Prolab Pipetted Liquid Sampling User Manual

Pipetted Liquid Sampling
Automated sample preparation platform for online LC-MS/MS bioanalysis
Integrated Sample Processing
Whole Blood
Whole Blood
Centrifugation
Conventional example SCAP procedure
Application of Sample
Elution of Sample Matrix
Elution of Analyte(s)
Concentration of Extract
Conditioning of Extraction Column
Injection into HPLC - System
Injection into SCAP HPLC - System
SCAP PLS system components mounted on a robotic platform
Integrated Sample Processing
Both the healthcare and pharmaceutical indus­try do a tremendous number of analyses of substances in biological uids, of which blood is one of the most common. In the healthcare industry, complete measurements are done to diagnose patients to determine the efcacy of administered drugs or to screen for early detection of diseases. In the pharmaceutical industry, measurements are done during the development process of new drugs (e.g. PK/ TK studies, etc.).
Whole blood is a difcult, complex matrix to handle. In order to determine and quantify substances in blood, various intermediate preparation steps are required (e.g. Blood Spots, Dialysis, Liquid-Liquid Extraction, Precipi­tation, (Hemo)Lysis, Membrane Filtration, Anticoagulation). The major drawback of all these protocols is the time consuming, error prone and labour intensive nature of manual sample pretreatment. The SCAP PLS system from Prolab GmbH represents a unique ap­proach for biouid analysis and eliminates the drawbacks of current methods. It delivers a fully integrated workow from sample collec­tion until the nal result without any manual sample preparation. A newly designed dispos­able SCAP PLS system sample cartridge is used for clean and safe blood collection.
The SCAP PLS cartridge is used for sample collection directly at the subject. Transferred to the SCAP PLS system it serves afterwards as a disposable sample loop prior to the following automated sample preparation steps.
Comparison of conventional and SCAP PLS system sample preparation
Advantages
Integrated workow from sample collection until the nal analysis result
One step sample manipulation, simplies sample logistics, avoids sample mix-up
Requires a minimum amount of sample for quantitative results (typically 5 µl)
Minimized infection and contamination risk due to completely sealed and disposable sample containers
No re-used syringe or sample loops. Disposable sample container, eliminates any carryover
Simplies method development, use of same generic method for different matrices
Fully automated process saves time and labour costs versus traditional sample preparation
Saves additional costs for SPE materials, solvents and other consumables
Aspirate sampleAttach tip to pipette
Attach and seal with cap
Electronic pipette
Tip
Insert sample cartridge into SCAP PLS system rack
Aspirate sample volume directly from subject
Tip Electronic
pipette
Seal with cap
Aspirate ISTD Anticoagulant Esterase inhibitor
Attach tip to pipette
Insert sample cartridge into SCAP PLS system rack
Smart Sample Collection
Left: Assembled SCAP PLS system sample cartridge Right: Numbered SCAP PLS system tip and cap
Sample Collection Process
The SCAP PLS system sample collection pro­cess is as easy as any other standard pipetting task. The SCAP PLS system tip is attached to an electronic pipette and the desired sample volume is aspirated. The lower tip end is sealed with a SCAP PLS system cap. The com­pletely sealed cartridges are then placed into the 54 position SCAP PLS system rack and are ready for immediate analysis. Alternatively the lled sample racks can be stored in a freezer for later analysis or may be shipped to an external location.
Sampling of supernatant (e.g. serum, plasma) or whole blood involves some additional pipetting steps. First an anticoagulant and if desired an esterase inhibitor are aspirated. Additionally the sample may be spiked with an appropriate internal standard. Finally the biouid is aspirated and the cartridge is sealed.
Loaded sample cartridges inserted in the SCAP PLS system rack
SCAP PLS system Standard Sample Collection
SCAP PLS system Biouid Sample Collection
In case of whole blood, samples are directly collected at the subject (e.g. nger, vein, heel, ear lobe) and are ready for immediate analysis without any further manual sample preparation steps.
Efcient LC-MS/MS Workow
Sample collection
Sample introduction into flow path
Cartridge transfer
Sonication
Online extraction
Separation
Cartridge disposal
Cartridges placed into SCAP PLS system rack
SCAP PLS system robotic gripper tool picks-up sample cartridge…
…and places it into the SCAP PLS system clamp module… …where it is pierced at both ends and ushed into the
SCAP PLS system Sample Preparation Process
The SCAP PLS system samples directly from disposable cartridges without prior solid-phase extraction or any other sample desalting/pre­processing step. After placing the cartridges into the SCAP PLS system sample rack the samples may be stored in a freezer, shipped to another location or are directly analyzed. The cartridges are automatically picked-up by the autosampler gripper tool and are inserted into the clamp module. Both ends of the car­tridge are pierced to eject the sample into the analytical ow path. The sample passes
rst through a pulsed ultrasonic module, where the blood cell components are disinte­grated and homogenized. This patented tech­nology avoids any clogging of the uidic path or the SPE pre-columns. Pre-columns may be used up to 1000 extractions before exchange. Subsequently the analyte reaches a restricted access material column (RAM) to remove selectively higher molecular components such as proteins. The trapped lower molecular com­pounds are eluted again and nally separated on the analytical LC column.
analytical ow path.
The SCAP PLS system is delivered with a ready to go control software, which triggers all necessary auxiliary hardware and valve switching operations. It can be interfaced to any lead- ing mass spectrometer and data acquisition system.
Minimized Sample Volume - Maximized Return
Protein
Analyte
Valve module SCAP PLS system ultrasonic module SCAP PLS system waste box
Clean Sample Introduction SCAP PLS system Valve module
In contrast to current automated HPLC sample introduction technology the SCAP PLS system works with an exchangeable sample loop. Each sample is prepared and processed in a disposable SCAP PLS system cartridge which is discarded after sample injection. No glass syringes, injection ports and time consuming wash procedures are involved. This ensures fast and virtually carry-over free operation. For convenient sample handling, the SCAP PLS system cartridges are delivered in 54 position tip boxes. To load the tips a conventional pipette is used. Prepared cartridges are com­pletely sealed and may be stored or directly analyzed.
The valve module consists of up to 3 valve drives and connects the clamp module containing the disposable sample cartridge to the analytical separation column. Depending on the application the drives are equipped with up to 3pcs. 6-port valves for regular HPLC or UPLC operation. Only one valve is used if the sample is injected without prior online sample preparation. The two valve congura­tion enables a regular pre-column solid phase extraction step.
Three valves are recommended if a dual stage cleaning procedure on a RAM and an additional SPE pre-column is performed. All necessary valve switching operations are controlled by pre-stored timetable events and may be optimized for the individual analytical method. Optionally the valve module can be equipped with high pressure valves for UPLC operation up to 20’000 psi.
RAM Column
RAM columns allow the direct extraction and enrichment of hydrophobic, low molecular analytes from untreated samples such as haemolysed blood, plasma, serum, milk, fer­mentation broth, supernatants of cell cultures as well as food homogenates. It allows fully automated preparation of the sample prior to the analytes being separated in the analytical column. This allows the untreated biouid to be directly injected without negative effects on either the column or the results achieved.
Cartridge preparation with electronic pipette
Restricted Access Material principle
Single Valve Option
V1
Waste
Waste
Sample Cartridge
to MS
HPLC Gradient Pump
Analytical Column
Sample Cartridge
V1
V2
Waste
Waste
Waste
SPE or RAM Column
HPLC Gradient Pump
HPLC Loading Pump
to MS
Analytical Column
Sample Cartridge
Waste
Waste
V1
V2
V3
Waste
Waste
RAM SPE Column
SPE Column
Ultra Sonic Module
Dilutor Pump
to MS
HPLC Loading Pump
HPLC Transfer Pump
Analytical Column
HPLC Gradient Pump
The single valve conguration shows how a sample is loaded directly onto an analyti­cal column without prior sample preparation steps. Thereby the SCAP PLS system cartridge acts as a disposable sample loop and is auto­matically exchanged after each injection. This setup is limited to a system pressure of 2’500 psi (170 bar)
Dual Valve Option The dual valve conguration is used if prior to the separation on an analytical column a classical SPE cleaning step is required (e.g. serum, plasma samples). For higher through­put the SPE column is regenerated during the analytical run. Each sample is introduced into a disposable SCAP PLS system cartridge which is automatically exchanged before each run. No syringes, dilutors, injection ports or time consuming wash procedures are involved. This ensures fast, contamination free operation, with virtually no carry-over. This setup can be operated either for regular HPLC or fast UPLC applications up to 20’000 psi.
Column Switching Options
Triple Valve Option
The triple valve conguration enables a dual stage cleaning step including additional sample sonication at the SCAP PLS system ultrasonic module. This setup is recommended for whole blood samples. First the sample passes the ultrasonic module where the blood cell components are disintegrated and homogenized. The sample reaches the RAM and SPE column where all unwanted matrix is discharged. Afterwards the trapped analytes are desorbed again to the analytical column with strong organic solvents. If the amount of organic modier used for backash is too high, an optional enrichment step may be included by adding water via a T-piece. While separation and detection take place, the pre­columns are re-equilibrated with the initial eluent composition to be ready for the next sample injection.
Max. 5.2e5 cps.
Hydroxy Desmethyl Bosentan, retention time 1.94 minutes
Desmethyl Bosentan, retention time
2.51 minutes
Bosentan, retention time
2.74 minutes
Hydroxy Bosentan, 537.59, retention time 2.08 minutes
Time, min
0.0
2.0e4
4.0e4
6.0e4
8.0e4
1.0e5
1.2e5
1.4e5
1.6e5
1.8e5
2.0e5
2.2e5
2.4e5
2.6e5
2.8e5
3.0e5
3.2e5
3.4e5
3.6e5
3.8e5
4.0e5
4.2e5
4.4e5
4.6e5
4.8e5
5.0e5
5.2e5
Intensity, cps
2.74
Time, min
2.74
Max. 1875.0 cps.
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
Intensity, cps
Hydroxy Desmethyl Bosentan, retention time 1.94 minutes
Desmethyl Bosentan, retention time
2.51 minutes
Bosentan, retention time
2.74 minutes
Hydroxy Bosentan, 537.59, retention time 2.08 minutes
Analyte Conc. / IS Conc.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.3
Analyte Area / IS Area
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
0.00
04080 120 160 200 240 280 320 360 400 440 480 500
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
Analyte Area / IS Area
Analyte Conc. / IS Conc.
Description
A new method for the detection of Bosentan and three metabolites is presented. Bosen­tan and its three metabolites were spiked in whole blood and analyzed by the SCAP PLS system. Mass spectrometric detection was performed on an MDS Sciex API 4000 operating in positive electrospray ionization mode.
Method
8 levels of calibration and 3 levels of quality control samples were spiked in whole blood with a linear range from 1.00 ng/mL to 4096 ng/mL for Bosentan and 2.00 to 512 ng/mL for the three metabolites.
For measurement of calibration and quality control samples, 5 µL of each level were aspi­rated into the sample cartridge together with 1 µL of internal standard solution (containing the ISTD’s for all 4 compounds).
Example Application
TM
Bosentan
The mass spectrometer was operated in posi­tive electrospray ionization mode with dwell times of 50 msec for each MRM transition and an HPLC ow rate of 300 µL/min on the analytical column. The whole blood samples were cleaned on a Merck RAM column, preconcentrated on a C18 trapping column and separated on a C6-Phenyl HPLC column.
Data
Validation runs containing 2 calibration curves and 6 replicates of the 3 levels of quality con­trol were analyzed. Typical calibration curves for Bosentan and one of the metabolites are presented beneath. The lower limit of quanti­cation for all 4 compounds and a picture for a typical chromatogram are shown (traces for ISTD’s are not shown).
Calibration curve for Bosentan (r = 0.9979)
Calibration curve for one Bosentan metabolite (r = 0.9977)
LLOQ for Bosentan and metabolites
Typical chromatogram
Basic SCAP PLS system consisting of: SCAP PLS system Clamp module SCAP PLS system Gripper Valve Drive module (excl. valve drives and valves) SCAP PLS system Ultrasonic module SCAP PLS system Waste Box SCAP PLS system Starter Kit
SCAP PLS system Accessories
SCAP PLS system Rack Set of 6pcs. SCAP PLS system Racks Electronic Pipette
SCAP PLS system Consumables
SCAP PLS system Tip Box, 54 Tips and Caps, numbered SCAP PLS system Tip Rell, 110 Tips and Caps not numbered, bulk
System Conguration
Electronic pipette
SCAP PLS system Ultrasonic module
SCAP PLS system gripper
Valve module
SCAP PLS system tips and caps
SCAP PLS system waste box
SCAP PLS system tip box numbered
SCAP PLS system rack
SCAP PLS system clamp module
PAL Conguration: The following CTC Analytics PAL components are required to operate a SCAP System (Available either through CTC Analytics or Prolab GmbH)
PAL HTS9 or PAL HTS9-xt PAL80 instrument 80cm X-axis PAL CycCompCD Cycle Composer Software PAL 1VlvDrv* PAL 1-Valve Drive Module PAL 2VlvDrv* PAL 2-Valve Drive Module PAL 3VlvDrv* PAL 3-Valve Drive Module C2V-1006D-CTC-K 6-port* VICI Cheminert Injection Valve 0.25mm bore, 5000psi C72VX-1696D-CTC-K* 6-port VICI Cheminert Injection Valve, 0.25mm bore, 15’000psi PAL StkCooler12MT Peltier cooled Stack for 6pcs. SCAP Racks PAL MTHolder Trayholder for 1pc. SCAP Rack
*Choose one depending on your application
SCAP system® is a registered trademark of Prolab, Patent Pending
Kägenstrasse 17 CH-4153 Reinach Switzerland
Tel: +41 61 712 01 28 Fax: +41 61 712 01 48 Web: www.prolab.ch e-mail: info@prolab.ch
Prolab GmbH acknowledges all tradenames and trademarks used as the property of their respective owners.
Loading...