be used. However, it is recommended that the
whenever possible.
Reset: A low state on the reset pin (
the internal state machine to an idle state. The device will remain in the reset condition as long as
a low level is present on the
brought back to a high level.
The device incorporates an internal power-on reset circuit, so there are no restrictions on the
RESET pin during power-on sequences. If this pin and feature are not utilized it is recommended
that the
Device Power Supply: The VCCpin is used to supply the source voltage to the device.
Operations at invalid V
Ground: The ground reference for the power supply. GND should be connected to the system
ground.
CS pin has been deasserted. The Enable Sector Protection command and Sector
WP pin is internally pulled-high and may be left floating if hardware controlled protection will
RESET pin be driven high externally.
CS pin selects the device. When the CS pin is deasserted, the device
CS pin is required to start an operation, and a low-to-high
WP pin is asserted, all sectors specified for protection by the Sector
WP pin functions
WP pin goes low, the
WP pin is asserted, the device
WP pin is asserted.
WP pin also be externally connected to V
RESET) will terminate the operation in progress and reset
RESET pin. Normal operation can resume once the RESET pin is
voltages may produce spurious results and should not be attempted.
To provide optimal flexibility, the memory array of the AT45DB081D is divided into three levels of granularity comprising of
sectors, blocks, and pages. The “Memory Architecture Diagram” illustrates the breakdown of each level and details the
number of pages per sector and block. All program operations to the DataFlash occur on a page by page basis. The erase
operations can be performed at the chip, sector, block or page level.
The device operation is controlled by instructions from the host processor. The list of instructions
and their associated opcodes are contained in Table 15-1 on page 27 through Table 15-7 on
page 30. A valid instruction starts with the falling edge of
opcode and the desired buffer or main memory address location. While the
gling the SCK pin controls the loading of the opcode and the desired buffer or main memory
address location through the SI (serial input) pin. All instructions, addresses, and data are transferred with the most significant bit (MSB) first.
Buffer addressing for the DataFlash standard page size (264-bytes) is referenced in the datasheet using the terminology BFA8 - BFA0 to denote the nine address bits required to designate
a byte address within a buffer. Main memory addressing is referenced using the terminology
PA11 - PA0 and BA8 - BA0, where PA11 - PA0 denotes the 12 address bits required to designate a page address and BA8 - BA0 denotes the nine address bits required to designate a byte
address within the page.
For “Power of 2” binary page size (256-bytes) the Buffer addressing is referenced in the datasheet using the conventional terminology BFA7 - BFA0 to denote the eight address bits required
to designate a byte address within a buffer. Main memory addressing is referenced using the
terminology A19 - A0, where A19 - A8 denotes the 12 address bits required to designate a page
address and A7 - A0 denotes the eight address bits required to designate a byte address within
a page.
AT45DB081D
CS followed by the appropriate 8-bit
CS pin is low, tog-
6.Read Commands
By specifying the appropriate opcode, data can be read from the main memory or from either
one of the two SRAM data buffers. The DataFlash supports RapidS protocols for Mode 0 and
Mode 3. Please refer to the “Detailed Bit-level Read Timing” diagrams in this datasheet for
details on the clock cycle sequences for each mode.
6.1Continuous Array Read (Legacy Command: E8H): Up to 66MHz
By supplying an initial starting address for the main memory array, the Continuous Array Read
command can be utilized to sequentially read a continuous stream of data from the device by
simply providing a clock signal; no additional addressing information or control signals need to
be provided. The DataFlash incorporates an internal address counter that will automatically
increment on every clock cycle, allowing one continuous read operation without the need of
additional address sequences. To perform a continuous read from the DataFlash standard page
size (264-bytes), an opcode of E8H must be clocked into the device followed by three address
bytes (which comprise the 24-bit page and byte address sequence) and four don’t care bytes.
The first 12 bits (PA11 - PA0) of the 21-bit address sequence specify which page of the main
memory array to read, and the last nine bits (BA8 - BA0) of the 21-bit address sequence specify
the starting byte address within the page. To perform a continuous read from the binary page
size (256-bytes), the opcode (E8H) must be clocked into the device followed by three address
bytes and four don’t care bytes. The first 12 bits (A19 - A8) of the 20-bits sequence specify which
page of the main memory array to read, and the last eight bits (A7 - A0) of the 20-bits address
sequence specify the starting byte address within the page. The don’t care bytes that follow the
address bytes are needed to initialize the read operation. Following the don’t care bytes, additional clock pulses on the SCK pin will result in data being output on the SO (serial output) pin.
3596N–DFLASH–11/2012
The CS pin must remain low during the loading of the opcode, the address bytes, the don’t care
bytes, and the reading of data. When the end of a page in main memory is reached during a
5
Continuous Array Read, the device will continue reading at the beginning of the next page with
no delays incurred during the page boundary crossover (the crossover from the end of one page
to the beginning of the next page). When the last bit in the main memory array has been read,
the device will continue reading back at the beginning of the first page of memory. As with crossing over page boundaries, no delays will be incurred when wrapping around from the end of the
array to the beginning of the array.
A low-to-high transition on the CS pin will terminate the read operation and tri-state the output
pin (SO). The maximum SCK frequency allowable for the Continuous Array Read is defined by
the f
specification. The Continuous Array Read bypasses both data buffers and leaves the
CAR1
contents of the buffers unchanged.
6.2Continuous Array Read (High Frequency Mode: 0BH): Up to 66MHz
This command can be used with the serial interface to read the main memory array sequentially
in high speed mode for any clock frequency up to the maximum specified by f
continuous read array with the page size set to 264-bytes, the CS must first be asserted then an
opcode 0BH must be clocked into the device followed by three address bytes and a dummy
byte. The first 12 bits (PA11 - PA0) of the 21-bit address sequence specify which page of the
main memory array to read, and the last nine bits (BA8 - BA0) of the 21-bit address sequence
specify the starting byte address within the page. To perform a continuous read with the page
size set to 256-bytes, the opcode, 0BH, must be clocked into the device followed by three
address bytes (A19 - A0) and a dummy byte. Following the dummy byte, additional clock pulses
on the SCK pin will result in data being output on the SO (serial output) pin.
. To perform a
CAR1
The CS pin must remain low during the loading of the opcode, the address bytes, and the reading of data. When the end of a page in the main memory is reached during a Continuous Array
Read, the device will continue reading at the beginning of the next page with no delays incurred
during the page boundary crossover (the crossover from the end of one page to the beginning of
the next page). When the last bit in the main memory array has been read, the device will continue reading back at the beginning of the first page of memory. As with crossing over page
boundaries, no delays will be incurred when wrapping around from the end of the array to the
beginning of the array. A low-to-high transition on the CS pin will terminate the read operation
and tri-state the output pin (SO). The maximum SCK frequency allowable for the Continuous
Array Read is defined by the f
specification. The Continuous Array Read bypasses both
CAR1
data buffers and leaves the contents of the buffers unchanged.
6.3Continuous Array Read (Low Frequency Mode: 03H): Up to 33MHz
This command can be used with the serial interface to read the main memory array sequentially
without a dummy byte up to maximum frequencies specified by f
read array with the page size set to 264-bytes, the CS must first be asserted then an opcode,
03H, must be clocked into the device followed by three address bytes (which comprise the 24-bit
page and byte address sequence). The first 12 bits (PA11 - PA0) of the 21-bit address sequence
specify which page of the main memory array to read, and the last nine bits (BA8 - BA0) of the
21-bit address sequence specify the starting byte address within the page. To perform a continuous read with the page size set to 256-bytes, the opcode, 03H, must be clocked into the device
followed by three address bytes (A19 - A0). Following the address bytes, additional clock pulses
on the SCK pin will result in data being output on the SO (serial output) pin.
. To perform a continuous
CAR2
The CS pin must remain low during the loading of the opcode, the address bytes, and the reading of data. When the end of a page in the main memory is reached during a Continuous Array
Read, the device will continue reading at the beginning of the next page with no delays incurred
6
AT45DB081D
3596N–DFLASH–11/2012
during the page boundary crossover (the crossover from the end of one page to the beginning of
the next page). When the last bit in the main memory array has been read, the device will continue reading back at the beginning of the first page of memory. As with crossing over page
boundaries, no delays will be incurred when wrapping around from the end of the array to the
beginning of the array. A low-to-high transition on the CS pin will terminate the read operation
and tri-state the output pin (SO). The Continuous Array Read bypasses both data buffers and
leaves the contents of the buffers unchanged.
6.4Main Memory Page Read
A main memory page read allows the user to read data directly from any one of the 4,096 pages
in the main memory, bypassing both of the data buffers and leaving the contents of the buffers
unchanged. To start a page read from the DataFlash standard page size (264-bytes), an opcode
of D2H must be clocked into the device followed by three address bytes (which comprise the
24-bit page and byte address sequence) and four don’t care bytes. The first 12 bits (PA11 -
PA0) of the 21-bit address sequence specify the page in main memory to be read, and the last
nine bits (BA8 - BA0) of the 21-bit address sequence specify the starting byte address within
that page. To start a page read from the binary page size (256-bytes), the opcode D2H must be
clocked into the device followed by three address bytes and four don’t care bytes. The first 12
bits (A19 - A8) of the 20-bits sequence specify which page of the main memory array to read,
and the last eight bits (A7 - A0) of the 20-bits address sequence specify the starting byte
address within the page. The don’t care bytes that follow the address bytes are sent to initialize
the read operation. Following the don’t care bytes, additional pulses on SCK result in data being
output on the SO (serial output) pin. The
opcode, the address bytes, the don’t care bytes, and the reading of data. When the end of a
page in main memory is reached, the device will continue reading back at the beginning of the
same page. A low-to-high transition on the CS pin will terminate the read operation and tri-state
the output pin (SO). The maximum SCK frequency allowable for the Main Memory Page Read is
defined by the f
leaves the contents of the buffers unchanged.
AT45DB081D
CS pin must remain low during the loading of the
specification. The Main Memory Page Read bypasses both data buffers and
SCK
6.5Buffer Read
3596N–DFLASH–11/2012
The SRAM data buffers can be accessed independently from the main memory array, and utilizing the Buffer Read Command allows data to be sequentially read directly from the buffers. Four
opcodes, D4H or D1H for buffer 1 and D6H or D3H for buffer 2 can be used for the Buffer Read
Command. The use of each opcode depends on the maximum SCK frequency that will be used
to read data from the buffer. The D4H and D6H opcode can be used at any SCK frequency up to
the maximum specified by f
read operations up to the maximum specified by f
To perform a buffer read from the standard DataFlash buffer (264-bytes), the opcode must be
clocked into the device followed by three address bytes comprised of 15 don’t care bits and
nine buffer address bits (BFA8 - BFA0). To perform a buffer read from the binary buffer (256bytes), the opcode must be clocked into the device followed by three address bytes comprised
of 16 don’t care bits and eight buffer address bits (BFA7 - BFA0). Following the address bytes,
one don’t care byte must be clocked in to initialize the read operation. The CS pin must remain
low during the loading of the opcode, the address bytes, the don’t care bytes, and the reading of
data. When the end of a buffer is reached, the device will continue reading back at the beginning
of the buffer. A low-to-high transition on the CS pin will terminate the read operation and tri-state
the output pin (SO).
. The D1H and D3H opcode can be used for lower frequency
CAR1
.
CAR2
7
7.Program and Erase Commands
7.1Buffer Write
Data can be clocked in from the input pin (SI) into either buffer 1 or buffer 2. To load data into the
standard DataFlash buffer (264-bytes), a 1-byte opcode, 84H for buffer 1 or 87H for buffer 2,
must be clocked into the device, followed by three address bytes comprised of 15 don’t care bits
and nine buffer address bits (BFA8 - BFA0). The nine buffer address bits specify the first byte in
the buffer to be written. To load data into the binary buffers (256-bytes each), a 1-byte opcode
84H for buffer 1 or 87H for buffer 2, must be clocked into the device, followed by three address
bytes comprised of 16 don’t care bits and eight buffer address bits (BFA7 - BFA0). The eight buffer address bits specify the first byte in the buffer to be written. After the last address byte has
been clocked into the device, data can then be clocked in on subsequent clock cycles. If the end
of the data buffer is reached, the device will wrap around back to the beginning of the buffer.
Data will continue to be loaded into the buffer until a low-to-high transition is detected on the
pin.
7.2Buffer to Main Memory Page Program with Built-in Erase
Data written into either buffer 1 or buffer 2 can be programmed into the main memory. A 1-byte
opcode, 83H for buffer 1 or 86H for buffer 2, must be clocked into the device. For the DataFlash
standard page size (264-bytes), the opcode must be followed by three address bytes consist of
three don’t care bits, 12 page address bits (PA11 - PA0) that specify the page in the main memory to be written and nine don’t care bits. To perform a buffer to main memory page program
with built-in erase for the binary page size (256-bytes), the opcode 83H for buffer 1 or 86H for
buffer 2, must be clocked into the device followed by three address bytes consisting of four don’t
care bits 12 page address bits (A19 - A8) that specify the page in the main memory to be written
and eight don’t care bits. When a low-to-high transition occurs on the CS pin, the part will first
erase the selected page in main memory (the erased state is a logic 1) and then program the
data stored in the buffer into the specified page in main memory. Both the erase and the programming of the page are internally self-timed and should take place in a maximum time of tEP.
During this time, the status register will indicate that the part is busy.
CS
7.3Buffer to Main Memory Page Program without Built-in Erase
A previously-erased page within main memory can be programmed with the contents of either
buffer 1 or buffer 2. A 1-byte opcode, 88H for buffer 1 or 89H for buffer 2, must be clocked into
the device. For the DataFlash standard page size (264-bytes), the opcode must be followed by
three address bytes consist of three don’t care bits, 12 page address bits (PA11 - PA0) that
specify the page in the main memory to be written and nine don’t care bits. To perform a buffer
to main memory page program without built-in erase for the binary page size (256-bytes), the
opcode 88H for buffer 1 or 89H for buffer 2, must be clocked into the device followed by three
address bytes consisting of four don’t care bits, 12 page address bits (A19 - A8) that specify the
page in the main memory to be written and eight don’t care bits. When a low-to-high transition
occurs on the CS pin, the part will program the data stored in the buffer into the specified page in
the main memory. It is necessary that the page in main memory that is being programmed has
been previously erased using one of the erase commands (Page Erase or Block Erase). The
programming of the page is internally self-timed and should take place in a maximum time of tP.
During this time, the status register will indicate that the part is busy.
8
AT45DB081D
3596N–DFLASH–11/2012
7.4Page Erase
7.5Block Erase
AT45DB081D
The Page Erase command can be used to individually erase any page in the main memory array
allowing the Buffer to Main Memory Page Program to be utilized at a later time. To perform a
page erase in the DataFlash standard page size (264-bytes), an opcode of 81H must be loaded
into the device, followed by three address bytes comprised of three don’t care bits, 12 page
address bits (PA11 - PA0) that specify the page in the main memory to be erased and nine don’t
care bits. To perform a page erase in the binary page size (256-bytes), the opcode 81H must be
loaded into the device, followed by three address bytes consist of four don’t care bits, 12 page
address bits (A19 - A8) that specify the page in the main memory to be erased and eight don’t
care bits. When a low-to-high transition occurs on the
page (the erased state is a logical 1). The erase operation is internally self-timed and should
take place in a maximum time of tPE. During this time, the status register will indicate that the
part is busy.
A block of eight pages can be erased at one time. This command is useful when large amounts
of data has to be written into the device. This will avoid using multiple Page Erase Commands.
To perform a block erase for the DataFlash standard page size (264-bytes), an opcode of 50H
must be loaded into the device, followed by three address bytes comprised of three don’t care
bits, nine page address bits (PA11 -PA3) and 12 don’t care bits. The nine page address bits are
used to specify which block of eight pages is to be erased. To perform a block erase for the
binary page size (256-bytes), the opcode 50H must be loaded into the device, followed by three
address bytes consisting of four don’t care bits, nine page address bits (A19 - A11) and 11 don’t
care bits. The nine page address bits are used to specify which block of eight pages is to be
erased. When a low-to-high transition occurs on the CS pin, the part will erase the selected
block of eight pages. The erase operation is internally self-timed and should take place in a maximum time of tBE. During this time, the status register will indicate that the part is busy.
CS pin, the part will erase the selected
Table 7-1.Block Erase Addressing
PA11/
A19
PA10/
A18
000000000XXX0
000000001XXX1
000000010XXX2
000000011XXX3
•
•
•
111111100XXX 508
111111101XXX 509
111111110XXX 510
111111111XXX 511
•
•
•
PA9/
A17
•
•
•
PA8/
A16
•
•
•
PA7/
A15
•
•
•
PA6/
A14
•
•
•
PA5/
A13
•
•
•
PA4/
A12
•
•
•
PA3/
A11
•
•
•
PA2/
A10
•
•
•
PA1/A9PA0/
A8Block
•
•
•
•
•
•
•
•
•
3596N–DFLASH–11/2012
9
7.6Sector Erase
The Sector Erase command can be used to individually erase any sector in the main memory.
There are 16 sectors and only one sector can be erased at one time. To perform sector 0a or
sector 0b erase for the DataFlash standard page size (264-bytes), an opcode of 7CH must be
loaded into the device, followed by three address bytes comprised of three don’t care bits, nine
page address bits (PA11 - PA3) and 12 don’t care bits. To perform a sector 1-15 erase, the
opcode 7CH must be loaded into the device, followed by three address bytes comprised of
three don’t care bits, four page address bits (PA11 - PA8) and 17 don’t care bits. To perform
sector 0a or sector 0b erase for the binary page size (256-bytes), an opcode of 7CH must be
loaded into the device, followed by three address bytes comprised of four don’t care bit and nine
page address bits (A19 - A11) and 11 don’t care bits. To perform a sector 1-15 erase, the
opcode 7CH must be loaded into the device, followed by three address bytes comprised of four
don’t care bit and four page address bits (A19 - A16) and 16 don’t care bits. The page address
bits are used to specify any valid address location within the sector which is to be erased. When
a low-to-high transition occurs on the
operation is internally self-timed and should take place in a maximum time of tSE. During this
time, the status register will indicate that the part is busy.
Table 7-2.Sector Erase Addressing
CS pin, the part will erase the selected sector. The erase
PA11/
A19
PA10/
A18
000000000XXX 0a
000000001XXX 0b
0001XXXXXXXX1
0010XXXXXXXX2
•
•
•
1100XXXXXXXX 12
1101XXXXXXXX 13
1110XXXXXXXX 14
1111XXXXXXXX 15
•
•
•
PA9/
A17
•
•
•
PA8/
A16
•
•
•
PA7/
A15
•
•
•
PA6/
A14
•
•
•
PA5/
A13
•
•
•
PA4/
A12
•
•
•
PA3/
A11
•
•
•
PA2/
A10
•
•
•
PA1/A9PA0/
A8Sector
•
•
•
•
•
•
7.7Chip Erase
The entire main memory can be erased at one time by using the Chip Erase command.
To execute the Chip Erase command, a 4-byte command sequence C7H, 94H, 80H and 9AH
must be clocked into the device. Since the entire memory array is to be erased, no address
bytes need to be clocked into the device, and any data clocked in after the opcode will be
ignored. After the last bit of the opcode sequence has been clocked in, the CS pin can be deasserted to start the erase process. The erase operation is internally self-timed and should take
placeinatimeoftCE. During this time, the Status Register will indicate that the device is busy.
•
•
•
10
The Chip Erase command will not affect sectors that are protected or locked down; the contents
of those sectors will remain unchanged. Only those sectors that are not protected or locked
down will be erased.
AT45DB081D
3596N–DFLASH–11/2012
AT45DB081D
The WP pin can be asserted while the device is erasing, but protection will not be activated until
the internal erase cycle completes.
Table 7-3.Chip Erase Command
CommandByte 1Byte 2Byte 3Byte 4
Chip EraseC7H94H80H9AH
Figure 7-1.Chip Erase
CS
SI
Each transition
represents 8 bits
Note:Refer to errata regarding Chip Erase on page 52.
Opcode
Byte 1
7.8Main Memory Page Program Through Buffer
This operation is a combination of the Buffer Write and Buffer to Main Memory Page Program
with Built-in Erase operations. Data is first clocked into buffer 1 or buffer 2 from the input pin (SI)
and then programmed into a specified page in the main memory. To perform a main memory
page program through buffer for the DataFlash standard page size (264-bytes), a 1-byte
opcode, 82H for buffer 1 or 85H for buffer 2, must first be clocked into the device, followed by
three address bytes. The address bytes are comprised of three don’t care bits, 12 page address
bits, (PA11 - PA0) that select the page in the main memory where data is to be written, and nine
buffer address bits (BFA8 - BFA0) that select the first byte in the buffer to be written. To perform
a main memory page program through buffer for the binary page size (256-bytes), the opcode
82H for buffer 1 or 85H for buffer 2, must be clocked into the device followed by three address
bytes consisting of four don’t care bits, 12 page address bits (A19 - A8) that specify the page in
the main memory to be written, and eight buffer address bits (BFA7 - BFA0) that selects the first
byte in the buffer to be written. After all address bytes are clocked in, the part will take data from
the input pins and store it in the specified data buffer. If the end of the buffer is reached, the
device will wrap around back to the beginning of the buffer. When there is a low-to-high transition on the CS pin, the part will first erase the selected page in main memory to all 1s and then
program the data stored in the buffer into that memory page. Both the erase and the programming of the page are internally self-timed and should take place in a maximum time of tEP.
During this time, the status register will indicate that the part is busy.
Opcode
Byte 2
Opcode
Byte 3
Opcode
Byte 4
8.Sector Protection
Two protection methods, hardware and software controlled, are provided for protection against
inadvertent or erroneous program and erase cycles. The software controlled method relies on
the use of software commands to enable and disable sector protection while the hardware controlled method employs the use of the Write Protect (WP) pin. The selection of which sectors
that are to be protected or unprotected against program and erase operations is specified in the
nonvolatile Sector Protection Register. The status of whether or not sector protection has been
enabled or disabled by either the software or the hardware controlled methods can be determined by checking the Status Register.
3596N–DFLASH–11/2012
11
8.1Software Sector Protection
8.1.1Enable Sector Protection Command
Sectors specified for protection in the Sector Protection Register can be protected from program
and erase operations by issuing the Enable Sector Protection command. To enable the sector
protection using the software controlled method, the
with any other command. Once the CS pin has been asserted, the appropriate 4-byte command
sequence must be clocked in via the input pin (SI). After the last bit of the command sequence
has been clocked in, the CS pin must be deasserted after which the sector protection will be
enabled.
Table 8-1.Enable Sector Protection Command
CommandByte 1Byte 2Byte 3Byte 4
Enable Sector Protection3DH2AH7FHA9H
Figure 8-1.Enable Sector Protection
CS
CS pin must first be asserted as it would be
SI
8.1.2Disable Sector Protection Command
To disable the sector protection using the software controlled method, the CS pin must first be
asserted as it would be with any other command. Once the CS pin has been asserted, the
appropriate 4-byte sequence for the Disable Sector Protection command must be clocked in via
the input pin (SI). After the last bit of the command sequence has been clocked in, the CS pin
must be deasserted after which the sector protection will be disabled. The WP pin must be in the
deasserted state; otherwise, the Disable Sector Protection command will be ignored.
Table 8-2.Disenable Sector Protection Command
CommandByte 1Byte 2Byte 3Byte 4
Disable Sector Protection3DH2AH7FH9AH
Figure 8-2.Disable Sector Protection
CS
SI
Opcode
Byte 1
Each transition
represents 8 bits
Opcode
Byte 1
Opcode
Byte 2
Opcode
Byte 2
Opcode
Byte 3
Opcode
Byte 3
Opcode
Byte 4
Opcode
Byte 4
Each transition
represents 8 bits
8.1.3Various Aspects About Software Controlled Protection
Software controlled protection is useful in applications in which the WP pin is not or cannot be
controlled by a host processor. In such instances, the WP pin may be left floating (the WP pin is
internally pulled high) and sector protection can be controlled using the Enable Sector Protection
and Disable Sector Protection commands.
12
AT45DB081D
3596N–DFLASH–11/2012
If the device is power cycled, then the software controlled protection will be disabled. Once the
device is powered up, the Enable Sector Protection command should be reissued if sector protection is desired and if the
9.Hardware Controlled Protection
Sectors specified for protection in the Sector Protection Register and the Sector Protection Register itself can be protected from program and erase operations by asserting the
keeping the pin in its asserted state. The Sector Protection Register and any sector specified for
protection cannot be erased or reprogrammed as long as the
modify the Sector Protection Register, the
nently connected to GND, then the content of the Sector Protection Register cannot be changed.
If the
WP pin is deasserted, or permanently connected to VCC, then the content of the Sector
Protection Register can be modified.
The WP pin will override the software controlled protection method but only for protecting the
sectors. For example, if the sectors were not previously protected by the Enable Sector Protection command, then simply asserting the WP pin would enable the sector protection within the
maximum specified t
would no longer be enabled (after the maximum specified t
tor Protection command was not issued while the WP pin was asserted. If the Enable Sector
Protection command was issued before or while the WP pin was asserted, then simply deasserting the WP pin would not disable the sector protection. In this case, the Disable Sector
Protection command would need to be issued while the WP pin is deasserted to disable the sector protection. The Disable Sector Protection command is also ignored whenever the WP pin is
asserted.
WPE
AT45DB081D
WP pin is not used.
WPpinand
WP pin is asserted. In order to
WP pin must be deasserted. If the WP pin is perma-
time. When the WP pin is deasserted; however, the sector protection
time) as long as the Enable Sec-
WPD
A noise filter is incorporated to help protect against spurious noise that may inadvertently assert
or deassert the WP pin.
The table below details the sector protection status for various scenarios of the WP pin, the
Enable Sector Protection command, and the Disable Sector Protection command.
Figure 9-1.WP Pin and Protection Status
12
3
WP
Table 9-1.WP Pin and Protection Status
Time
Period
1High
2LowXXEnabledRead Only
3High
WP Pin
Enable Sector Protection
Command
Command Not Issued Previously
–
Issue Command
Command Issued During Period 1
or 2
–
Issue Command
Disable Sector
Protection Command
X
Issue Command
–
Not Issued Yet
Issue Command
–
Sector Protection
Status
Disabled
Disabled
Enabled
Enabled
Disabled
Enabled
Sector
Protection
Register
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
3596N–DFLASH–11/2012
13
9.1Sector Protection Register
The nonvolatile Sector Protection Register specifies which sectors are to be protected or unprotected with either the software or hardware controlled protection methods. The Sector Protection
Register contains 16-bytes of data, of which byte locations 0 through 15 contain values that
specify whether sectors 0 through 15 will be protected or unprotected. The Sector Protection
Register is user modifiable and must first be erased before it can be reprogrammed. Table 9-3
illustrates the format of the Sector Protection Register.:
Table 9-2.Sector Protection Register
Sector Number0 (0a, 0b)1 to 15
Protected
Unprotected00H
Table 9-3.Sector 0 (0a, 0b)
Sectors 0a, 0b Unprotected0000xxxx0xH
Protect Sector 0a1100xxxxCxH
Protect Sector 0b (Page 8-255)0011xxxx3xH
Protect Sectors 0a (Page 0-7), 0b
(Page 8-255)
Note:1. The default value for bytes 0 through 15 when shipped from Adesto is 00H
(1)
x = don’t care
9.1.1Erase Sector Protection Register Command
In order to modify and change the values of the Sector Protection Register, it must first be
erased using the Erase Sector Protection Register command.
To erase the Sector Protection Register, the CS pin must first be asserted as it would be with
any other command. Once the CS pin has been asserted, the appropriate 4-byte opcode
sequence must be clocked into the device via the SI pin. The 4-byte opcode sequence must
start with 3DH and be followed by 2AH, 7FH, and CFH. After the last bit of the opcode sequence
has been clocked in, the CS pin must be deasserted to initiate the internally self-timed erase
cycle. The erasing of the Sector Protection Register should take place in a time of tPE, during
which time the Status Register will indicate that the device is busy. If the device is powereddown before the completion of the erase cycle, then the contents of the Sector Protection Register cannot be guaranteed.
See Table 9-3
0a0b
(Page 0-7)(Page 8-255)
Bit7,6Bit5,4Bit1,0
1111xxxxFxH
Bit3,2
FFH
Data
Value
14
The Sector Protection Register can be erased with the sector protection enabled or disabled.
Since the erased state (FFH) of each byte in the Sector Protection Register is used to indicate
that a sector is specified for protection, leaving the sector protection enabled during the erasing
of the register allows the protection scheme to be more effective in the prevention of accidental
programming or erasing of the device. If for some reason an erroneous program or erase command is sent to the device immediately after erasing the Sector Protection Register and before
the register can be reprogrammed, then the erroneous program or erase command will not be
processed because all sectors would be protected.
Once the Sector Protection Register has been erased, it can be reprogrammed using the Program Sector Protection Register command.
To program the Sector Protection Register, the CS pin must first be asserted and the appropriate 4-byte opcode sequence must be clocked into the device via the SI pin. The 4-byte opcode
sequence must start with 3DH and be followed by 2AH, 7FH, and FCH. After the last bit of the
opcode sequence has been clocked into the device, the data for the contents of the Sector
Protection Register must be clocked in. As described in Section 9.1, the Sector Protection Register contains 16-bytes of data, so 16-bytes must be clocked into the device. The first byte of
data corresponds to sector zero, the second byte corresponds to sector one, and so on with the
last byte of data corresponding to sector 15.
After the last data byte has been clocked in, the CS pin must be deasserted to initiate the internally self-timed program cycle. The programming of the Sector Protection Register should take
place in a time of tP, during which time the Status Register will indicate that the device is busy. If
the device is powered-down during the program cycle, then the contents of the Sector Protection
Register cannot be guaranteed.
If the proper number of data bytes is not clocked in before the CS pin is deasserted, then the
protection status of the sectors corresponding to the bytes not clocked in can not be guaranteed.
For example, if only the first two bytes are clocked in instead of the complete 16-bytes, then the
protection status of the last 14 sectors cannot be guaranteed. Furthermore, if more than 16bytes of data is clocked into the device, then the data will wrap back around to the beginning of
the register. For instance, if 17-bytes of data are clocked in, then the 17thbyte will be stored at
byte location zero of the Sector Protection Register.
Opcode
Byte 2
Opcode
Byte 3
Opcode
Byte 4
3596N–DFLASH–11/2012
If a value other than 00H or FFH is clocked into a byte location of the Sector Protection Register,
then the protection status of the sector corresponding to that byte location cannot be guaranteed. For example, if a value of 17H is clocked into byte location two of the Sector Protection
Register, then the protection status of sector two cannot be guaranteed.
The Sector Protection Register can be reprogrammed while the sector protection enabled or disabled. Being able to reprogram the Sector Protection Register with the sector protection enabled
allows the user to temporarily disable the sector protection to an individual sector rather than disabling sector protection completely.
The Program Sector Protection Register command utilizes the internal SRAM buffer 1 for processing. Therefore, the contents of the buffer 1 will be altered from its previous state when this
command is issued.
To read the Sector Protection Register, the
been asserted, an opcode of 32H and three dummy bytes must be clocked in via the SI pin. After
the last bit of the opcode and dummy bytes have been clocked in, any additional clock pulses on
the SCK pins will result in data for the content of the Sector Protection Register being output on
the SO pin. The first byte corresponds to sector 0 (0a, 0b), the second byte corresponds to sector one and the last byte (byte 16) corresponds to sector 15. Once the last byte of the Sector
Protection Register has been clocked out, any additional clock pulses will result in undefined
data being output on the SO pin. The
tection Register operation and put the output into a high-impedance state.
Table 9-6.Read Sector Protection Register Command
CommandByte 1Byte 2Byte 3Byte 4
Read Sector Protection Register32HxxHxxHxxH
Note:xx = Dummy Byte
Figure 9-4.Read Sector Protection Register
Opcode
Byte 4
Data Byte
n
Data Byte
n + 1
Data Byte
n + 15
CS pin must first be asserted. Once the CS pin has
CS must be deasserted to terminate the Read Sector Pro-
CS
SI
OpcodeXXX
SO
Each transition
represents 8 bits
9.1.4Various Aspects About the Sector Protection Register
The Sector Protection Register is subject to a limit of 10,000 erase/program cycles. Users are
encouraged to carefully evaluate the number of times the Sector Protection Register will be
modified during the course of the applications’ life cycle. If the application requires that the Sector Protection Register be modified more than the specified limit of 10,000 cycles because the
application needs to temporarily unprotect individual sectors (sector protection remains enabled
while the Sector Protection Register is reprogrammed), then the application will need to limit this
practice. Instead, a combination of temporarily unprotecting individual sectors along with disabling sector protection completely will need to be implemented by the application to ensure that
the limit of 10,000 cycles is not exceeded.
16
AT45DB081D
Data BytenData Byte
n + 1
Data Byte
n + 15
3596N–DFLASH–11/2012
Loading...
+ 37 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.