5
Loudspeakers need power signals to produce acoustic energy when reproducing music. The range of electrical currents
passing down the cable from the amplifier to the loudspeaker is very wide. In decibel terms this is called the dynamic
range. Modern loudspeakers are capable of resolving a dynamic range of at least 80 dB with a suitable power amplifier.
An 80 dB dynamic range corresponds to voltages of between 50 Volt and 0.005 Volt at the loudspeaker terminals or
equivalent currents of between 0.0006 and 6 Amp. This is a truly wide range of electrical signals to pass down one cable
without some interactions causing a loss of resolution in the very small signals.
When electricity passes down a wire or cable, what goes in at one end is unfortunately different from what comes out at
the other. The degree of loss or modification of a signal depends on the physical characteristics of the cable and the nature
of the signal. Heavy electrical currents flowing down thin conductors cause heating effects. Very high frequency signals
passing along conductors or cables of certain lengths cause electromagnetic radiation effects (aerials). Electrical cables
are selected for minimum loss and maximum information resolution considering the type of electrical signals they are
designed to carry.
A good solution to the problem is to ’Bi-Wire’ the loudspeakers to the amplifier. This means providing two separate sets
of cables from the power amplifier to each loudspeaker and dividing the electrical signals into high current, ’slow’ signals
and light current, ’fast’ signals. Of course, the loudspeaker must be fitted with two pairs of terminals to take the two sets
of cables; your Tannoy loudspeakers are of course equipped for just this type of connection.
Please note in bi-wire mode that the link leads, which are supplied in the accessory pack, should NOT be fitted.
¥ Be sure that the amplifier is switched OFF and then prepare the two sets of cabling for each ’side’ of the system
separately. Measure and cut four lengths of cable, two per speaker.
Label two of the cable lengths Left LF and Left HF (low frequency and high frequency) then repeat this process for
the right pair.
¥ If your amplifier is not equipped with separate output terminals for bass and treble information then, at the amplifier
end of the cables, twist the Left LF+ (positive) and the Left HF+ (positive) together. Connect these to the amplifier
Left channel positive terminal marked + (plus) or coloured red.
Twist the Left LF- (negative) and the HF- (negative) cables together and connect them to the amplifier Left channel
negative terminal marked - (minus) or coloured black.
At the loudspeaker end connect the cables labelled Left LF+ and Left LF- to the left hand loudspeaker LF terminals,
ensuring that you note the polarity markings on the cable sheathing.
Then proceed to connect the Left HF+ and Left HF- to the HF terminals on the same loudspeaker.
¥ Repeat this process to connect the right hand loudspeaker to the amplifier right channel output, once again ensuring
that polarity is correct throughout.
¥ Switch the amplifier on with the volume control set at its lowest setting. Select a favourite source and slowly turn
up the volume to a low level. Check that bass and treble information is being reproduced from both speakers - if
not, switch off the amplifier and recheck the connections.
Connection in Bi-Wire Mode
(See fig. 3)
Bi-Wiring Theory