Rainbow Electronics 78M6631 User Manual

78M6631
3-Phase Power
-
Measurement IC
Teridian is a trademark and Single Converter Technology is a registered trademark of Max im Integr ated Products, Inc.
19-6039; Rev 1; 1/12
DATA SHEET
DS_6631_056
DESCRIPTION
The Teridian™ 78M6631 is a highly integrated 3-phase power measurement and monitoring system-on-chip (SoC), with a 10 MHz 8051-compatible MPU core and Single Converter Technology® containing a 22-bit delta­sigma converter and 32-bit compute engine (CE). The 78M6631 has been designed specifically for a wide variety of applications requiring 3-phase power and quality measurements. It supports both Delta and Wye configurations.
At the measurement interface, the device provides six analog inputs including three differential current and three voltage for interfacing to current and voltage sensors. The device provides better than 0.5% accuracy over a wide 2000:1 dynamic range.
The integrated MPU core and 128 KB of flash memory provide a flexible means of configuration, post­processing, data formatting, interfacing to host processor via a UART or SPI interface, or using DIO pins for LEDs or relay control. Complete firmware is available from Maxim and can be loaded into the IC during manufacturing test.
FE ATURES
< 0.5% W att Accuracy Over 2000:1 Current
Range and Over Temperature
Exceeds IEC 62053/ANSI C12.20 Standards
Voltage Reference < 40 ppm/°C
Six Analog Inputs Supporting 3-Phase Voltage
and Current Measurement Inputs
Pin- or Biselectable Delta or Wye Configuration
22-Bit Delta-Sigma ADC with Independent 32-
Bit Compute Engine (CE)
8-Bit MPU (80515), One Clock Cycle per
Instruction with 4 KB MPU XRAM
128 KB Flash with Security
32 kHz Time Base with Hardware Watchdog
Tim er
UART, I
Interface Options
17 General-Purpose 5 V Tolerant I/O Pins
Packaged in a RoHS-Compliant (6/6)
Lead(Pb)-Free 56-Pin TQFN
Application Firmware Includes (per Phase):
o True RMS Current and Voltage Calculations o Active, Reactive, Apparent, Fundamental,
o Fundamental and Harmonic Current and
o Line Frequency and Power Factor
o Phase Compensation (±18° at 60 Hz) o Built-In Calibration Routines o Programmable Alarm Thresholds o Command Line (UART) Communications o High-Speed SPI Communications
2
C, and High-Speed Slave SPI Host
and Harmonic Power Calculations
Voltage Calculations
Calculations
Rev 1 1
78M6631 Data Sheet DS_6631_056
Table of Contents
1 Hardware Functional Description ................................................................................................. 5
1.1 Hardware Overview................................................................................................................. 5
1.2 Device Reset .......................................................................................................................... 7
1.3 Power Management ................................................................................................................ 7
1.3.1 Voltage Regulator........................................................................................................ 7
1.3.2 Power Fault Management ............................................................................................ 7
1.4 Analog Front-End (AFE) .......................................................................................................... 8
1.4.1 Analog Current and Voltage Inputs .............................................................................. 8
1.5 Digital Computation Engine (CE) ............................................................................................. 9
1.6 80515 MPU Core .................................................................................................................. 10
1.6.1 SFRs ......................................................................................................................... 10
1.7 RAM ..................................................................................................................................... 10
1.8 IORAM .................................................................................................................................. 10
1.9 Flash..................................................................................................................................... 10
1.9.1 Program Security....................................................................................................... 10
1.10 Oscillator............................................................................................................................... 11
1.11 PLL and Internal Clock Generation ........................................................................................ 11
1.12 Real-Time Clock (RTC) ......................................................................................................... 11
1.13 Hardware Watchdog Timer.................................................................................................... 11
1.14 Temperature Sensor ............................................................................................................. 12
1.15 General Purpose Digital I/O ................................................................................................... 12
1.16 D/Y Selection Pin .................................................................................................................. 12
1.17 EEPROM Interface................................................................................................................ 12
1.18 SPI Slave Port ...................................................................................................................... 12
1.19 Test Port ............................................................................................................................... 13
1.20 UART .................................................................................................................................... 13
1.21 In Circuit Emulator (ICE) Port ................................................................................................ 14
2 Electrical Specifications .............................................................................................................. 15
2.1 Absolute Maximum Ratings ................................................................................................... 15
2.2 Recommended External Components ................................................................................... 16
2.3 Recommended Operating Conditions .................................................................................... 16
2.4 Performance Specifications ................................................................................................... 17
2.4.1 Input Logic Levels ..................................................................................................... 17
2.4.2 Output Logic Levels ................................................................................................... 17
2.4.3 Power-Fault Comparator ........................................................................................... 17
2.4.4 Power Supply Monitor ............................................................................................... 18
2.4.5 Supply Current .......................................................................................................... 18
2.4.6 Crystal Oscillator ....................................................................................................... 18
2.4.7 Temperature Sensor.................................................................................................. 19
2.4.8 VREF ........................................................................................................................ 19
2.4.9 ADC Converter, V3P3A Referenced .......................................................................... 20
2.5 Timing Specifications ............................................................................................................ 21
2.5.1 Flash Memory ........................................................................................................... 21
2.5.2 EEPROM Interface .................................................................................................... 21
2.5.3 RESET ...................................................................................................................... 21
2.5.4 SPI Slave Port ........................................................................................................... 22
3 Packaging .................................................................................................................................... 23
3.1 56-Pin QFN Package ............................................................................................................ 23
3.2 Pinout ................................................................................................................................... 23
3.2.1 56-Pin QFN Package Outline ..................................................................................... 24
3.2.2 Recommended PCB Land Pattern for the QFN-56 Package ...................................... 25
4 Pin Descriptions .......................................................................................................................... 26
2 Rev 1
DS_6631_056 78M6631 Data Sheet
4.1 Power and Ground Pins ........................................................................................................ 26
4.2 Analog Pins........................................................................................................................... 26
4.3 Digital Pins ............................................................................................................................ 27
5 I/O Equivalent Circuits ................................................................................................................. 28
6 Ordering Information ................................................................................................................... 29
7 Contact Information ..................................................................................................................... 29
Revision History .................................................................................................................................. 30
Rev 1 3
78M6631 Data Sheet DS_6631_056
Figures
Figure 1: 78M6631 IC Functional Block Diagram ..................................................................................... 6
Figure 2: AFE Block Diagram ................................................................................................................... 8
Figure 3: Functions Defined by V1 ......................................................................................................... 11
Figure 4: SPI Slave Port: Typical Read and Write Operations ................................................................ 13
Figure 5: SPI Slave Port Timing ............................................................................................................. 22
Figure 6: Pinout for QFN-56 Package .................................................................................................... 23
Figure 7: PCB Land Pattern for QFN-56 Package .................................................................................. 25
Figure 8: I/O Equivalent Circuits............................................................................................................. 28
Tables
Table 1: SPI Command Description ....................................................................................................... 13
Table 2: Absolute Maximum Ratings ...................................................................................................... 15
Table 3: Recommended External Components ...................................................................................... 16
Table 4: Recommended Operating Conditions ....................................................................................... 16
Table 5: Input Logic Levels .................................................................................................................... 17
Table 6: Output Logic Levels ................................................................................................................. 17
Table 7: Power-Fault Comparator Performance Specifications ............................................................... 17
Table 8: Power Supply Monitor Performance Specifications (BME= 1).................................................... 18
Table 9: Supply Current Performance Specifications .............................................................................. 18
Table 10: Crystal Oscillator Performance Specifications ......................................................................... 18
Table 11: Temperature Sensor Performance Specifications ................................................................... 19
Table 12: VREF Performance Specifications .......................................................................................... 19
Table 13: ADC Converter Performance Specifications ........................................................................... 20
Table 14: Flash Memory Timing Specifications ...................................................................................... 21
Table 15: EEPROM Interface Timing ..................................................................................................... 21
Table 16: RESET Timing ....................................................................................................................... 21
Table 17: SPI Slave Port Timing ............................................................................................................ 22
Table 19: Power and Ground Pins ......................................................................................................... 26
Table 20: Analog Pins............................................................................................................................ 26
Table 21: Digital Pins ............................................................................................................................. 27
Table 22: Ordering Information .............................................................................................................. 29
4 Rev 1
DS_6631_056 78M6631 Data Sheet

1 Hardware Functional Description

1.1 Hardware Overview

The Teridian 78M6631 single-chip power measurement and monitoring device integrates all the primary AC measurement and control blocks required to implement the 3-phase power measurement and monitoring system.
The 78M6631 includes:
Six input analog front-end (AFE) (3 Differential Current/3 Voltage)
Independent digital computation engine (CE)
8051-compatible microprocessor (MPU) which executes one instruction per clock cycle (80515)
Precision voltage reference
Temperature sensor
RAM and flash memory
A variety of I/O pins
Communication Interfaces: UART, SPI, and I
Various current sensor technologies are supported including Current Transformers (CT), Resistive Shunts, and Rogowski coils.
The 32-bit compute engine (CE) of the 78M6631 sequentially process the samples from the analog inputs on pins IA, IB, IC, VA, VB, and VC and performs calculations to measure active power (Watts), reactive power (VARs), apparent power (VAs), power factor, fundamental power, and harmonic power for three independent phases. RMS, fundamental, and harmonic currents and voltages are also computed for each phase. Totals are available for most results.
Figure 1 provides a block diagram of the 78M6631 IC. A detailed description of the various functional
blocks follows.
Refer to the applicable Firmware Description Document for additional supported functionality.
2
C (Master)
Rev 1 5
78M6631 Data Sheet DS_6631_056
∆Σ ADC
CONVERTER
VREF
MUXP
XIN
XOUT
VREF
RESET
V1
UART
TX
RX
DIGITAL I/O
POWER FAULT
GNDD
V3P3A
V3P3D
VOLT
REG
2.5V to Logic
TMUXOUT
FAULTZ
GNDA
VBIAS
TEMP
OSC
(32.768kHz)
MCK
PLL
VREF
CKTEST
TEST MODE
E_ RXTX
RTC
VBIAS
ICE_E
TEST
MUX
V3P3D
CE_PROG
CK_CE
CK_MPU
80MHz
VADC
CE
MULTI-
PURPOSE
IO
RTM
RPULSE
WPULSE
DIO_4...
to TMUX
SPI SLAVE
EEPROM I/F
FLASH 128KB
XRAM
4kB
CE_DATA
PCSZ PCLK
PSDI
PSDO
SDATA
SDCK
SFR
80515
MPU
EMULATOR
E_ TCLK
E_ RSTZ
E_ RXTX
E_ TCLK
E_RST
RPULSE
WPULSE
XRAM BUS
8
16
32
CKTEST
ICE_E
CKTESTI
PCLK
PSDO
PCSZ
PSDI
FIR
VB
VC
VA
XPULSE
YPULSE
XPULSE
YPULSE
IBN
ICP
ICN
IBP
IAP
IAN
DIO3 DIO4/SDCK DIO5/SDATA DIO6 DIO8 DIO9 D/Y DIO11
DIO17
DIO24 DIO25
DIO45 DIO47
V3P3SYS
VBAT
DIO51 DIO53
DIO30
DIO55
DIO29
Figure 1: 78M6631 IC Functional Block Diagram
6 Rev 1
DS_6631_056 78M6631 Data Sheet

1.2 Device Reset

When the RESET pin is pulled high, all digital activity stops. Only the oscillator and RTC module continue to run. Additionally, all IORAM bits are set to their default states. As long as V1 (the input voltage at the power fault block) is greater than VBIAS, the internal 2.5 V regulator continues to provide power to the digital section.
Once initiated, the reset mode persists until the reset timer times out. This occurs in 4096 cycles of the crystal clock after RESET goes low, at which time the MPU begins executing its preboot and boot sequences from address 0x0000.

1.3 Power Management

1.3.1 Voltage Regulator

The 78M6631 provides an on-chip voltage regulator to create a 2.5 V supply for the digital logic. This regulator can be run off of the V3P3SYS or VBAT inputs depending upon power availability.

1.3.2 Power Fault Management

The 78M6631 provides for both hardware and software controlled power fault management. The V1 pin is connected to a comparator to monitor system power fault conditions. When the input to the comparator falls (V1 < VBIAS) the device can enter a BROWNOUT mode, if supported in firmware and there is sufficient voltage on VBAT, that reduces the MPU rate to 32 kHz and disables all the measurement front­end circuits. If the overhead on VBAT is insufficient to maintain a BROWNOUT mode, then the device can also attempt to enter a SLEEP mode where only RTC functions are active.
If there is not sufficient voltage on VBAT (or it is not supported), then the part enters RESET mode when the comparator fails.
Rev 1 7
78M6631 Data Sheet DS_6631_056
VA
VB
MUX
VREF
4.9152 MHz
VBIAS
CROSS
CK32
VREF
MUX
CTRL
VC
MUX
V3P3A
FIR
VBIAS
∆Σ ADC
CONVERTER
+
-
VREF
TEMP
V3P3D
FIR_DONE
FIR_START
IBP IBN ICP ICN
IAP IAN
-
+
-
+
-
+

1.4 Analog Front-End (AFE)

The AFE functions as a data acquisition system, controlled by the MPU. The main blocks in the AFE consist of an input multiplexer, a delta-sigma A/D converter, a FIR decimation filter and a voltage reference. The metrology input signals (IAP, IAN, IBP, IBN, ICP, ICN, VA, VB, VC, and TEMP) are multiplexed before being sampled by the ADC. The ADC output is decimated by the FIR filter and the results are stored in RAM where they can be accessed by the CE and the MPU.
The functionality of the AFE is established for various system requirements with different CE code. AFE programmability includes, but is not limited to:
Input multiplexer settings
Voltage supply and temperature monitor inputs
ADC sampling rate
FIR length/resolution
Figure 2: AFE Block Diagram

1.4.1 Analog Current and Voltage Inputs

With all CE code implementations for the 78M6631, pins IAP, IAN, IBP, IBN, ICP, ICN, VA, VB, and VC are analog inputs to the AFE for measuring current and voltage. Various current sensor technologies can be supported including Current Transformers, Resistive Shunts, and Rogowski coils.
8 Rev 1
DS_6631_056 78M6631 Data Sheet

1.5 Digital Computation Engine (CE)

The CE, a dedicated 32-bit digital signal processor, performs the back-end computations. CE calculations include:
Gain and offset compensation
Delay compensation on all channels
90° phase shift for VAR calculations
Frequency measurement
Accumulation for voltage and current RMS and power computation
Active, reactive, apparent, fundamental, and harmonic power calculation
Fundamental and harmonic current and voltage calculations
Monitoring of the input signal frequency (for frequency and phase information)
Monitoring of the input signal amplitude (for sag detection)
Temperature acquisition
Due to the custom nature and complexity of the CE, the CE code is part of the installed firmware and is not modified by the user. Contact Maxim support for more information regarding CE code.
Rev 1 9
78M6631 Data Sheet DS_6631_056

1.6 80515 MPU Core

The 78M6631 includes an 80515 MPU (8-bit, 8051-compatible) that processes most instructions in one clock cycle. The 80515 architecture eliminates redundant bus states and implements parallel execution of fetch and execution phases. Normally, a machine cycle is aligned with a memory fetch, therefore, most of the 1-byte instructions are performed in a single machine cycle (MPU clock cycle). This leads to an 8x average performance improvement (in terms of MIPS) over the Intel 8051 device running at the same clock frequency.

1.6.1 SFRs

Several custom Special Function Registers (SFR) are implemented in the 78M6631’s 80515 MPU. Refer to the 78M6631 Programmer’s Reference Manual for more information regarding the mapping of functionality to specific SFR and IORAM addresses.

1.7 RAM

The CE and MPU share a single, general purpose 4KB RAM (also referred to as XRAM) for data. The XRAM is natively accessible as 32-bit words from the CE and on 8-bit boundaries from the CPU. The XRAM is accessed by the CPU through addresses 0x0000 to 0x0FFF.

1.8 IORAM

The MPU accesses most of its external input and output functionality as well as programmable functionality through memory mapped IO (IORAM). The IORAM is accessed by the CPU as data addresses 0x2000 to 0x20FF.

1.9 Flash

The 78M6631 includes 128 KB of on-chip flash memory. For read/write access from the CPU, the flash is broken into four 32 KB banks that are managed by SFR settings. For erasing of the flash memory from the CPU, the flash is segmented into individual 1024-byte pages and also controlled by SFR settings.

1.9.1 Program Security

The 78M6631 has functionality to guarantee the security of the user’s MPU and CE program code. When enabled, the security feature limits the ICE to global flash erase operations only. All other ICE operations are blocked. Security is enabled by MPU code that is executed in a pre-boot interval before the primary boot sequence begins. Once security is enabled, the only way to disable it is to perform a global erase of the flash, followed by a chip reset.
10 Rev 1
DS_6631_056 78M6631 Data Sheet
V3P3
V3P3 -
400mV
V3P3 - 10mV
VBIAS
0V
Battery modes
Normal
operation,
WDT
enabled
WDT dis-
abled
V1

1.10 Oscillator

The 78M6631 oscillator drives a standard 32.768 kHz quartz crystal. These crystals are accurate and do not require a high-current oscillator circuit. The 78M6631 oscillator has been designed specifically to handle these crystals and is compatible with their high impedance and limited power handling capability.
The oscillator is powered directly and only from V3P3D, which therefore must be connected to a DC voltage source not to exceed 4 V.
Since the oscillator is self-biasing, an external resistor must not be connected across the crystal.

1.11 PLL and Internal Clock Generation

Timing for the device is derived from the 32.768 kHz crystal oscillator output. The PLL and on-chip timing functions provide several clocks which include:
The MPU clock (CKMPU)
The emulator clock (2 x CKMPU)
The clock for the CE (CKCE)
The delta-sigma ADC and FIR clock(CKADC, CKFIR)
These internal clocks can be adjusted for various programmable rates which affect device functionality. Refer to the 78M6631 Programmer’s Reference Manual for more information regarding the programmability of the 78M6631 PLL and internal clock generation modules.

1.12 Real-Time Clock (RTC)

The RTC circuit is driven directly by the crystal oscillator. The RTC consists of a counter chain and output registers. The counter chain consists of registers for seconds, minutes, hours, day of week, day of month, month, and year (including leap years). Refer to the 78M6631 Programmer’s Reference Manual for more information regarding the use of the 78M6631 RTC.

1.13 Hardware Watchdog Timer

In addition to the basic watchdog timer included in the 80515 MPU, an independent, robust, fixed-duration, watchdog timer (WDT) is included in the device. It uses the crystal oscillator as its time base and must be refreshed by the MPU firmware at least every 1.5 seconds. When not refreshed on time the WDT overflows, and the part is reset as if the RESET pin were pulled high, except that the IORAM bits are maintained. 4096 oscillator cycles (or 125 ms) after the WDT overflow, the MPU is launched from program address 0x0000. Asserting ICE_E deactivates the WDT.
Figure 3: Functions Defined by V1
The WDT can also be disabled by connecting the V1 pin to V3P3D. This also deactivates V1 power fault detection. Since there is no method in firmware to disable the crystal oscillator or the WDT, it is guaranteed that whatever state the part might find itself in, upon watchdog overflow, the part is reset to a known state.
Rev 1 11
78M6631 Data Sheet DS_6631_056
MICROWIRE is a trademark of National Semiconductor.

1.14 Temperature Sensor

The device includes an on-chip temperature sensor for determining the temperature of the bandgap reference. The primary use of the temperature data is to determine the magnitude of compensation required to offset the thermal drift in the system.

1.15 General-Purpose Digital I/O

The 78M6631 includes 17 general-purpose digital I/O pins. As inputs, these pins are 5V compatible (no current-limiting resistors are needed). On reset or power-up, all DIO pins are inputs. Their input/output directions are subsequently set by the MPU. The digital I/O pins can be categorized as follows:
• DIO3 (1 pin) DIO pin
DIO4, DIO5 (2 pins) DIO/EEPROM
• DIO6 (1 pin) DIO pin (multifunction)
DIO8, DIO9, DIO11 (3 pins) DIO pins
• DIO17 (1 pin) DIO pin
DIO24, DIO25 (2 pins) DIO pins
DIO29, DIO30 (2 pins) DIO pins
• DIO45, DIO47 (2 pins) DIO pins
• DIO51 (1 pin) DIO pin
DIO53, DIO55 (2 pins) DIO pins

1.16 D/Y Selection Pin

The D/Y pin selects either the Delta or the Wye configuration. At power-on, the Delta/Wye selection register assumes the state of the D/Y pin. The register value can be modified by the software overriding the state of the D/Y pin.

1.17 EEPROM Interface

The 78M6631 provides hardware support for an optional 2-pin or a 3-wire (MICROWIRE™) EEPROM interface.
2-Pin EEPROM Interface
The dedicated 2-pin serial interface communicates with external EEPROM devices. The interface is multiplexed onto the DIO4 (SDCK) and DIO5 (SDATA) pins.
3-Wire (MICROWIRE) EEPROM Interface
A 500 kHz three-wire interface, using SDATA, SDCK and a DIO pin for CS, is also available.

1.18 SPI Slave Port

The slave SPI port communicates directly with the MPU data bus and is able to directly read and write XRAM and IORAM locations. It is also able to send commands to the MPU. The interface to the slave port consists of the PCSZ, PCLK, PSDI, and PSDO pins.
A typical SPI transaction is as follows. While PCSZ is high, the port is held in an initialized/reset state. During this state, PSDO is held in high-Z state and all transitions on PCLK and PSDI are ignored. When PCSZ falls, the port begins the transaction on the first rising edge of PCLK. A transaction consists of an 8-bit command, a 16-bit address, and then one or more bytes of data. The transaction ends when PCSZ is raised. Some transactions can consist of a command only. The last SPI command and address (if part of the command) are available in the IORAM.
The SPI port supports data transfers at up to 1 Mbps. The SPI commands are described in Table 1 and Figure 4 illustrates the SPI Interface read and write timing.
12 Rev 1
DS_6631_056 78M6631 Data Sheet
Command
Description
11xx xxxx ADDR D0 ... DN
MPU SPI interrupt is generated.
1100 0000 ADDR D0 ... DN
No MPU SPI interrupt is generated.
10xx xxxx ADDR D0 ... DN
MPU SPI interrupt is generated.
1000 0000 ADDR D0 ... DN
No MPU SPI interrupt is generated.
CMD ADDR D0 ... DN
A15 A14
A1 A0C0
0 31
x
D7 D6
D1 D0 D7
D6 D1 D0
C5C6C7
x
PCSZ
PSCK
PSDI
PSDO
8 bit CMD 16 bit Address
DATA[ADDR]
DATA[ADDR+1]
7 8 23 24 32 39
Extended Read . . .
SERIAL READ
A15 A14
A1 A0C0
0 31
C5C6C7
x
PCSZ
PSCK
PSDI
PSDO
8 bit CMD 16 bit Address
DATA[ADDR]
DATA[ADDR+1]
7 8 23 24 32 39
Extended Write . . .
SERIAL WRITE
D7 D6
D1 D0 D7
D6 D1 D0
x
HI Z
HI Z
(From Host)
(From 6531)
(From Host)
(From 6531)
Table 1: SPI Command Description
Output data on PSDO is read from RAM starting with byte at ADDR. ADDR auto increments until PCSZ is raised.
Output data on PSDO is read from RAM starting with byte at ADDR. ADDR auto increments until PCSZ is raised.
Input data on PSDI is written to RAM starting with byte at ADDR. ADDR auto increments until PCSZ is raised.
Input data on PSDI is written to RAM starting with byte at ADDR. ADDR auto increments until PCSZ is raised.
CMD and ADDR are available to the CPU in IORAM. D0… DN are ignored. MPU SPI interrupt is generated.
Since the addresses are in 16-bit format, any type of XRAM data can be accessed: CE, MPU, or IORAM but not SFRs or the 80515-internal register bank.

1.19 Test Port

One out of 16 digital or eight analog signals can be selected to be output on the TMUXOUT pin. Refer to the 78M6631 Programmer’s Reference Manual for more information regarding the use of TMUXOUT.

1.20 UART

The 78M6631 includes one UART (UART0) that can be programmed to communicate with a variety of external devices. The UART is a dedicated 2-wire serial interfaces (no hardware flow control/handshaking), which can communicate at rates up to 38,400 bps. All UART transfers are programmable for parity enable, parity, 2 stop bits/1 stop bit and XON/XOFF options for variable communication baud rates from 300 to 38,400 bps. Refer to the 78M6631 Programmer’s Reference Manual for more information regarding the use of the UART resources.
Rev 1 13
Figure 4: SPI Slave Port: Typical Read and Write Operations
78M6631 Data Sheet DS_6631_056

1.21 In-Circuit Emulator (ICE) Port

The 78M6631 implements an In-Circuit Emulator (ICE) port for debug and programming of the device. To enable the use of the port the ICE_E pin must be pulled high. In this mode the E_RST, E_TCLK, and E_RXTX pins are enabled. Contact Maxim support for more information regarding the use of the ICE interface for device programming and debug.
14 Rev 1
DS_6631_056 78M6631 Data Sheet
Supplies and Ground Pins
Analog Output Pins
Analog Input Pins
-0.5 V to (V3P3A + 0.5 V)
All Other Pins
-0.5 to +6 V

2 Electrical Specifications

2.1 Absolute Maximum Ratings

Table 2 shows the absolute maximum ranges for the device. Stresses beyond Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation at these or any other conditions beyond those indicated under recommended operating conditions (Section 2.3) is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to GNDA.
Table 2: Absolute Maximum Ratings
Voltage and Current
V3P3D, V3P3A -0.5 V to 4.0 V
GNDD -0.5 V to +0.5 V
VREF -10 mA to +10 mA,
-0.5 V to (V3P3A + 0.5 V)
IAP, IAN, IBP, IBN, ICP, ICN, VA, VB, VC -10 mA to +10 mA
XIN, XOUT -10 mA to +10 mA
-0.5 V to 3.0 V
Configured as Digital Inputs -10 mA to +10 mA,
Configured as Digital Outputs -15 mA to +15 mA,
-0.5 V to (V3P3D + 0.5 V)
All Other Pins -0.5 V to (V3P3D + 0.5 V)
Temperature and ESD Stress
Operating Junction Temperature (peak, 100 ms) +140°C
Operating Junction Temperature (continuous) +125°C
Storage Temperature -45°C to +165°C
Lead Temperature (soldering, 10 s) +250°C
Soldering Temperature (reflow)
ESD Stress on All Pins
+260°C ±4 kV
Rev 1 15
78M6631 Data Sheet DS_6631_056
Name
From
To
Function
Value
Unit
Parameter
Condition
Min
Typ
Max
Unit

2.2 Recommended External Components

Table 3: Recommended External Components
C1 V3P3A AGND Bypass capacitor for 3.3 V supply
C3 V3P3D DGND Bypass capacitor for V3P3D
32.768 kHz crystal, electrically similar to
XTAL XIN XOUT
CXS XIN AGND
CXL XOUT AGND
Notes:
1. AGND and DGND should be connected together.
2. V3P3Ds and V3P3A should be connected together.
ECS .327-12.5-17X or Vishay XT26T, load capacitance 12.5 pF
Load capacitor for crystal (depends on crystal specs and board parasitics)
Load capacitor for crystal (depends on crystal specs and board parasitics)
≥ 0.1 ±20% µF ≥ 1.0 ±30% µF
32.768 kHz
33 ±10%
15 ±10%

2.3 Recommended Operating Conditions

Table 4: Recommended Operating Conditions
V3P3D, V3P3A: 3.3 V Supply Voltage (V3P3A and V3P3D must be at the same voltage)
Operating Temperature Range -40 +85 ºC
Normal operation 3.0 3.3 3.6 V
pF
pF
16 Rev 1
DS_6631_056 78M6631 Data Sheet
Parameter
Condition
Min
Typ
Max
Unit
A
Parameter
Condition
Min
Typ
Max
Unit
LOAD

2.4 Performance Specifications

2.4.1 Input Logic Levels

Table 5: Input Logic Levels
Digital high-level input voltage1, VIH 2 V
Digital low-level input voltage1, VIL 0.8 V
Input pullup current, IIL
E_RXTX, E_RST, CKTEST Other digital inputs
VIN = 0 V, ICE_E = 1
10 10
-1
0
100 100
+1
Input pulldown current, IIH
ICE_E RESET
VIN = V3P3D
Other digital inputs
1
To reduce power consumption, digital inputs should be below 0.3 V or above 2.5 V to minimize supply
10 10
-1
0
100 100
+1
current.

2.4.2 Output Logic Levels

Table 6: Output Logic Levels
µA µA µ
µA µA µA
Digital high-level output voltage VOH I
= 1 mA V3P3D -
LOAD
V
0.4
I
= 15 mA V3P3D -
LOAD
V
0.6
Digital low-level output voltage VOL I
= 1 mA 0
LOAD
I
= 15 mA
0.4 V
0.8 V

2.4.3 Power-Fault Comparator

Table 7: Power-Fault Comparator Performance Specifications
Parameter Condition Min Typ Max Unit
Offset Voltage: V1 - VBIAS -20
Hysteresis Current: V1 VIN = VBIAS – 100 mV 0.8
Response Time: V1 +100 mV overdrive
Voltage at V1 rising Voltage at V1 falling
10
8
37
WDT Disable Threshold: V1 - V3P3A -400 -10 mV
+15 mV
1.2
µA
100 100
µs µs
Rev 1 17
78M6631 Data Sheet DS_6631_056
Parameter
Condition
Min
Typ
Max
Unit
M40MHZ, M26MHZ
FIR_LEN
µV
µV
Parameter
Condition
Min
Typ
Max
Unit
ADC_E=1, ICE_E=0
XOUT
5
pF

2.4.4 Power Supply Monitor

Table 8: Power Supply Monitor Performance Specifications (BME= 1)
Load Resistor 27 45 63
[ = [00], [10], or [11]
LSB Value
[M40MHZ, M26MHZ] = [01]
Offset Error -200 0 +100
]
=0(L=138)
FIR_LEN=1(L=288)
FIR_LEN=0(L=186) FIR_LEN=1(L=384)
(-10%)
(-10%)
-48.7
-5.35
-19.8
-2.26
(+10%)
(+10%)
µV
µV
mV

2.4.5 Supply Current

Table 9: Supply Current Performance Specifications
V3P3D current (CE off) Normal Operation,
V3P3D current (CE on)
V3P3A current
V3P3A = V3P3SYS = 3.3 V CKMPU = 614 kHz
No flash memory write RTM_E=0, ECK_DIS=1,
V3P3D current, Write Flash
Normal operation as above, except write flash at maximum rate, CE_E =
4.2 6.35 mA
8.4 9.6 mA
3.3
3.8
mA
9.1 12 mA
0, ADC_ E = 0

2.4.6 Crystal Oscillator

Table 10: Crystal Oscillator Performance Specifications
Parameter Condition Min Typ Max Unit
Maximum Output Power to Crystal 4 Crystal connected
XIN to XOUT Capacitance 1
Capacitance to DGND 1
RTCA_ADJ = 0
XIN
1
µW
3 pF
5
pF
18 Rev 1
DS_6631_056 78M6631 Data Sheet
Parameter
Condition
Min
Typ
Max
Unit
3
n
3
L
00107.0S
 
 
=
3
n
3
L
510.0N
 
 
=
[M26MHZ, M40MH] = [00], [01], or [11]
FIR_LEN FIR_LEN=1 (L=288)
451200
+
=
n
n
n
T
S
NTN
TERR
))((
Parameter
Condition
Min
Typ
Max
Unit
VREF chop step
40
mV
VREF = 1.3 to 1.7 V
2)22(1)22()22()(
2
TCTTCTVREFTVNOM ++=
V/°C2
)40,22max(
10
)(
)()(
6
−−TTVNOM
TVNOMTVREF

2.4.7 Temperature Sensor

Table 11 shows the performance for the temperature sensor. The LSB values do not include the 8-bit left
shift at CE input.
Table 11: Temperature Sensor Performance Specifications
Nominal relationship: N(T) = Sn*(T-Tn) + Nn, Tn = 22ºC
Nominal Sensitivity (S
[M26MHZ, M40MH] =
)
[00], [01], or [11]
n
[M26MHZ, M40MHZ] = [10]
FIR_LEN= 0 (L=138) FIR_LEN=1 (L=288)
FIR_LEN=0 (L=186)
-104
-947 LSB/ºC
-255
Nominal Offset
4
)
(N
n
[M26MHZ, M40MHZ] = [10]
FIR_LEN=0 (L=186)
=0 (L=138)
49641
121500
LSB
Temperature Error 2
T
= 22°C,
1
Guaranteed by design; not production tested.
2
Nn is measured at Tn during measurement calibration and is stored in MPU or CE for use in temperature
n
T = -40ºC to +85ºC
-10
1
+101 ºC
calculations.

2.4.8 VREF

Table 12 shows the performance specifications for VREF. Unless otherwise specified, VREF_DIS = 0.
Table 12: VREF Performance Specifications
VREF output voltage, VREF(22) TA = +22ºC 1.193 1.195 1.197 V
VREF power supply sensitivity ΔVREF/ΔV3P3A
VREF input impedance
V3P3A = 3.0 to 3.6 V
VREF_DIS = 1,
-1.5 +1.5 mV/V
100
k
VREF output impedance CAL =1,
VNOM definition2
VNOM temperature coefficients:
VREF(T) deviation from VNOM(T)
VREF aging
1
Guaranteed by design; not production tested.
2
This relationship describes the nominal behavior of VREF at different temperatures.
Rev 1 19
TC1 TC2
LOAD = 10 µA, -10 µA
I
3.18·(52.46-TRIMT)
-0.444
2.5
k
V
µV/ºC
µ
1
-40
+401 ppm/ºC
±25
ppm/year
78M6631 Data Sheet DS_6631_056
(VIN - V3P3A)
)cos(
*10
6
VcrosstalkVin
Vin
Vcrosstalk
measurement on IA or IB
3
3
75.4
25.1
 
 
=LVV
REFLSB
[00], [10], or [11]
[M40MHZ,
[01]
3
3
 
 
L
[01]
3.3/33100
/35710
6
APV
VnVNout
INPK

2.4.9 ADC Converter, V3P3A Referenced

Table 13 shows the performance specifications for the ADC converter, V3P3A referenced. For this data,
FIR_LEN = 0, VREF_DIS = 0 and LSB values do not include the 9-bit left shift at the CE input.
Table 13: ADC Converter Performance Specifications
Parameter Condition Min Typ Max Unit
Recommended Input Range
-250 +250
mV
peak
Voltage to Current Crosstalk
THD (First 10 harmonics) 1:
250 mV-pk 20 mV-pk
Input Impedance
Temperature coefficient of Input Impedance
LSB size
[M40MHZ, M26MHZ] =
L = FIR length
M26MHZ] =
Digital Full Scale
[M40MHZ, M26MHZ] = [00], [10], or [11]
L = FIR length
[M40MHZ,
M26MHZ] =
VIN = 200 mV peak, 65 Hz, on VA. Vcrosstalk = largest
= 65 Hz,
V
IN
64 kpts FFT, Blackman­Harris window
-101
CKCE = 5 MHz
= 65 Hz 40
V
IN
= 65 Hz
V
IN
1.7
+101
-75
-90
90
µV/V
1
1
dB dB
k
/°C
nV/
LSB
nV/
LSB
LSB
LSB
ADC Gain Error versus
%Power Supply Variation
Input Offset (VIN - V3P3A) -10
1
Guaranteed by design; not production tested.
20 Rev 1
VIN = 200 mV pk, 65
V
Hz, V3P3A=3.0 V, 3.6
50
+10 mV
ppm/%
DS_6631_056 78M6631 Data Sheet
Parameter
Condition
Min
Typ
Max
Unit
page or mass erase operations
Parameter
Condition
Min
Typ
Max
Unit
bit-banging DIO4/5

2.5 Timing Specifications

2.5.1 Flash Memory

Table 14: Flash Memory Timing Specifications
Flash write cycles -40°C to +85°C 20,000
Flash data retention +25°C 100
Flash data retention +85°C 10 Years
Flash byte write operations between
Write Time per Byte
Page Erase (1024 bytes) 20 ms
Mass Erase
2 Cycles
42
200 ms
Cycles
Years
µs

2.5.2 EEPROM Interface

Table 15: EEPROM Interface Timing
CKMPU = 4.9152 MHz,
Write Clock frequency (I2C)
Write Clock frequency (3-wire) CKMPU = 4.9152 MHz
using interrupts
CKMPU = 4.9152 MHz,
150 kHz
78
500 kHz
kHz

2.5.3 RESET

Table 16: RESET Timing
Parameter Condition Min Typ Max Unit
Reset pulse width
Reset pulse fall time
1
Guaranteed by design; not production tested.
5
11
µs µs
Rev 1 21
78M6631 Data Sheet DS_6631_056
Parameter
Condition
Min
Typ
Max
Unit
0
MSB OUT LSB OUT
MSB IN LSB IN
t
SPIcyc
t
SPILead
t
SPILag
t
SPISCK
t
SPIH
t
SPIW
t
SPIEV
t
SPIW
t
SPIDIS
PCSZ
PCLK
PSDI
PSDO

2.5.4 SPI Slave Port

Table 17: SPI Slave Port Timing
t
PCLK cycle time
SPIcyc
t
Enable lead time
SPILead
t
Enable lag time
SPILag
High
t
PCLK pulse width
SPIW
Low
t
PCSZ to first PCLK fall
SPISCK
t
Disable time 0 ns
SPIDIS
t
PCLK to Data Out
SPIEV
t
Data input setup time
SPISU
t
Data input hold time 5 ns
SPIH
Ignore if PCLK is low when PCSZ falls
1
15
40
40
2
10
15 ns
µs
ns
ns
ns
ns
ns
Figure 5: SPI Slave Port Timing
22 Rev 1
DS_6631_056 78M6631 Data Sheet
1
Teridian
78M6631
2 3 4 5 6 7 8 9 10 11 12 13 14
15
16
31
32
26
27
28
29
30
18
19
20
21
22
24
25
35
36
37
38
39
40
41
42
43
44
45
46
47
48
52
53
54
55
56
E_RXTX
GNDD
TMUXOUT
DIO17
TX
PCLK
CKTEST
PSDO
PCSZ
V3P3SYS
DIO5/SDATA DIO4/SDCK
RX
RESET VBAT
E_RST
XOUT
GNDD
XINV1VRE
F
V3P3A
GNDA
17
DIO3
23
33
34
49
50
51
E_TCLK
GNDD
V3P3D
DIO47
N/C
DIO29
N/C
N/C
PSDI
DIO30
DIO45
GNDD
DIO25
DIO51
DIO53
DIO55
DIO24
DIO8
ICE_E
DIO9
DIO11 D/Y
IAN
IAP
IBP
IBN
ICP
ICN
VA
VB
VC
DIO6

3 Packaging

3.1 56-Pin QFN Package

3.2 Pinout

Rev 1 23
Figure 6: Pinout for QFN-56 Package
78M6631 Data Sheet DS_6631_056

3.2.1 56-Pin QFN Package Outline

24 Rev 1
DS_6631_056 78M6631 Data Sheet

3.2.2 Recommended PCB Land Pattern for the QFN-56 Package

Figure 7: PCB Land Pattern for QFN-56 Package
Rev 1 25
78M6631 Data Sheet DS_6631_056
Name
Type
Circuit
Description
Name
Type
Circuit
Description
IAP,
ICN
resistor should be connected from V1 to the resistor divider.

4 Pin Descriptions

4.1 Power and Ground Pins

Table 18: Power and Ground Pins
GNDA P Analog ground: This pin should be connected directly to the ground
plane.
GNDD P Digital ground: This pin should be connected directly to the ground plane.
V3P3A P Analog power supply: A 3.3 V power supply should be connected to this
pin, must be the same voltage as V3P3SYS.
V3P3D P System 3.3 V supply. This pin should be connected to a 3.3 V power
supply.

4.2 Analog Pins

Table 19: Analog Pins
I 6 Line Current Sense Inputs: These pins are voltage inputs to the internal
IAN, IBP, IBN, ICP,
A/D converter. Typically, they are connected to the outputs of current sensors. Unused pins must be connected to V3P3A.
VA, VB, VC
V1 I 7 Comparator Input: This pin is a voltage input to the internal comparator.
VREF O 9 Voltage Reference for the ADC. Normally disabled and left unconnected.
XIN XOUT
1)
Pin types: P = Power, O = Output, I = Input, I/O = Input/Output
The circuit number denotes the equivalent circuit, as specified under Section 5 I/O Equivalent Circuits.
I 6 Line Voltage Sense Inputs: These pins are voltage inputs to the internal
A/D converter. Typically, they are connected to the outputs of resistor dividers. Unused pins must be connected to V3P3A.
The voltage applied to the pin is compared to the internal BIAS voltage (1.6 V). If the input voltage is above VBIAS, the comparator output is high (1). If the comparator output is low, a voltage fault occurs. A series 5 k
If enabled, a 0.1 µF capacitor to V3P3A should be connected to this pin.
I 8 Crystal Inputs: A 32 kHz crystal should be connected across these pins.
Typically, a 33 pF capacitor is also connected from XIN to GNDA and a 15 pF capacitor is connected from XOUT to GNDA. It is important to minimize the capacitance between these pins. Refer to the crystal manufacturer data sheet for details. If an external clock is used, a 150
clock signal should be applied to XIN, and XOUT should be left
mV
P-P
unconnected.
26 Rev 1
DS_6631_056 78M6631 Data Sheet
Name
Type
Circuit
Description
DIO55
Selects either the Delta or the Wye configuration.
the emulator port.
Digital test multiplexer output. Controlled by TMUX[3:0].
V3P3D or GNDD.
Enables Production Test. This pin must be grounded in normal

4.3 Digital Pins

Table 20: Digital Pins
DIO3 I/O 3, 4 Dedicated DIO pin.
DIO4,DIO5,DIO6
I/O 3, 4, 5 DIO8, DIO9, DIO11 DIO17 DIO24, DIO25 DIO29, DIO30 DIO45, DIO47 DIO51, DIO53
D/Y I
PCLK
I/O 3, 4, 5 PSDO PCSZ PSDI
E_RXTX I/O 1, 4, 5
E_RST I/O 1, 4, 5
E_TCLK O 4, 5
ICE_E I 2
Multi-use pins, DIO. (DIO4 = SCK, DIO5 = SDA when configured as EEPROM interface; If unused, these pins must be configured as DIOs
and set to outputs by the firmware.
SPI PORT.
Port pins (when ICE_E pulled high).
ICE enable. When zero, E_RST, E_TCLK and E_RXTX SEG32 For production units, this pin should be pulled to GND to disable
CKTEST I/O 3, 4 Test clock.
TMUXOUT O 4
RESET I 2
Chip reset: This input pin is used to reset the chip into a known state. For normal operation, this pin is pulled low. To reset the chip, this pin should be pulled high. This pin has an internal 30 µA (typ) current source pulldown. No external reset circuitry is necessary.
RX I 3
UART input. If this pin is unused, it must be terminated to
TX O 4
UART output.
GNDD (pin 55) I 7
operation.
Pin types: P = Power, O = Output, I = Input, I/O = Input/Output. The circuit number denotes the equivalent circuit, as specified in Section 5, I/O Equivalent Circuits.
Rev 1 27
78M6631 Data Sheet DS_6631_056
Oscillator Equivalent Circuit
Type 8:
Oscillator I/O
Digital Input Equivalent Circuit
Type 1:
Standard Digital Input or
pin configured as DIO Input
with Internal Pull-Up
GNDD
110K
V3P3D
CMOS
Input
V3P3D
Digital
Input
Pin
Digital Input
Type 2:
Pin configured as DIO Input
with Internal Pull-Down
GNDD
110K
GNDD
CMOS
Input
V3P3D
Digital
Input
Pin
Digital Input Type 3:
Standard Digital Input or
pin configured as DIO Input
GNDD
CMOS
Input
V3P3D
Digital
Input
Pin
CMOS Output
GNDD
V3P3D
GNDD
V3P3D
Digital Output Equivalent Circuit
Type 4:
Standard Digital Output or
pin configured as DIO Output
Digital
Output
Pin
LCD Output Equivalent Circuit
Type 5:
LCD SEG or
pin configured as LCD SEG
LCD
Driver
GNDD
LCD SEG
Output
Pin
To
MUX
GNDA
V3P3A
Analog Input Equivalent Circuit
Type 6:
ADC Input
Analog
Input
Pin
Comparator Input Equivalent
Circuit Type 7:
Comparator Input
GNDA
V3P3A
To
Comparator
Comparator
Input
Pin
To
Oscillator
GNDD
Oscillator
Pin
VREF Equivalent Circuit
Type 9:
VREF
from
internal
reference
GNDA
V3P3A
VREF
Pin
V2P5 Equivalent Circuit
Type 10:
V2P5
from
internal
reference
GNDD
V3P3D
V2P5
Pin
VLCD Equivalent Circuit
Type 11:
VLCD Power
GNDD
LCD
Drivers
VLCD
Pin
VBAT Equivalent Circuit
Type 12:
VBAT Power
GNDD
Power
Down
Circuits
VBAT
Pin
V3P3D Equivalent Circuit
Type 13:
V3P3D
from
V3P3SYS
V3P3D
Pin
from
VBAT
10
40

5 I/O Equivalent Circuits

28 Rev 1
Figure 8: I/O Equivalent Circuits
DS_6631_056 78M6631 Data Sheet

6 Ordering Information

Table 21: Ordering Information
Part
78M6631
Part Description
(Package)
56-pin QFN, Lead(Pb)-
Free
Flash
Size
128 KB
Packaging Order Number
Bulk 78M6631-IM/F
Tape and Reel 78M6631-IMR/F
Package
Marking
78M6631-IM

7 Contact Information

For more information about Maxim products or to check the availability of the 78M6631, contact technical support at www.maxim-ic.com/support
.
Rev 1 29
DS_6631_056 78M6631 Data Sheet
REVISION
NUMBER
REVISION
DATE
PAGES
CHANGED

Revision History

DESCRIPTION
0 9/11 Initial release
1 1/12
Removed information about programmed devices from Table 21. Ordering Information
29
30 Rev 1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Max im reserves the right to change the c ircuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408- 737- 7600
2012 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products.
Loading...