Powerex CM1400DUC-24S Data Sheet

CM1400DUC-24S
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272
A
(8 PLACES)
Outline Drawing and Circuit Diagram
Dimensions Inches Millimeters
A 5.91 150.0
B 5.10 129.5
C 1.67±0.01 42.5±0.25
D 5.41±0.01 137.5±0.25
E 6.54 166.0
F 2.91±0.01 74.0±0.25
G 1.65 42.0
H 0.55 14.0
J 1.50±0.01 38.0±0.25
K 0.16 4.0
L 1.36 +0.04/-0.02 34.6 +1.0/-0.5
Housing Type (J.S.T. MFG. CO. LTD)
BB = VHR-2N CC = VHR-5N
P
U
BB
CC
G2
E2 (Es2)
C2
G2 E1
E2 G1
V
H H HHH H
C2E1
Tr 2
Di2
E2
D
G
H H
C2E1
E2
G G
LABEL
C1 (Cs1)C2 (Cs2)
E1 (Es1)
Tr 1
Di1
C1
G1
N
S
W
C1
C1
Dimensions Inches Millimeters
M 0.075±0.008 1.9±0.2
N 0.47 12.0
P 0.26 6.5
R M6 Metric M6
S 0.08 2.0
T 0.99 25.1
U 0.62 15.7
V 0.71 18.0
W 0.75 19.0
X 0.43 11.0
Y 0.83 21.0
Z 0.41 10.5
AA 0.22 5.5
J
X
Y
U
R (9 PLACES)
F
B
C
J
AA
T
E
F
M
Z
Tolerance Otherwise Specified (mm)
Division of Dimension Tolerance
0.5 to 3 ±0.2 over 3 to 6 ±0.3 over 6 to 30 ±0.5 over 30 to 120 ±0.8 over 120 to 400 ±1. 2
L
L
Mega Power Dual IGBT
1400 Amperes/1200 Volts
K
Description:
Powerex Mega Power Dual (MPD) Modules are designed for use in switching applications. Each module consists of two IGBT Transistors having a reverse­connected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.
Features:
£ Low Drive Power £ Low V £
£ Isolated Baseplate for Easy
£ RoHS Compliant
Applications:
£ High Power DC Power Supply £ Large DC Motor Drives £ Utility Interface Inverters
Ordering Information:
Example: Select the complete module number you desire from the table - i.e. CM1400DUC-24S is a 1200V (V Dual IGBTMOD Power Module.
Current Rating V Type Amperes Volts (x 50)
CM 1400 24
CE(sat)
Discrete Super-Fast Recovery Free-Wheel Diode
Heatsinking
), 1400 Ampere
CES
CES
109/12 Rev. 0
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272
CM1400DUC-24S Mega Power Dual IGBT
1400 Amperes/1200 Volts
Absolute Maximum Ratings, Tj = 25°C unless otherwise specied
Characteristics Symbol Rating Units
Collector-Emitter Voltage (VGE = 0V) V
Gate-Emitter Voltage (VCE = 0V) V
Collector Current (DC, TC = 124°C)
*2,*4
IC 1400 Amperes
Collector Current (Pulse, Repetitive)*3 I
Total Power Dissipation (TC = 25°C)
*2,*4
P
Emitter Current*2 I
Emitter Current (Pulse, Repetitive)*3 I
Isolation Voltage (Terminals to Baseplate, RMS, f = 60Hz, AC 1 minute) V
Maximum Junction Temperature T
Maximum Case Temperature*4 T
Operating Junction Temperature T
Storage Temperature T
*1 Represent ratings and characteristics of the anti-parallel, emitter-to-collector clamp diode. *2 Junction temperature (Tj) should not increase beyond maximum junction temperature (T *3 Pulse width and repetition rate should be such that device junction temperature (Tj) does not exceed T *4 Case temperature (TC) and heatsink temperature (Ts) is measured on the surface (mounting side) of the baseplate and the heatsink side just under the chips. Refer to the figure to the right for chip location. The heatsink thermal resistance should be measured just under the chips.
j(max)
) rating.
j(max)
rating.
0
116.0
96.4
74.5
54.9
33.0
13.4
0
1200 Volts
CES
±20 Volts
GES
2800 Amperes
CRM
9370 Watts
tot
*1
1400 Amperes
E
*1
2800 Amperes
ERM
4000 Volts
isol
175 °C
j(max)
125 °C
C (max)
-40 to +150 °C
j(op)
-40 to +125 °C
stg
38.2
51.0
Di2
Tr2
Di2
Tr2
Di2
Tr2
Di2
Tr2
Di2
Tr2
Di2
Tr2
98.9
111.8
Di1
Tr1
Di1
Tr1
Di1
Tr1
Di1
Tr1
Di1
Tr1
Di1
Tr1
Tr1, Tr2: IGBT, Di1, Di2: FWDi Each mark points to the center position of each chip.
LABEL SIDE
2 09/12 Rev. 0
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272
CM1400DUC-24S Mega Power Dual IGBT
1400 Amperes/1200 Volts
Electrical Characteristics, Tj = 25°C unless otherwise specied
Characteristics Symbol Test Conditions Min. Typ. Max. Units
Collector-Emitter Cutoff Current I
Gate-Emitter Leakage Current I
Gate-Emitter Threshold Voltage V
Collector-Emitter Saturation Voltage V
(Terminal) IC = 1400A, VGE = 15V, Tj = 125°C*6 — 1.75 — Volts
IC = 1400A, VGE = 15V, Tj = 150°C*6 — 1.80 — Volts
Collector-Emitter Saturation Voltage V
(Chip) IC = 1400A, VGE = 15V, Tj = 125°C*6 — 1.75 — Volts
IC = 1400A, VGE = 15V, Tj = 150°C*6 — 1.80 — Volts
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Gate Charge QG VCC = 600V, IC = 1400A, VGE = 15V 3500 nC
Turn-on Delay Time t
Rise Time tr VCC = 600V, IC = 1400A, VGE = ±15V, 250 ns
Turn-off Delay Time t
Fall Time tf — — 350 ns
Emitter-Collector Voltage V
(Terminal) IE = 1400A, VGE = 0V, Tj = 125°C*6 — 1.65 — Volts
IE = 1400A, VGE = 0V, Tj = 150°C*6 — 1.65 — Volts
Emitter-Collector Voltage V
(Chip) IE = 1400A, VGE = 0V, Tj = 125°C*6 — 1.65 — Volts
IE = 1400A, VGE = 0V, Tj = 150°C*6 — 1.65 — Volts
Reverse Recovery Time t
Reverse Recovery Charge Q
Turn-on Switching Energy per Pulse Eon VCC = 600V, IC = IE = 1400A, 82.2 mJ
Turn-off Switching Energy per Pulse E
Reverse Recovery Energy per Pulse E
Internal Lead Resistance R
Per Switch,TC = 25°C
Internal Gate Resistance rg Per Switch — 1.7 — Ω
*1 Represent ratings and characteristics of the anti-parallel, emitter-to-collector clamp diode. *4 Case temperature (TC) and heatsink temperature (Ts) is measured on the surface (mounting side) of the baseplate and the heatsink side just under the chips. Refer to the figure to the right for chip location. The heatsink thermal resistance should be measured just under the chips. *6 Pulse width and repetition rate should be such as to cause negligible temperature rise.
VCE = V
CES
VGE = V
GES
IC = 140mA, VCE = 10V 5.4 6.0 6.6 Volts
GE(th)
IC = 1400A, VGE = 15V, Tj = 25°C*6 — 1.55 1.90 Volts
CE(sat)
IC = 1400A, VGE = 15V, Tj = 25°C*6 — 1.55 1.90 Volts
CE(sat)
— — 150 nF
ies
VCE = 10V, VGE = 0V 30 nF
oes
— — 2.5 nF
res
— — 900 ns
d(on)
RG = 0Ω, Inductive Load 950 ns
d(off)
*1
IE = 1400A, VGE = 0V, Tj = 25°C*6 1.65 2.10 Volts
EC
*1
IE = 1400A, VGE = 0V, Tj = 25°C*6 1.65 2.10 Volts
EC
*1
VCC = 600V, IE = 1400A, VGE = ±15V — — 450 ns
rr
*1
RG = 0Ω, Inductive Load 90 µC
rr
VGE = ±15V, RG = 0Ω, Tj = 150°C, 260 mJ
off
*1
Inductive Load — 122 — mJ
rr
CC' + EE'
Main Terminals-Chip, — 0.286 — mΩ
, VGE = 0V 1 mA
CES
, VCE = 0V 3.0 µA
GES
*4
0
38.2
116.0
96.4
54.9
33.0
13.4
51.0
Di2
Tr2
Di2
Tr2
74.5
0
Di2
Tr2
Di2
Tr2
Di2
Tr2
Di2
Tr2
98.9
111.8
Di1
Tr1
Di1
Tr1
Di1
Tr1
Di1
Tr1
Di1
Tr1
Di1
Tr1
Tr1, Tr2: IGBT, Di1, Di2: FWDi Each mark points to the center position of each chip.
LABEL SIDE
309/12 Rev. 0
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272
CM1400DUC-24S Mega Power Dual IGBT
1400 Amperes/1200 Volts
Electrical Characteristics, Tj = 25°C unless otherwise specied (continued)
Thermal Resistance Characteristics
Thermal Resistance, Junction to Case*4 R
Thermal Resistance, Junction to Case*4 R
Contact Thermal Resistance, R
Case to Heatsink (Per 1 Module)
Q Per Inverter IGBT 16 K/kW
th(j-c)
D Per Inverter Diode 26 K/kW
th(j-c)
Thermal Grease Applied 6 — K/kW
th(c-f)
*7
Mechanical Characteristics
Mounting Torque Mt Main Terminals, M6 Screw 22 27 31 in-lb
Ms Mounting to Heatsink, M6 Screw 22 27 31 in-lb
Creepage Distance ds Terminal to Terminal 24 mm
Terminal to Baseplate 33 — — mm
Clearance da Terminal to Terminal 14 mm
Terminal to Baseplate 33 — — mm
Weight m 1450 — Grams
Flatness of Baseplate ec On Centerline X, Y*5 -50 — +100 µm
Recommended Operating Conditons, Ta = 25°C
(DC) Supply Voltage VCC Applied Across P-N 600 850 Volts
Gate-Emitter Drive Voltage V
External Gate Resistance RG Per Switch 0 2.2
*4 Case temperature (TC) and heatsink temperature (Ts) is measured on the surface (mounting side) of the baseplate and the heatsink side just under the chips. Refer to the figure to the right for chip location. The heatsink thermal resistance should be measured just under the chips. *5 Baseplate (mounting side) flatness measurement points (X, Y) are shown in the figure below.
39 mm 39 mm
Y1
– CONCAVE
+ CONVEX
BOTTOM
LABEL SIDE
BOTTOM
*7 Typical value is measured by using thermally conductive grease of λ = 0.9 [W/(m K)].
Y2
X
BOTTOM
– CONCAVE
+ CONVEX
Applied Across G-Es 13.5 15.0 16.5 Volts
GE(on)
0
38.2
51.0
116.0
96.4
74.5
54.9
33.0
13.4
0
Tr1, Tr2: IGBT, Di1, Di2: FWDi Each mark points to the center position of each chip.
Di2
Tr2
Di2
Tr2
Di2
Tr2
Di2
Tr2
Di2
Tr2
Di2
Tr2
98.9
Di1
Di1
Di1
Di1
Di1
Di1
111.8
Tr1
Tr1
Tr1
Tr1
Tr1
Tr1
LABEL SIDE
4 09/12 Rev. 0
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272
CM1400DUC-24S Mega Power Dual IGBT
1400 Amperes/1200 Volts
OUTPUT CHARACTERISTICS
(CHIP - TYPICAL)
3000
2500
VGE = 20V
15
13.5
2000
, (AMPERES)
C
1500
100
500
COLLECTOR CURRENT, I
0
0 2 4 6 8 10
COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
4
10
3
10
, (AMPERES)
E
2
10
EMITTER CURRENT, I
1
10
0 1.00.5 2.51.5 2.0 3.0
EMITTER-COLLECTOR VOLTAGE, V
4
10
3
10
2
10
SWITCHING TIME, (ns)
1
10
2
10
(CHIP - TYPICAL)
VGE = 15V
HALF-BRIDGE
SWITCHING CHARACTERISTICS
COLLECTOR CURRENT, I
t
d(off)
(TYPICAL)
3
10
t
d(on)
t
t
r
f
C
Tj = 25°C
12
11
10
9
Tj = 25°C
= 125°C
T
j
= 150°C
T
j
, (VOLTS)
EC
VCC = 600V V
= ±15V
GE
R
= 0Ω
G
T
= 150°C
j
Inductive Load
, (AMPERES)
4
10
SATURATION VOLTAGE CHARACTERISTICS
COLLECTOR-EMITTER
(CHIP - TYPICAL)
3.5
VGE = 15V
, (VOLTS)
CE(sat)
3.0
2.5
2.0
Tj = 25°C
= 125°C
T
j
= 150°C
T
j
1.5
1.0
COLLECTOR-EMITTER
0.5
SATURATION VOLTAGE, V
0
0
COLLECTOR CURRENT, IC, (AMPERES)
CAPACITANCE VS. V
3
10
, (nF)
2
10
res
, C
oes
, C
ies
1
10
0
10
CAPACITANCE, C
SWITCHING TIME, (ns)
VGE = 0V T
= 25°C
j
-1
10
-1
10
COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS)
3
10
VCC = 600V V
GE
2
10
-1
10
EXTERNAL GATE RESISTANCE, RG, (Ω)
(TYPICAL)
0
10
SWITCHING TIME VS.
GATE RESISTANCE
(TYPICAL)
= ±15V
10
0
CE
C
ies
C
oes
C
res
1
10
t
r
t
d(on)
t
d(off)
t
f
IC = 1400A T
= 125°C
j
Inductive Load
SATURATION VOLTAGE CHARACTERISTICS
10
8
, (VOLTS)
CE(sat)
6
COLLECTOR-EMITTER
(CHIP - TYPICAL)
Tj = 25°C
IC = 2800A
IC = 1400A
4
COLLECTOR-EMITTER
IC = 560A
2
SATURATION VOLTAGE, V
3000250020001500500 1000
2
10
1
10
0
6 8 10 1412 16 18 20
GATE-EMITTER VOLTAGE, VGE, (VOLTS)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
4
10
3
10
2
10
SWITCHING TIME, (ns)
1
10
2
10
COLLECTOR CURRENT, IC, (AMPERES)
3
10
VCC = 600V V
= ±15V
GE
SWITCHING TIME, (ns)
2
10
-1
10
EXTERNAL GATE RESISTANCE, R
(TYPICAL)
t
d(off)
3
10
SWITCHING TIME VS.
GATE RESISTANCE
(TYPICAL)
0
10
t
d(on)
t
r
t
f
VCC = 600V V
= ±15V
GE
R
= 0Ω
G
T
= 125°C
j
Inductive Load
t
r
t
d(on)
t
d(off)
t
f
IC = 1400A T
= 150°C
j
Inductive Load
, (Ω)
G
4
10
1
10
509/12 Rev. 0
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272
CM1400DUC-24S Mega Power Dual IGBT
1400 Amperes/1200 Volts
REVERSE RECOVERY CHARACTERISTICS
3
10
(ns)
rr
(A), t
rr
REVERSE RECOVERY, I
2
10
2
10
CHARACTERISTICS (TYPICAL)
3
10
, (mJ)
rr
, (mJ)
off
, E
2
10
on
1
10
SWITCHING ENERGY, E
REVERSE RECIVERY ENERGY, E
0
10
2
10
COLLECTOR CURRENT, IC, (AMPERES)
3
10
(TYPICAL)
3
EMITTER CURRENT, IE, (AMPERES)
10
HALF-BRIDGE SWITCHING
3
10
EMITTER CURRENT, IE, (AMPERES)
VCC = 600V V
= ±15V
GE
R
= 0Ω
G
T
= 125°C
j
Inductive Load
I
rr
t
rr
V
= 600V
CC
V
= ±15V
GE
R
= 0Ω
G
T
= 125°C
j
E
on
E
off
E
rr
4
10
4
10
REVERSE RECOVERY CHARACTERISTICS
3
10
(ns)
rr
(A), t
rr
REVERSE RECOVERY, I
2
10
2
10
3
10
, (mJ)
rr
, (mJ)
off
, E
2
10
on
1
10
SWITCHING ENERGY, E
REVERSE RECIVERY ENERGY, E
1
10
2
10
COLLECTOR CURRENT, IC, (AMPERES)
IMPEDANCE CHARACTERISTICS
10-310
0
th(j-c')
10
(TYPICAL)
3
EMITTER CURRENT, IE, (AMPERES)
HALF-BRIDGE SWITCHING
CHARACTERISTICS (TYPICAL)
EMITTER CURRENT, IE, (AMPERES)
10
3
10
TRANSIENT THERMAL
(MAXIMUM)
-2
-1
10
VCC = 600V V
= ±15V
GE
R
= 0Ω
G
T
= 150°C
j
Inductive Load
I
rr
t
rr
VCC = 600V V
= ±15V
GE
R
= 0Ω
G
T
= 150°C
j
E
on
E
off
E
rr
0
10
4
10
4
10
1
10
GATE CHARGE VS. V
20
IC = 600A V
= 1400V
CC
T
= 25°C
j
15
, (VOLTS)
GE
10
5
GATE-EMITTER VOLTAGE, V
0
1000 50002000
0
3
10
, (mJ)
rr
, (mJ)
off
, E
on
2
10
SWITCHING ENERGY, E
REVERSE RECIVERY ENERGY, E
1
10
10
GATE CHARGE, QG, (nC)
HALF-BRIDGE SWITCHING
CHARACTERISTICS (TYPICAL)
= 600V
V
CC
V
= ±15V
GE
I
= 1400A
C/IE
T
= 125°C
j
-1
GATE RESISTANCE, RG, ()
3000 4000
0
10
GE
E
on
E
off
E
rr
1
10
, (mJ)
rr
, (mJ)
off
, E
on
2
10
VCC = 600V V
= ±15V
SWITCHING ENERGY, E
GE
I
REVERSE RECIVERY ENERGY, E
= 1400A
C/IE
T
= 150°C
j
1
10
-1
10
GATE RESISTANCE, RG, ()
-1
10
Single Pulse T
= 25°C
C
Per Unit Base = R
=
th(j-c)
• (NORMALIZED VALUE)
16 K/kW
-2
10
th
(IGBT)
= R
th
R
E
on
E
off
E
rr
0
10
10
Z
-3
1
10
NORMALIZED TRANSIENT THERMAL IMPEDANCE, Z
=
th(j-c)
26 K/kW (FWDi)
-5
10
TIME, (s)
-4
10
-1
10
-2
10
-3
10
-3
10
6 09/12 Rev. 0
Loading...