Launched in 1985, Interlink Electronics is the world's leading innovator of cost effective
polymeric force sensors. Our R&D team has developed a spectrum of technologies for
“touch” and user interfaces solutions, and machine process controls. Today, with over 20
years of industry-leading experience, Interlink Electronics continues to innovate by
designing and manufacturing sensors for a full range of applications such as industrial,
military, consumer electronics, mobile, medical, and pointing devices.
One of the first uses of our patented thin film Force Sensing Resistor® (FSR) technology
was in electronic drums and other musical instruments. Mobile phones, portable media
players, navigation devices, handheld gaming, digital cameras, and other portable
electronics are just a handful of devices that use our FSR technology. Customers that
have used our sensor solutions include: Motorola, Samsung, Sony, LG, Varian, and
Microsoft.
Serving a global customer base from offices in the U.S., and Japan, Interlink Electronics
continues to expand with a proven track record of breakthrough technology and customer
service. With a rich and diverse product history, we have established ourselves as a clear
business and technology leader in a wide range of markets and are currently reshaping
how organizations connect with their customers.
FSR® Integration Guide
www.interlinkelectronics.com
1
2.0 Theory of Operation
The most basic FSR consists of two membranes separated by a thin air gap. The air gap
is maintained by a spacer around the edges and by the rigidity of the two membranes.
One of the membranes has two sets of interdigitated fingers that are electrically distinct,
with each set connecting to one trace on a tail. The other membrane is coated with FSR
ink. When pressed, the FSR ink shorts the two traces together with a resistance that
depends on applied force.
FSR® Integration Guide
Figure 1: Basic FSR Construction
2.1 Basic Construction
Around the perimeter of the sensor is a spacer adhesive that serves both to separate the
two substrates and hold the sensor together. This spacer typically has a thickness
between 0.03mm and 0.15mm. This spacer may be screen printed of a pressure
sensitive adhesive, may be cut from a film pressure sensitive adhesive, or may be built
up using any combination of materials that can both separate and adhere to the two
substrates.
Both membranes are typically formed on flexible polymer sheets such as PET, polyimide,
or any othe
a slightly less flexible material, such as polycarbonate, thin metal or very thin circuit board
material, as long as it is sufficiently deformable to allow a reasonable force to push the
top substrate against the bottom substrate to activate the sensor.
The inside surface of one substrate is coated with FSR®
shows FSR ink under a microscope. When the two substrates are pressed together, the
microscopic protrusions on the FSR ink surface short across the interdigitated fingers of
the facing surface. At low forces only the tallest protrusions make contact. At higher
forces more and more points make contact
conducting fingers is inversely proportional to the applied force.
r film material. In custom force sensors, the top substrate could be made with
carbon-based ink. Figure 2
. The result is that the resistance between the
www.interlinkelectronics.com
2
FSR® Integration Guide
Figure 2: FSR Ink Micrograph
The conductive traces are typically screen printed from s
However, these traces may also be formed out of gold plated copper as on flexible or
standard circuit boards (FPC or PCB).
Force may be applied to either substrate. One of the exterior surfa
mounting adhesive layer to allow mounting to a clean, smooth, rigid surface.
ilver polymer thick film ink.
ces typically includes a
www.interlinkelectronics.com
3
FSR® Integration Guide
2.2 Force Curve
A typical resistance vs. force curve is shown in Figure 3. For interpretational
convenience, the data is plotted on logarithmic scales. This particular force-resistance
curve was measured from a model 402 sensor (12.7 mm diameter circular active area). A
silicone rubber actuator with a 4 mm spherical radius tip and 60 Shore A durometer was
used to press on the FSR).
The “actuation force” or turn-on threshold is typically defined as the force required to
bring the
the substrate and overlay thickness and flexibility, size and shape of the actuator, and
spacer-adhesive thickness (the size of the internal air gap between membranes).
Immediately after turn-on, the resistance decrease
intermediate forces, the resistance follows an inverse power law. At the high forces the response
eventually saturates to a point where increases in force yield little or no decrease in resistance.
Saturation can be pushed higher by spreading the applied force over a larger actuator.
sensor from open circuit to below 100k resistance. This force is influenced by
Figure 3: Resistance vs. Force
s very rapidly. At slightly higher and then
www.interlinkelectronics.com
4
FSR® Integration Guide
3.0FSR® Force Sensing Resistor® Products
Interlink designs and manufactures a broad array of sensor types. The basic FSR
described in Figure 1 may be made in almost any shape or size and can even made to
detect position in addition to force. All of these products may be combined into sensor
arrays.
Single Zone FSR 400 Series
Single zone sensors can be made in a variety of shapes and sizes. Interlink provides
both custom sensors and a standard catalog of round, square, and strip shaped single
zone parts. A Hardware Development Kit is available.
4-Zone Array
4-Zone sensors measure force applied in each of four cardinal directions. These are
typically placed under buttons in keyboards or remote controls in order to create a
pointing mouse. By measuring force on each zone, smooth 360° control can be
accomplished. Interlink provides both custom sensors and a standard catalog of round
and square shaped 4-zone arrays. A Hardware Development Kit is available.
Other Custom Arrays
In addition to 4-zone arrays, any other combination of force sensors can be arrayed on a
common substrate of any shape. One example use is under the keys of a cell phone to
measure force and more naturally fire haptic feedback. Another use is in the medical
field, under mattresses or mats in order to measure patient presence, position, or motion.
www.interlinkelectronics.com
5
Custom Pressure Sensitive Snap Dome
In applications requiring tactile feedback, such as buttons in consumer electronics, the
usual method is to use a metallic snap dome. This basic switch function can be enhanced
by adding force measurement with an FSR. The dome and FSR are built together into
one sensor. Force can be measured both pre- and post-snap. This enables analog
control functions such as zoom, scroll, volume, etc. In addition, these pressure sensitive
domes can be put into arrays. In the example pictured below, the FSR snap dome array
replaces the 4-way thumb navigation area of a smart phone to add 4-way directional
control, circular scrolling, and pressure sensing functionality.
FSR® Integration Guide
Force Sensing Linear Pots
The manufacturing technology of FSRs also lends itself to the creation of various position
sensors. Interlink has expertise in building, designing, and manufacturing several types,
including: linear strips, arcs, full rings, and resistive touchpads. All of these position
sensors may also be used to measure applied force.
Linear potentiometer strips are three wire device
pressure of touch. These are useful in man and machine interfaces, such as slider
controls. They are also useful in machine control, for example to measure the position of
a plunger in a vial or tank or some position in a motion control system. These sensors
can be custom made between 4mm and 450mm wide and as long as 550mm. More
information regarding linear pots can be found in Force Sensing Linear Potentiometer
(FSLP) Integration Guide. A Hardware Development Kit is also available for the FSLP.
s that can measure position and
FSLP Standard
FSLP 10cm
www.interlinkelectronics.com
6
FSR® Integration Guide
3.1 Standard
Standard FSRs deliver the most cost competitive solu
applications. Cost savings are primarily achieved through reductions in tooling and
engineering labor costs. The Interlink catalog of standard single zone FSRs is comprised
of round, square, and strip sized sensors.
PART TYPE DESCRIPTION PART IMAGE
tions for a wide variety of
Model 400
Model 400
Short Tail
Model 402
Model 402
Short Tail
Model 406
Model 408
FSR, 0.2" [5.08mm] Circle
FSR, 0.2" [5.08mm] Circle
FSR, 0.5" [12.7mm] Circle
FSR, 0.5" [12.7mm] Circle
FSR,1.5" [38.1mm] Square
FSR, 24" [609.6mm] Strip
Figure 4: Different types of standard FSR’s
www.interlinkelectronics.com
7
FSR® Integration Guide
Standard round FSRs are offered in both Model 400 (Figures 5 & 6) and Model 402
res 7 & 8) standard models. They are common and versatile products that can be
(Figu
incorporated into a variety of devices.
Model 400 Round Measurements: millimeters
Exploded View
Figure 5: Model 400 Round FSR
www.interlinkelectronics.com
8
FSR® Integration Guide
Model 400 Round Short Tail Measurements: millimeters
Exploded View
Figure 6: Model 400 Short Tail Round FSR
www.interlinkelectronics.com
9
FSR® Integration Guide
Model 402 Round Measurements: millimeters
Exploded View
Figure 7: Model 402 Short Tail Round FSR
www.interlinkelectronics.com
10
FSR® Integration Guide
Model 402 Round Short Tail Measurements: millimeters
Exploded View
Figure 8: Model 402 Short Tail Round FSR
www.interlinkelectronics.com
11
FSR® Integration Guide
The standard Model 406 (Figure 9) square FSR, as compared to the round FSR, offers
r functionality within a larger electrically active area.
simila
Model 406 Square Measurements: millimeters
Exploded View
Figure 9: Model 406 Square FSR
www.interlinkelectronics.com
12
FSR® Integration Guide
The standard Model 408 (Figure 10) strip FSR is u
devices.
seful for force detection in large
Model 408 Strip Measurements: millimeters
Exploded View
Figure 10: Model 408 Strip FSR
www.interlinkelectronics.com
13
3.2 Custom Sensors
Custom sensors offer flexibility in meeting the nee
requirements. All strip, ring, pad, pot, array, and 4 zone sensors are applicable.
FSR® Integration Guide
ds of unique customer design
Below are some of the typical customization op
Interlink representative for additional details, custom sensor examples, and to
learn more about the Custom Design Process.
Shapes and Sizes
Interlink custom sensors come in a variety of shape
Graphic Overlays and Actuators
Incorporation of a protective graphic overlay is a design option to be considered for
enha
nced aesthetic and durability requirements. A decorative graphic can be screen
printed on the inner surface of the overlay.
Material Options
While Interlink is capable of incorporating a broad range of materials, our sensors
rally rely on the following core materials – PET, FPC, FR-4, various textured
gene
polyester films and adhesives.
Connection Methods
A wide range of connection options are available from flex tail and board to board
nectors to direct solder & over mold and even conductive adhesives.
con
tions available. Contact your
s, sizes, and zone quantities.
www.interlinkelectronics.com
14
FSR® Integration Guide
4.0 Performance Specifications
Below are typical parameters. The FSR is a custom device and can be made for use outside
these characteristics. Consult us for your specific requirements.
General
PARAMETER VALUE NOTES
Force Sensitivity Range
Break Force (Activation Force)
Part-to-Part Force Repeatability
Single Part Force Repeatability
Hysteresis
Long Term Drift
Force Resolution
Stand-Off Resistance
Switch Travel
Device Rise Time
Maximum Current
~0.2 to 20N Dependent on mechanics
~0.2N min
± 6% of established nominal
± 2% of initial reading
+ 10% Average (R
< 5% per log
Continuous
> 10M Unloaded, unbent
0.05mm
<3 microseconds
1 mA/cm
(time) Tested to 35 days, 1kg load
10
2
of applied force
Dependent on mechanics and
FSR build
With a repeatable actuation
system, si
With a repeatable actuation
stem
sy
F+
Depends on measurement
electroni
Typical; depends on design
Measured with drop of steel
ball
ngle lot.
- RF-)/RF+
cs
EMI / ESD
Specifications are derived from measurements taken at 1000 grams, and are given as (one standard
deviation / mean), unless otherwise noted.
Generates no EMI; not ESD
sensitive
www.interlinkelectronics.com
15
FSR® Integration Guide
Environmental Performance Specifications
PARAMETER TYPICAL R CHANGE NOTES
Hot Operation
Cold Operation
Hot Humid Operation
Hot or Cold Storage
Hot Humid Storage Temperature
Thermal Shock
Note: Specifications are derived from measurements taken at 1000 grams.
Note: Specification derived from measurements taken at 1000 grams.
-10% 10 million actuations, 1kg, 4Hz
-5% 2.5 kg standing load, 24 hrs
The following chemicals do not affect the operation when applied
to the outside
solution, household cleaners. No others tested. Application is a
single drop on the exterior of the sensor that is allowed to soak
until evaporation and does not enter the sensor.
No effect
www.interlinkelectronics.com
of the sensor: cola, coffee, isopropyl alcohol, soap
16
FSR® Integration Guide
Linear Pots
PARAMETER VALUE NOTES
Dependent on actuator
Positional Resolution
Positional Accuracy
0.075 to 0.5 mm (0.003” to 0.02”)
Better than ± 2% of full length
size and el
exact design
5.0 Environmental and R eliability Data
Contact your Interlink Representative for full details.
ectronics and
www.interlinkelectronics.com
17
6.0 Measurement Techniques
6.1 Circuit
Voltage Divider
Figure 9: FSR Voltage Divider
FSR® Integration Guide
FSR Voltage Divider
For a simple force-to-voltage conversion, the FSR device is tied to a measuring resistor
in a voltage divider (see figure below) and the output is described by the following
equation:
VR
V
OUT
In the shown configuration, the output voltage increa
are swapped, the output swing will decrease with increasing force.
R
M
The measuring resistor, R
to limit current. Depending on the impedance requirements of the measuring circuit, the
voltage divider could be followed by an op-amp
A family of Force vs. V
voltage divider configuration with various R
examples. Please note that the graph values are for reference only and will vary
between different sensors and applications.
, is chosen to maximize the desired force sensitivity range and
M
curves is shown on the graph above for a standard FSR in a
OUT
M
RR
resistors. A (V+) of +5V was used for these
M
FSRM
ses with increasing force. If R
FSR
and
www.interlinkelectronics.com
18
FSR® Integration Guide
Multi-Channel FSR-to-Digital Interface
Figure 12: Multi-Channel FSR-to-Digital Interface
Sampling Cycle (any FSR channel):
The microcontroller switches to a specific FSR channel, toggling it high, while all other
FSR channels are toggled low. The RESET channel is toggled high, a counter starts and
the capacitor C1 charges, with its charging rate controlled by the resistance of the FSR (t
~ RC). When the capacitor reaches the high digital threshold of the INPUT channel, the
counter shuts off, the RESET is toggled low, and the capacitor discharges.
The number of “counts” it takes from the toggling of the RESET high to the toggling of the
INPUT hig
are used to set a minimum and maximum “counts” and therefore the range of the
“counts.” They are also used periodically to re-calibrate the reference. A sampling cycle
for RMIN is run; the number of “counts” is stored and used as a new zero. Similarly, a
sampling cycle for RMAX is run and the value is stored as the maximum range (after
subtracting the RMIN value). Successive FSR samplings are normalized to the new zero.
The full range is “zoned” by dividing the normalized maximum “counts” by the number of
desired zones. This will delineate the window size or width of each zone.
Continual sampling is done to record changes in FSR resistance due to changes in force.
Each FS
h is proportional to the resistance of the FSR. The resistors RMIN and RMAX
R is selected sequentially.
www.interlinkelectronics.com
19
FSR® Integration Guide
FSR Variable Force Threshold Switch
Figure 13: FSR Variable Force Threshold Switch
This simple circuit is ideal for applications that req
force, such as touch-sensitive membrane, cut-off, and limit switches. For a variation of
this circuit that is designed to control relay switching, please see the next page.
The FSR device is arranged in a voltage divider with
comparator. The output of U1 is either high or low. The non-inverting input of the op-amp
is driven by the output of the divider, which is a voltage that increases with force. At zero
force, the output of the op-amp will be low. When the voltage at the non-inverting input of
the op-amp exceeds the voltage of the inverting input, the output of the op-amp will
toggle high. The triggering voltage, and therefore the force threshold, is set at the
inverting input by the pot R1. The hysteresis, R2, acts as a “debouncer,” eliminating any
multiple triggering of the output that might occur.
Suggested op-amps are LM358 and LM324. Comparators like LM393 also work quite
well. The pa
the desired force sensitivity range. A typical value for this combination is about 47k.
The threshold adjustment pot, R1, can be replaced by two fixed value resistors in a
voltage divide
rallel combination of R2 with RM is chosen to limit current and to maximize
r configuration.
uire on-off switching at a specified
RM. An op-amp, U1, is used as a
www.interlinkelectronics.com
20
FSR® Integration Guide
FSR Variable Force Threshold Relay Switch
Figure 14: FSR Variable Force Threshold Relay Switch
This circuit is a derivative of the simple F
previous page. It has use where the element to be switched requires higher current, like
automotive and industrial control relays.
The FSR device is arranged in a voltage divider with
comparator. The output of U1 is either high or low. The non-inverting input of the op-amp
sees the output of the divider, which is a voltage that increases with force. At zero force,
the output of the op-amp will be low. When the voltage at the non-inverting input of the
op-amp exceeds the voltage of the inverting input, the output of the op-amp will toggle
high. The triggering voltage, and therefore the force threshold, is set at the inverting input
by the pot R1. The transistor Q1 is chosen to match the required current specification for
the relay. Any medium power NPN transistor should suffice. For example, an NTE272
can sink 2 amps, and an NTE291 can sink 4 amps. The resistor R3 limits the base
current (a suggested value is 4.7k). The hysteresis resistor, R2, acts as a “debouncer,”
eliminating any multiple triggering of the output that might occur.
Suggested op-amps are LM358 and LM324. Comparators like LM393 and LM339 also
work quite
combination of R2 with RM is chosen to limit current and to maximize the desired force
sensitivity range. A typical value for this combination is about 47k.
The threshold adjustment pot, R1, can be replaced by two fixed value resistors in a
voltage divide
harm the relay and the circuitry.
well, but must be used in conjunction with a pull-up resistor. The parallel
r configuration. The diode D1 is included to prevent fly back, which could
SR Variable Force Threshold Switch on the
RM. An op-amp, U1, is used as a
www.interlinkelectronics.com
21
5
V
OUT(
V
g
FSR® Integration Guide
FSR Current-to-Voltage Converter
4
)
3
2
ure 15: FSR Current-to-Voltage
Fi
1
0
02004006008001000
In this circuit, the FSR device is the input of a curre
this amplifier is described by the equation:
With a positive reference voltage, the output of the op-amp mu
ground, from 0V to –VREF, therefore dual sided supplies are necessary. A negative
reference voltage will yield a positive output swing, from 0V to +VREF.
FORCE (g)
V
VOUT is inversely proportional to RFSR. Changing RG and/or VREF changes the
respon
component values and output swing:
For a human-to-machine variable control device, like
applied to the FSR is about 1kg. Testing of an example FSR shows that the
corresponding RFSR at 1kg is about 2.9k. If VREF is – 5V, and an output swing of 0V
to +5V is desired, then RG should be approximately equal to this minimum RFSR. A full
swing of 0V to +5V is thus achieved. A set of FORCE vs. VOUT curves is shown in
Figure 15 for a standard FSR using this interface with a variety of RG values.
se slope. The following is an example of the sequence used for choosing the
7.5 k
4.7 k
2.5 k
1.5 k
VV
REFOUT
OUT
R
nt-to-voltage converter. The output of
FSR
R
G
R
FSR
st be able to swing below
VR
REFG
a joystick, the maximum force
www.interlinkelectronics.com
22
FSR® Integration Guide
The current through the FSR device should be limited to less than 1 mA/square cm of
d force. As with the voltage divider circuit, adding a resistor in parallel with RFSR
applie
will give a definite rest voltage, which is essentially a zero-force intercept value. This can
be useful when resolution at low forces is desired.
Additional FSR Current-to-Voltage Converters
These circuits are a slightly modified version of the current-to
on the previous page. Please refer to it for more detail.
The output of Figure 17 is described by the equation:
V
V1
OUT
REF
2
R
R
Suggested op-amps are LM358
G
FSR
www.interlinkelectronics.com
23
FSR® Integration Guide
The output swing of this circuit is from (VREF/2) to VREF. In the c
greater than RFSR, the output will go into positive saturation.
For either of these configurations, a zener diode placed in parallel
voltage built up across RG. These designs yield one-half the output swing of the previous
circuit, but only require single sided supplies and positive reference voltages. Like the
preceding circuit, the current through the FSR should be limited to less than 1 mA/square
cm of applied force.
ase where RG is
with RG will limit the
FSR Schmitt Trigger Oscillator
Figure 18: FSR Schmitt Trigger
Oscillator
In this circuit, an oscillator is made using the FSR device as the feedback element around
a Schmitt Tri
force, the FSR is an open circuit. Depending on the last stage of the trigger, the output
remains constant, either high or low. When the FSR is pressed, the oscillator starts, its
frequency increasing with increasing force. The 2M resistor at the input of the trigger
insures that the oscillator is off when FSRs with non-infinite resistance at zero force are
used. The 47k resistor and the 0.47 µF capacitor control the force-to-frequency
characteristic. Changes in the “feel” of this circuit can be made by adjusting these values.
The 0.1µF capacitor controls the frequency range of the oscillator. By implementing this
circuit with CMOS or TTL, a digital process can be controlled by counting leading and/or
trailing edges of the oscillator output. Suggested Schmitt Triggers are CD40106,
CD4584 or 74C14.
gger. In this manner, a simple force-to-frequency converter is made. At zero
www.interlinkelectronics.com
24
7.0 Performance Optimization
For best results, follow these seven steps when beginning any new product design,
proof-of-concept, technology evaluation, or first prototype implementation:
1. Start with Reasonable Expectations (Know Your Sensor)
The FSR sensor is not a strain gauge, load cell, or pressure transducer. While it can be
d for dynamic measurement, only qualitative results are generally obtainable. Force
use
accuracy ranges from approximately ± 6% to ± 50% depending on the consistency of the
measurement and actuation system, the repeatability tolerance held in manufacturing,
and the extremes of the environment.
2. Choose the Sensor that Best Fits the Geometry of Your Application
Usually sensor size and shape are the limiting param
evaluation part should be chosen to fit the desired mechanical actuation system. In
general, standard FSR products have a common response and only by varying actuation
methods (e.g. overlays and actuator areas) or electrical interfaces can different response
characteristics be achieved.
3. Set-up a Repeatable and Reproducible Mechanical Actuation System
When designing the actuation mechanics, follow these guidelines to achieve the best
force repeatability:
Provide a consistent force distribution. FSR res
distribution of the applied force. In general, this precludes the use of dead weights for
characterization since exact duplication of the weight location is rarely repeatable
cycle-to-cycle. A consistent weight (force) distribution is more difficult to achieve than
merely obtaining a consistent total applied weight (force). As long as the distribution
is the same cycle-to-cycle, then repeatability will be maximized. The use of a thin
elastomer between the applied force and the FSR can help absorb error from
inconsistent force distributions.
Keep the actuator area, shape, and material prope
parameters significantly alter the response of a given sensor. Any test, mock-up, or
evaluation conditions should be closely matched to the final use conditions. The
greater the cycle-to-cycle consistency of these parameters, the greater the device
repeatability. In human interface applications where a finger is the mode of actuation,
perfect control of these parameters is not generally possible. However, human
perception of force is somewhat inaccurate so these applications may be more
forgiving.
Control actuator placement. In cases where the a
FSR active area, cycle-to-cycle consistency of actuator placement is necessary.
(Caution: FSR layers are held together by an adhesive that surrounds the electrically
active areas. If force is applied over an area which includes the adhesive, the
resulting response characteristic will be drastically altered.) In an extreme case (e.g.,
a large, flat, hard actuator that bridges the bordering adhesive), the adhesive can
prevent FSR actuation.
eters in FSR integration, so any
ponse is very sensitive to the
rties consistent. Changes in these
ctuator is to be smaller than the
FSR® Integration Guide
www.interlinkelectronics.com
25
FSR® Integration Guide
Keep actuation cycle time consistent. Becau
resistance to an applied force (drift), it is important when characterizing the sensor
system to assure that increasing loads (e.g. force ramps) are applied at consistent
rates (cycle-to-cycle). Likewise, static force measurements must take into account
FSR mechanical setting time. This time is dependent on the mechanics of actuation
and the amount of force applied and is usually on the order of seconds.
4. Use the Optimal Electronic Interface
In most product designs, the critical characteri
controlled by the choice of interface electronics. A variety of interface solutions are
detailed in the Measurement Techniques section of this guide. Summarized here are
some suggested circuits for common FSR applications:
For FSR Pressure or Force Switches, use the simple i
For dynamic FSR measurements or Variable Controls, a current-to-voltage converter
e page 21) is recommended. This circuit produces an output voltage that is
(se
inversely proportional to FSR resistance. Since the FSR resistance is roughly
inversely proportional to applied force, the end result is a direct proportionality
between force and voltage; in other words, this circuit gives roughly linear increases
in output voltage for increases in applied force. This linearization of the response
optimizes the resolution and simplifies data interpretation.
5. Develop a Nominal Voltage Curve and Error Spread
When a repeatable and reproducible system has been established, data from a group of
FSR pa
voltage at various pre-selected force points throughout the range of interest. Once a
family of curves is obtained, a nominal force vs. output voltage curve and the total force
accuracy of the system can be determined.
6. Use Part Calibration if Greater Ac
For applications requiring the highest obtainable force accuracy, part calibration will be
necessary. Two methods
Gain and offset trimming can be used as a simple method of calibration. The
Curve fitting is the most complete calibration method.
7. Refine the System
False results can normally be traced to sensor e
questions, contact an Interlink Electronics’ Sales Engineer to discuss your system and
final data.
rts can be collected. Test several FSR parts in the system. Record the output
curacy is Required
can be utilized: gain and offset trimming, and curve fitting.
referen
adjusted for each FSR to pull their responses closer to the nominal curve.
for the nominal curve of a set of FSR devices, and the resultant equation is stored for
future use. Fit parameters are then established for each individual FSR (or sending
element in an array) in the set. These parameters, along with the measured sensor
resistance (or voltage), are inserted into the equation to obtain the force reading. If
needed, temperature compensation can also be included in the equation.
ce voltage and feedback resistor of the current-to-voltage converter are
se of the time dependence of the FSR
stic is Force vs. Output Voltage, which is
nterfaces detailed on page 20.
A parametric curve fit is done
rror or system error. If you have any
www.interlinkelectronics.com
26
8.0 FAQ
Below are answers to our most frequently asked questions:
What are some applications in which the Interlink sensors have been used?
Interlinksen
measurement applications. Our sensors have been integrated into drug delivery devices,
QA/QC equipment, industrial controls, sports and recreational gear, and more.
How much do the system and sensors cost?
Pricin
What is your return policy?
Package m
How does the sensor react to force? Is the resistance constant, or is it decreasing
ith a constant value?
w
The inks in our sensors are resistive: the greater the force, the less the resistance.
sors provide economical solutions and OEM tools to a variety of force
g varies and it is quoted by Interlink Electronics, or an authorized distributor.
ust be returned unopened within 48 hours of receipt of merchandise.
FSR® Integration Guide
How much can I overload the sensor without damaging it?
Although poly
generally regard the threshold of damage to be much lower. A safe guideline is to
maintain the total pressure on the sensor below 10N/mm^2 of actuator area.
What is the lifetime of a Interlink sensor?
The du
magnitude of the load, the interface material, and the direction of the load (minimal
shear). The sensor is typically operational beyond 1,000,000 actuations.
What materials/conditions could damage the sensor?
Tempe
bottom layers together would likely separate), sharp objects, shear forces, creasing the
sensor, and loads that are around or above 10N/mm^2 can damage the sensor.
Can I fold the sensor?
The se
this causes shearing. The traces should not be bent more than 90° as the silver
conductive leads could break.
Can I adhere the sensor to a surface?
If you need to adhere the sensor to a su
Often the sensors are supplied with such adhesive, covered with a removable liner.
What surface is best to use underneath the sensor?
A flat, smooth surfa
to appear loaded in the absence of an external load.
rability of the Interlink sensor depends on the conditions to which it is exposed:
ratures >215.55°C (420°F), water-submersion (as the adhesive holding the top &
nsor is designed to be flexible; however the sensing area should not be folded as
mer substrates deform plastically around 10,000 PSI (69N/mm^2), we
rface, a thin, double-sided tape is recommended.
ce is ideal. Trapped air bubbles or dirt particles can cause the sensor
www.interlinkelectronics.com
27
FSR® Integration Guide
What drive voltages can I apply to the sensor?
cally the sensors look like passive resistors. Any voltage that suits your circuit is
Electri
fine. From 0.1V (as long as signal-to-noise (S/N) ratio remains acceptable) to 5V is the
typical range.
What is the resistance range of the sensor?
sistance range of the sensor is typically from >1M at no load to approximately
The re
1k at full load. This can vary depending on the details of the sensor and actuating
mechanics.
How long must the sensor be unloaded before you load it again?
There is no e
Are the Interlink sensors waterproof?
No, the se
compatible with direct liquid contact. Sensors are ideally suited to placement behind a
waterproof enclosure.
xact or estimated time.
nsors are not designed for use under water. The FSR material is not
Does humidity have any effect on the sensor?
Yes, of all environme
for example 85 RH at 85C for hundreds of hours, will shift resistance dramatically
upward.
Can the sensors pick up electrical noise?
FSRs a
considerable surface area. Proximity to high intensity RF sources may require special
measures.
What is the smallest active sensing area you can make?
The minimu
What are the minimum and maximum quantities you can do annually?
Due to the co
volumes are low. The maximum quantities that can be produced depend on several
factors. We have produced specific sensors in volumes as high as 20M pieces per year.
What is the average cost of a custom design?
Each request is different, depending on size, complexity of design, force ranges,
quantities, etc. Contact an Interlink sales agent for pricing.
re no more prone to noise pickup than a passive resistor, although they can have
m head dimension for our sensors can be 5mm (3mm active area).
st involved, we typically do not design custom sensors for when expected
ntal extremes humidity causes the most change. Extreme humidity,
www.interlinkelectronics.com
28
FSR® Integration Guide
9.0 FSR Usage: The Do’s and Don’ts
Do follow the
Do, if possibl
Do be
occur as the two opposed layers are forced into contact by the bending tension. The
device will still function, but the dynamic range may be reduced and resistance drift could
occur. The degree of curvature over which an FSR can be bent is a function of the size of
the active area. The smaller the active area, the less effect a given curvature will have on
the FSR’s response.
Do avoid ai
only thin, uniform adhesives, such as Scotch brand double-sided laminating adhesives.
Cover the entire surface of the sensor.
Do be
sensors.
Do protect th
or an elastomer, to prevent gouging of the FSR device.
Do u
Do not
breaks in the printed silver traces. The smallest suggested bend radius for the tails of
evaluation parts is about 2.5 mm. In custom sensor designs, tails have been made that
bend over radii of 0.8 mm. Also, be careful if bending the tail near the active area. This
can cause stress on the active area and may result in pre-loading and false readings.
Do not bl
active area down the length of the tail and out to the atmosphere. This vent assures
pressure equilibrium with the environment, as well as allowing even loading and
unloading of the device. Blocking this vent could cause FSRs to respond to any actuation
in a non-repeatable manner. Also note that if the device is to be used in a pressure
chamber, the vented end will need to be kept vented to the outside of the chamber. This
allows for the measurement of the differential pressure.
Do not
joint will not hold and the substrate can easily melt and distort during the soldering. Use
Interlink Electronics standard connection techniques, such as solderable tabs, housed
female contacts, Z-axis conductive tapes, or ZIF (zero insertion force) style connectors.
Do not u
These degrade the substrate and can lead to cracking.
Do not a
Do not
This can irreversibly damage the device.
careful if applying FSR devices to curved surfaces. Pre-loading of the device can
careful of kinks or dents in active areas. They can cause false triggering of the
se soft rubber or a spring as part of the actuator in designs requiring some travel.
seven steps of the FSR Integration Guide.
e, use a firm, flat and smooth mounting surface.
r bubbles and contamination when laminating the FSR to any surface. Use
e device from sharp objects. Use an overlay, such as a polycarbonate film
kink or crease the tail of the FSR device if you are bending it; this can cause
ock the vent. FSR devices typically have an air vent that runs from the open
solder directly to the exposed silver traces. With flexible substrates, the solder
se cyanoacrylate adhesives (e.g. Krazy Glue) and solder flux removing agents.
pply excessive shear force. This can cause delamination of the layers.
exceed 1mA of current per square centimeter of applied force (actuator area).
www.interlinkelectronics.com
29
10.0 Glossary
Terminology
Active Area:
in resistance. This is typically the central area of the sensor more than 0.5mm from the
inside edge of the spacer.
Actuator: An
Applied Force: The fo
Array: Any groupin
measured, usually all built together as a unit.
Break Force: The minimu
onset of the FSR response. Typically defined as the force required to reach below
100k.
Cross-talk:
of another sensor on the same substrate. See also false triggering.
Drift: Th
resistance drift.
Durometer: The mea
EMI: Electro
ESD: Elect
False triggering: The un
bending or cross-talk.
Force Resolution: Th
FSR: Fo
resistance with an increase in force applied normal to the device surface.
Graphic Overlay:
and protection.
Housed Female: A stitche
black plastic housing protects the contacts. Suitable for removable ribbon cable
connector and header pin attachment.
Hysteresis: I
measurements at a given force for an increasing load versus a decreasing load.
Repeatability: The ability
characteristic.
The area of an FSR device that responds to normal force with a decrease
object that contacts the sensor surface and applies force to FSRs.
Measurement noise or inaccuracies of a sensor as a result of the actuation
e change in resistance with time under a constant (static) load. Also called
magnetic interference.
rostatic discharge.
rce Sensing Resistor. A polymer thick film device with exhibits a decrease in
A printed substrate that covers the FSR. Usually used for aesthetics
n a dynamic measurement, the difference between instantaneous force
FSR® Integration Guide
rce applied by the actuator on the sensor active area.
g or matrix of FSR sensors which can be individually actuated and
m force required, with a specific actuator size, to cause the
sure of the hardness of rubber.
wanted actuation of a FSR device from unexpected stimuli; e.g.,
e smallest measurable difference in force.
d on AMP connector with a receptacle (female) ending. A
to repeat, within a tolerance, a previous response
www.interlinkelectronics.com
30
FSR® Integration Guide
Response Characteristic: The relation
Saturation Pressure: Th
deviates from its inverse power law characteristic. Past the saturation pressure,
increases in force yield little or no decrease in resistance.
Spacer Adhesive: The ad
off.
Stand-off: T
sensor in unloaded and unbent.
Stand-off Resistance: T
Substrate: Any base material on which the FSR semi-conductive or metallic poly
are printed. (For example, polyetherimide, polyethersulforne and polyester films).
Tail: The re
in a connector.
he gap or distance between the opposed polymer film layers when the
gion where the lead out or busing system terminates. Generally, the tail ends
e pressure level beyond with the FSR response characteristic
hesive used to laminate FSR devices tighter. Dictates stand-
he FSR resistance when the device is unloaded and unbent.
ship of force or pressure vs. resistance.
mers
11.0 Intellectual Property & Other Legal Matters
Interlink Electronics holds several domestic and international patents for its Force Sensing
Resistor technology. FSR and Force Sensing Resistor are company trademarks. All other
trademarks are the property of their respective owners.
The product information contained in this document provide
only and must not be used as an implied contract with Interlink Electronics. Acknowledging our
policy of continual product development, we reserve the right to change, without notice, any detail
in this publication. Since Interlink Electronics has no control over the conditions and method of
use of our products, we suggest that any potential user confirm their suitability for their own
application.
s general information and guidelines
www.interlinkelectronics.com
31
12.0 Contact Interlink Electronics
United States
Corporate Office
Interlink Electronics, Inc.
546 Flynn Road
Camarillo, CA 93012, USA
Phone: +1-805-484-8855
Fax: +1-805-484-9457
Web: www.interlinkelectronics.com
Sales and support: sales@interlinkele
Japan
Japan Sales Office
Kannai-Keihin Bldg. 10F/1004
2-4-2 Ougi-cyo, Naka-ku
Yokohama-shi, Kanagawa-ken 231-0027
Japan