PMC PM7328-BI Datasheet

STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
PM7328
S/UNI-ATLAS-1K800
ATM LAYER SOLUTION
PROPRIETARY AND CONFIDENTIAL
RELEASED
ISSUE 2: JUNE 2001
PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 604 .415.6000
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800

CONTENTS

1 FEATURES.............................................................................................. 1
1.1 POLICING ..................................................................................... 5
1.2 CELL COUNTING ......................................................................... 5
2 APPLICATIONS....................................................................................... 7
3 REFERENCES......................................................................................... 9
4 APPLICATION EXAMPLES................................................................... 10
5 DESCRIPTION ...................................................................................... 11
6 PIN DIAGRAM ....................................................................................... 12
7 PIN DESCRIPTION................................................................................ 13
8 FUNCTIONAL DESCRIPTION............................................................... 49
8.1 INGRESS VC TABLE.................................................................. 52
8.2 CONNECTION IDENTIFICATION............................................... 54
8.2.1 INGRESS CONNECTION IDENTIFICATION ................... 54
8.3 SEARCH TABLE DATA STRUCTURE ....................................... 58
8.3.1 PRIMARY SEARCH TABLE ............................................. 59
8.3.2 SECONDARY SEARCH KEY TABLE .............................. 59
8.4 INGRESS CELL PROCESSING ................................................. 61
8.5 EGRESS VC TABLE ................................................................... 71
8.5.1 EGRESS CONNECTION IDENTIFICATION .................... 73
8.6 EGRESS CELL PROCESSING .................................................. 75
8.7 PERFORMANCE MONITORING ................................................ 84
8.7.1 PERFORMANCE MONITORING FLOWS........................ 96
8.8 CHANGE OF CONNECTION STATE ......................................... 99
8.9 HEADER TRANSLATION ......................................................... 100
8.10 CELL ROUTING........................................................................ 102
8.11 CELL RATE POLICING............................................................. 102
8.11.1 PER-PHY POLICING...................................................... 109
8.11.2 GUARANTEED FRAME RATE....................................... 113
PROPRIETARY AND CONFIDENTIAL i
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
8.11.3 CONTINUOUSLY VIOLATING MODE ........................... 116
8.11.4 S/UNI-ATLAS-1K800 POLICING CONFIGURATION..... 117
8.12 CELL COUNTING ..................................................................... 117
8.13 OPERATIONS, ADMINISTRATION AND MAINTENANCE (OAM)
CELL SERVICING..................................................................... 121
8.14 FAULT MANAGEMENT CELLS................................................ 124
8.15 LOOPBACK CELLS .................................................................. 126
8.16 ACTIVATION/DEACTIVATION CELLS ..................................... 126
8.17 SYSTEM MANAGEMENT CELLS............................................. 126
8.18 F4 TO F5 OAM PROCESSING................................................. 127
8.19 F5 TO F4 OAM PROCESSING................................................. 137
8.20 RESOURCE MANAGEMENT CELLS ....................................... 144
8.21 S/UNI-ATLAS-1K800 BACKGROUND PROCESSES............... 144
8.22 INGRESS BACKWARD OAM CELL INTERFACE .................... 146
8.23 EGRESS BACKWARD OAM CELL INTERFACE ..................... 147
8.24 JTAG TEST ACCESS PORT .................................................... 147
8.25 MICROPROCESSOR INTERFACE .......................................... 147
8.26 EXTERNAL SRAM ACCESS .................................................... 148
8.27 WRITING CELLS ...................................................................... 148
8.28 READING CELLS...................................................................... 152
8.29 S/UNI-ATLAS-1K800 DLL CLOCK OPERATION...................... 155
9 NORMAL MODE REGISTER MEMORY MAP..................................... 156
9.1 NORMAL MODE REGISTER DESCRIPTION .......................... 167
10 TEST FEATURES DESCRIPTION ...................................................... 436
10.1 TEST MODE 0 DETAILS .......................................................... 439
10.2 JTAG TEST PORT .................................................................... 439
11 OPERATION........................................................................................ 446
11.1 SCI-PHY EXTENDED CELL FORMAT ..................................... 446
11.2 SYNCHRONOUS STATIC RAMS ............................................. 448
11.2.1 INGRESS VC-TABLE SRAM.......................................... 448
PROPRIETARY AND CONFIDENTIAL ii
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
11.2.2 EGRESS VC-TABLE SRAM........................................... 449
11.3 ATM CELL PROCESSING........................................................ 450
11.3.1 OAM CELL FORMAT ..................................................... 450
11.4 INGRESS VC IDENTIFICATION SEARCH ALGORITHM......... 453
11.4.1 OVERVIEW .................................................................... 453
11.4.2 INGRESS PERFORMANCE MONITORING ACTIVATION /
DEACTIVATION ............................................................. 459
11.5 EGRESS VC TABLE OPERATION........................................... 460
11.5.1 INITIALIZATION PROCEDURE ..................................... 460
11.5.2 CONNECTION SETUP................................................... 460
11.5.3 EGRESS PERFORMANCE MONITORING ACTIVATION /
DEACTIVATION ............................................................. 461
11.6 JTAG SUPPORT....................................................................... 462
11.6.1 TAP CONTROLLER ....................................................... 463
12 FUNCTIONAL TIMING......................................................................... 468
12.1 INGRESS INPUT CELL INTERFACE ....................................... 468
12.2 INGRESS OUTPUT CELL INTERFACE ................................... 471
12.3 EGRESS INPUT CELL INTERFACE ........................................ 473
12.4 EGRESS OUTPUT CELL INTERFACE .................................... 476
13 ABSOLUTE MAXIMUM RATINGS....................................................... 479
14 D.C. CHARACTERISTICS ................................................................... 480
15 A.C. TIMING CHARACTERISTICS...................................................... 482
16 MECHANICAL INFORMATION ........................................................... 497
PROPRIETARY AND CONFIDENTIAL iii
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800

LIST OF FIGURES

FIGURE 1 ........ S/UNI-ATLAS-1K800 IN OC3 MINI-DSLAM APPLICATION................................ 7
FIGURE 2 ........ S/UNI-ATLAS-1K800 BLOCK DIAGRAM........................................................... 10
FIGURE 3 ........ VC SEARCH KEY COMPOSITION.................................................................... 54
FIGURE 4 ........ PARAMETERS OF THE PRIMARY KEY AND SECONDARY KEY................... 56
FIGURE 5 ........ SEARCH KEY LOCATIONS WITHIN THE ROUTING WORD..........................57
FIGURE 6 ........ ATLAS SEARCH TABLE STRUCTURE ............................................................59
FIGURE 7 ........ EGRESS ROUTING WORD AND EGRESS LOOKUP ADDRESS ...................73
FIGURE 8 ........ S/UNI-ATLAS-1K800 PM FLOWS ..................................................................... 97
FIGURE 9 ........ F4 TO F5 OAM FLOWS...................................................................................128
FIGURE 10 ...... INGRESS TERMINATION OF F4 SEGMENT AND END-TO-END-POINT
CONNECTIONS. ..........................................................................129
FIGURE 11 ...... INGRESS TERMINATION OF F4 SEGMENT AND END-TO-END POINT
CONNECTION..............................................................................130
FIGURE 12 ...... INGRESS TERMINATION OF F4 SEGMENT END-POINT CONNECTION. .. 132
FIGURE 13 ...... INGRESS TERMINATION OF F4 END-TO-END POINT CONNECTION. ......133
FIGURE 14 ...... F5 TO F4 OAM FLOWS...................................................................................138
FIGURE 15 ...... EGRESS TERMINATION OF A VPC SEGMENT END-POINT ....................... 139
FIGURE 16 ...... VPC INTERMEDIATE POINT .......................................................................... 140
FIGURE 17 ...... VCC INTERMEDIATE POINT .......................................................................... 141
FIGURE 18 ...... VPC SEGMENT END-POINT .......................................................................... 141
FIGURE 19 ...... VCC SEGMENT END POINT .......................................................................... 142
FIGURE 20 ...... VPC SEGMENT END-POINT AND END-TO-END POINT .............................. 142
FIGURE 21 ...... INGRESS VPC END-TO-END POINT AND SEGMENT END-POINT, VC
SEGMENT END-POINT AND SEGMENT SOURCE POINT.
EGRESS VPC END-TO-END AND SEGMENT SOURCE
POINT WITH VCC SEGMENT END-POINT AND VCC
SEGMENT SOURCE POINT........................................................ 143
FIGURE 22 ...... INGRESS VPC END-TO-END AND SEGMENT END POINT WITH VC
INTERMEDIATE POINT. EGRESS VPC END-TO-END AND
SEGMENT SOURCE POINT WITH VC INTERMEDIATE
POINT AND VC SEGMENT SOURCE POINT.............................143
FIGURE 23 ...... INPUT OBSERVATION CELL (IN_CELL)........................................................ 442
FIGURE 24 ...... OUTPUT CELL (OUT_CELL)...........................................................................443
FIGURE 25 ...... BI-DIRECTIONAL CELL (IO_CELL) ................................................................ 444
FIGURE 26 ...... LAYOUT OF OUTPUT ENABLE AND BI-DIRECTIONAL CELLS ................... 445
FIGURE 27 ...... EIGHT BIT WIDE CELL FORMAT ................................................................... 447
FIGURE 28 ...... SIXTEEN BIT WIDE CELL FORMAT............................................................... 448
FIGURE 29 ...... COMMON OAM CELL FORMAT .....................................................................451
FIGURE 30 ...... SPECIFIC FIELDS FOR AIS/RDI FAULT MANAGEMENT CELL ...................451
FIGURE 31 ...... SPECIFIC FIELDS FOR THE FPM CELL ........................................................ 452
FIGURE 32 ...... SPECIFIC FIELDS FOR THE BR CELL........................................................... 452
FIGURE 33 ...... CONNECTION INSERTION W HEN BINARY TREE IS EMPTY...................... 456
FIGURE 34 ...... CONNECTION INSERTION W HEN BINARY TREE CONTAINS ONLY
SINGLE VC RECORD. ................................................................. 456
FIGURE 35 ...... CONNECTION INSERTION AT THE ROOT OF THE TREE. .........................457
FIGURE 36 ...... CONNECTION INSERTION IN THE MIDDLE OF THE BINARY TREE..........458
FIGURE 37 ...... NEW SECONDARY SEARCH TABLE ENTRY INSERTED AT A LEAF. ........458
FIGURE 38 ...... BOUNDARY SCAN ARCHITECTURE ............................................................. 462
FIGURE 39 ...... TAP CONTROLLER FINITE STATE MACHINE .............................................. 464
FIGURE 40 ...... INGRESS INPUT CELL INTERFACE (RPOLL=0)........................................... 468
FIGURE 41 ...... INGRESS INPUT CELL INTERFACE (RPOLL=1) EXAMPLE 1...................... 469
FIGURE 42 ...... INGRESS INPUT CELL INTERFACE (RPOLL=1) EXAMPLE 2...................... 470
PROPRIETARY AND CONFIDENTIAL iv
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
FIGURE 43 ...... INGRESS OUTPUT CELL INTERFACE (OTSEN=0) ...................................... 471
FIGURE 44 ...... INGRESS OUTPUT CELL INTERFACE (OTSEN=1) ...................................... 472
FIGURE 45 ...... EGRESS INPUT CELL INTERFACE (IPOLL=0)..............................................473
FIGURE 46 ...... EGRESS INPUT CELL INTERFACE POLLED MODE (IPOLL=1)...................475
FIGURE 47 ...... EGRESS OUTPUT CELL INTERFACE DIRECT MODE (TPOLL=0) .............. 476
FIGURE 48 ...... EGRESS OUTPUT CELL INTERFACE POLLED MODE (TPOLL=1) ............. 477
FIGURE 49 ...... MICROPROCESSOR INTERFACE READ TIMING ........................................ 483
FIGURE 50 ...... MICROPROCESSOR INTERFACE WRITE TIMING....................................... 485
FIGURE 51 ...... EGRESS INPUT CELL INTERFACE TIMING.................................................. 487
FIGURE 52 ...... INGRESS OUTPUT CELL INTERFACE TIMING ............................................ 488
FIGURE 53 ...... INGRESS INPUT CELL INTERFACE TIMING ................................................ 489
FIGURE 54 ...... EGRESS OUTPUT CELL INTERFACE TIMING.............................................. 490
FIGURE 55 ...... INGRESS SRAM INTERFACE TIMING ........................................................... 492
FIGURE 56 ...... EGRESS SRAM INTERFACE TIMING ............................................................493
FIGURE 57 ...... JTAG PORT INTERFACE TIMING .................................................................. 494
FIGURE 58 ...... ATLAS-1K800 THETA JA VS. AIR FLOW GRAPH .........................................496
FIGURE 59 ...... 432 PIN SBGA – 40 X 40 MM BODY -(B SUFFIX) .......................................... 497
PROPRIETARY AND CONFIDENTIAL v
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800

LIST OF TABLES

TABLE 1 .......... INGRESS VC TABLE ......................................................................................... 53
TABLE 2 .......... INGRESS VC TABLE CELL FIELDS .................................................................55
TABLE 3 .......... INGRESS VC TABLE STATUS FIELD .............................................................. 62
TABLE 4 .......... INGRESS VC TABLE CONFIGURATION FIELD .............................................. 63
TABLE 5 .......... INGRESS VC TABLE OAM CONFIGURATION FIELD ..................................... 65
TABLE 6 .......... INGRESS INTERNAL STATUS FIELD .............................................................. 67
TABLE 7 .......... INGRESS VC TABLE MISCELLANEOUS FIELDS............................................ 68
TABLE 8 .......... INGRESS VC TABLE ACTIVATION FIELDS.....................................................70
TABLE 9 .......... EGRESS VC TABLE .......................................................................................... 71
TABLE 10 ........ EGRESS VC TABLE CONNECTION IDENTIFIER FIELDS .............................. 72
TABLE 11 ........ EGRESS VC TABLE ACTIVATION FIELD ........................................................ 76
TABLE 12 ........ EGRESS VC TABLE STATUS FIELD................................................................ 76
TABLE 13 ........ EGRESS VC TABLE CONFIGURATION FIELD................................................78
TABLE 14 ........ EGRESS OAM CONFIGURATION FIELD ......................................................... 79
TABLE 15 ........ EGRESS INTERNAL STATUS FIELD ...............................................................81
TABLE 16 ........ EGRESS VC TABLE MISCELLANEOUS FIELDS ............................................. 82
TABLE 17 ........ INTERNAL PM TABLE ....................................................................................... 84
TABLE 18 ........ PM TABLE CONFIGURATION FIELD ...............................................................85
TABLE 19 ........ QOS PARAMETERS FOR PERFORMANCE MONITORING............................ 88
TABLE 20 ........ INGRESS AND EGRESS CHANGE OF STATE FIFO .................................... 100
TABLE 21 ........ S/UNI-ATLAS-1K800 ACTIONS ON POLICING WITH COCUP=0 ................ 107
TABLE 22 ........ S/UNI-ATLAS-1K800 ACTIONS ON POLICING WITH COCUP=1 ................ 108
TABLE 23 ........ S/UNI-ATLAS-1K800 ACTIONS WITH PER-PHY POLICING ......................... 110
TABLE 24 ........ INTERNAL PER-PHY POLICING RAM............................................................ 111
TABLE 25 ........ PER-PHY AND PER-VC NON-COMPLIANT CELL COUNTING
PHYVCCOUNT=0......................................................................... 112
TABLE 26 ........ PER-PHY AND PER-VC NON-COMPLIANT CELL COUNTING
PHYVCCOUNT=1......................................................................... 113
TABLE 27 ...... INGRESS/EGRESS OAM CONFIGURATION FIELD......................................122
TABLE 28 ........ F4 TO F5 FAULT MANAGEMENT PROCESSING.......................................... 135
TABLE 29 ........ REGISTER MEMORY MAP ............................................................................. 156
TABLE 30 ........ INSTRUCTION REGISTER ............................................................................. 439
TABLE 31 ........ IDENTIFICATION REGISTER ......................................................................... 440
TABLE 32 ........ BOUNDARY SCAN REGISTER.......................................................................440
TABLE 33 ........ S/UNI-ATLAS-1K800 VC-TABLE AVAILABLE SRAM TYPES.........................449
TABLE 34 ........ OAM TYPE AND FUNCTION TYPE IDENTIFIERS......................................... 450
TABLE 35 ........ VC TABLE CONNECTION SETUP .................................................................. 460
TABLE 36 ........ ABSOLUTE MAXIMUM RATINGS ................................................................... 479
TABLE 37 ........ D.C. CHARACTERISTICS ...............................................................................480
TABLE 38 ........ MICROPROCESSOR INTERFACE READ ACCESS ......................................482
TABLE 39 ........ MICROPROCESSOR INTERFACE WRITE ACCESS ....................................484
TABLE 40 ........ JTAG PORT INTERFACE ................................................................................ 493
TABLE 41 ........ ORDERING INFORMATION............................................................................ 495
TABLE 42 ........ THERMAL INFORMATION ..............................................................................495
PROPRIETARY AND CONFIDENTIAL vi
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
1 FEATURES
Monolithic single chip device which handles bi-directional ATM Layer
functions including VPI/VCI address translation, cell appending (ingress only), cell rate policing (ingress only), per-connection counting and I.610 compliant OAM requirements for 1024 VCs (virtual connections).
Instantaneous bi-directional transfer rate of 800 Mbit/s supports a bi-
directional cell transfer rate of 1.42x106 cells/s (one STS-12c or four STS-3c).
The Ingress input interface supports an 8 or 16 bit SCI-PHY interface using
direct addressing for up to 4 PHY devices (compatible with Utopia Level 1 cell-level handshaking) and Multi-PHY addressing for up to 32 PHY devices (Utopia Level 2 compatible).
The Ingress output interface supports an 8 or 16 bit SCI-PHY (52 – 64 byte
extended ATM cell with prepend/postpend) interface (compatible with Utopia Level 1 cell-level handshaking) to a switch fabric.
The Egress input interface supports an 8 or 16 bit extended cell format SCI-
PHY interface using direct addressing for up to 4 PHY devices (compatible with Utopia Level 1 cell-level handshaking) and Multi-PHY addressing for up to 32 PHY devices (Utopia Level 2 compatible).
The Egress output interface supports an 8 or 16 bit extended cell format SCI-
PHY interface using direct addressing for up to 4 PHY devices (compatible with Utopia Level 1 cell-level handshaking) and Multi-PHY addressing for up to 32 PHY devices (Utopia Level 2 compatible).
Compatible with a wide range of switching fabrics and traffic management
architectures including per-VC or per-PHY queuing.
Highly flexible OAM-type cell and connection identification which can use
arbitrary PHYID/VPI/VCI values and/or cell appended bytes for connection identification (N.B. this is an ingress function only). A direct lookup function is provided in the egress direction. The direct lookup can use an arbitrary header or prepend/postpend location.
Ingress functionality includes a highly flexible search engine that covers the
entire PHYID/VPI/VCI address range, programmable dual leaky bucket UPC/NPC, per-connection CLP0 and CLP1 cell counts (programmable), OAM-PM termination, generation and monitoring, and OAM-FM termination, generation and alarm generation (monitoring).
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 1
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Egress functionality includes programmable direct lookup function, OAM-PM
termination, generation and monitoring, per-connection CLP0 and CLP1 cell counts (programmable) and OAM-FM termination, generation and alarm generation (monitoring). An egress per-PHY output buffering scheme resolves the head-of-line blocking issue.
UPC/NPC function is a programmable dual leaky bucket policing device with
a programmable action (tag, discard, or count only) for each bucket. A total of 3 programmable 16 bit non-compliant cell counts are provided. The non­compliant cell counts may be programmed to count, for example, dropped CLP0 cells, dropped CLP1 cells, and tagged CLP0 cells. The UPC/NPC function also has a continuously violating mode, where a programmable action is taken on all cells regardless of their compliance. AAL5 partial packet discard is also provided so that the remainder of an AAL5 packet can be tagged or discarded if a single cell in the packet is tagged or discarded as a result of violating policing.
In addition to the per-connection dual leaky bucket, a single leaky bucket
UPC/NPC function is provided on a per-PHY basis. A programmable action (tag, discard or count only) may be configured for each PHY policing device. Three programmable non-compliant cell counts are provided for each PHY. The non-compliant cell counts may be programmed to count, for example, dropped CLP0 cells, dropped CLP1 cells and tagged CLP0 cells. The per­PHY policing parameters and non-compliant cell counts are maintained in an on-chip RAM that can be programmed and read via the 16-bit general purpose microprocessor interface.
Guaranteed Frame Rate frame-based policing selectable on a per-connection
basis.
OAM-Performance monitoring is provided in the ingress and egress direction
for bi-directional PM sessions. A maximum of 512 (256 bi-directional sessions) PM sessions may be simultaneously active. PM is supported on the F4 and F5 levels. The S/UNI-ATLAS-1K800 provides for the generation of Forward Monitoring and Backward Reporting PM cells (both segment and end-to-end), the termination of Forward Monitoring and Backward Reporting cells, and for non-intrusive monitoring of Forward Monitoring and Backward Reporting cells. The following statistics are collected when terminating or monitoring PM flows:
1. Forward Impaired Block.
2. Forward Lost/Misinserted Impaired Block
3. Forward Severely Errored Cell Block (Lost).
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 2
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
4. Forward Severely Errored Cell Block (Misinserted).
5. Forward Severely Errored Cell Block (BIP-16 violations).
6. Forward Severely Errored Cell Block Combined (non-saturating)
7. Forward Lost CLP0+1 cell count.
8. Forward Lost CLP0 cell count.
9. Forward Tagged CLP0 cell count
10. Forward Misinserted CLP0+1 cell count.
11. Forward Errored cell count.
12. Forward Total Lost CLP0+1 cell count.
13. Forward Total Lost CLP0 cell count.
14. Forward Lost Forward Monitoring cell count.
15. Backward Impaired Block.
16. Backward Lost/Misinserted Impaired Block.
17. Backward Severely Errored Cell Block (Lost).
18. Backward Severely Errored Cell Block (Misinserted).
19. Backward Severely Errored Cell Block (BIP-16 violations).
20. Backward Severely Errored Cell Block Combined (non-saturating)
21. Backward Severely Errored Cell Block Combined (saturating)
22. Backward Lost CLP0+1 cell count.
23. Backward Lost CLP0 cell count.
24. Backward Tagged CLP0 cell count.
25. Backward Misinserted CLP0+1 cell count.
26. Backward Errored cell count.
27. Backward Total Lost CLP0+1 cell count.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 3
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
28. Backward Total Lost CLP0 cell count.
29. Backward Lost Fwd Monitoring PM cell count.
30. Backward Lost Backward Reporting PM cell count.
31. Total Transmitted CLP0+1 cell count.
32. Total Transmitted CLP0 cell count.
Statistics for PM sessions are held in on-chip RAM that can be read at any time through the 16-bit general-purpose microprocessor port. Paced insertion of PM cells is provided. PM block size generation and termination is per-session programmable ranging from 128 – 32768 cells. Each of the 512 PM sessions can be configured to be a source, sink or non-intrusive monitoring point of PM cells.
OAM-Fault Management is provided on a per-connection basis in the ingress
and egress directions. Simultaneous segment and end-to-end F4 and F5 AIS, RDI and CC cell generation, termination and monitoring is supported. Alarm bits and interrupt masks are provided on a per-connection basis. F4 to F5 AIS alarm splitting is provided in the Ingress direction. Paced insertion of FM cells is provided.
OAM-Loopback extraction (to a Microprocessor Cell Interface) is per-
connection configurable in both the ingress and egress directions.Includes a FIFO buffered microprocessor bus interface for cell insertion and extraction (in both the ingress and egress directions), Ingress and Egress VC Table access, control and status monitoring and configuration of the device.
Supports DMA access for cell extraction.
Uses common external Synchronous Flow-Through SRAM (with or without
parity) for maintaining per-connection information. Separate SRAM’s are used for the Ingress and Egress context tables.
Provides a standard 5 signal P1149.1 JTAG test port for boundary scan board
test purposes.
Provides a generic 16 bit microprocessor bus interface for configuration,
control and status monitoring.
Low power 0.35 micron, 3.3 V CMOS technology with a 3.3 V UTOPIA (SCI-
PHY), 3.3/5 V Microprocessor I/O interfaces and 3.3 V external synchronous SRAM interfaces.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 4
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
The UTOPIA (SCI-PHY) and external Synchronous SRAM interfaces are 52
MHz max.
432 Super BGA package.
1.1 Policing
Policing is performed in the ingress direction for adherence to peak cell rate
(PCR), cell delay variation tolerance (CDVT), sustained cell rate (SCR) and burst tolerance (BT). Violating cells can be noted, dropped or tagged.
Policing is performed using the virtual scheduling Generic Cell Rate Algorithm
(GCRA) described in ITU-T I.371.
Two policing instantiations available per VC. The policed cell streams can be
any combination of user cells, OAM cells, Resource Management, high priority cells or low priority cells.
Per-PHY policing may also be enabled. Each of 32 PHY devices may have a
single leaky bucket enabled, in addition to the dual leaky bucket of the connection. Violating cells can be noted (counted only), dropped or tagged.
1.2 Cell Counting
Counts maintained on a per-VC basis include total low priority cells, total high
priority cells and cells violating the traffic contract. Per-VC counts are maintained for both the ingress and egress directions.
Counts maintained on a per-PHY basis (in both the Ingress and Egress
directions) include:
number of CLP0 cells received.
number of CLP1 cells received.
number of OAM cells received.
number of RM cells received.
number of errored OAM cells.
number of errored RM cells.
number of cells with unassigned/invalid VPI/VCI/PTI.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 5
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
number of cells received with a non-zero GFC (ingress UNI only).
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 6
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
2 APPLICATIONS
Mini DSL Access Multiplexers (Mini-DSLAMs).
Multiservice Access Multiplexers.
3rd generation wireless base stations and base station controllers.
Subscriber Access terminal devices.
APON Subscriber Access CLE.
LMDS Subscriber Access CLE.
Integrated Access Devices.
Figure 1 S/UNI-ATLAS-1K800 in OC3 mini-DSLAM Application
line cards
up to 31
Utopia L2
ports
up to 31
Utopia L2
ports
DSL Phy
DSL Phy
line cards
DSL Phy
DSL Phy
S/UNI-
DUPLEX
S/UNI-
DUPLEX
200Mbps
LVDS
S/UNI-
VORTEX
Up to 8 LVDS links to S/UNI-Duplex devices per S/UNI-VORTEX
AnyPhy/
SciPhy
Context SSRAM
S/UNI­APEX­1K800
Packet/Cell
SDRAM
S/UNI-
ATLAS-
1K800
Ingress
SSRAM
Egress
SSRAM
Figure 1 shows the S/UNI-ATLAS-1K800 in a mini DSLAM application. The S/UNI-APEX-1K800 acts as a cell buffer and traffic manager. The S/UNI-ATLAS­1K800 provides address resolution and policing.
Phy
Host CPU
core card
The mini-DSLAM application supports eight LIU devices per Line Card. Each xDSL modem is connected by its Utopia port to a FPGA which provides an interface to the AnyPhy bus. If Hot Swap capability is needed the bus signals need to be passed through switching or tristate drivers to isolate the card when being plugged in.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 7
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
The FPGA performs the task of converting the Utopia to signals compatible with the APEX-1K800 and ATLAS-1K800.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 8
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
3 REFERENCES
ATM Forum – ATM User-Network Interface Specification, V3.1 September,
1994.
ITU-T Recommendation I.361 – “B-ISDN ATM Layer Specification”,
November 1995.
ITU-T Recommendation I.371 – “Traffic Control and Congestion Control in B-
ISDN”, May, 1996.
ITU-T Recommendation I.610 – “B-ISDN Operation and Maintenance
Principles and Functions”, June, 1997 (Rapporteur’s edition)
Bell Communications Research – Broadband Switching System (BSS)
Generic Requirements, GR-1110-CORE, Issue 1, September 1994.
Bell Communications Research – Asynchronous Transfer Mode (ATM) and
ATM Adaptation Layer (AAL) Protocols, GR-1113-CORE, Issue 1, July 1994.
Bell Communications Research – Generic Requirements for Operations of
Broadband Switching Systems, GR-1248-CORE, Issue 3, August, 1996.
IEEE 1149.1 – Standard Test Access Port and Boundary Scan Architecture,
May 21, 1990.
PMC-940212, ATM SCI-PHY, “SATURN Compliant Interface for ATM
Devices”, July 1994, Issue 2.
ATMF TM4.0 – ATM Forum Traffic Management Specification Version 4.0, af-
tm-0056.000, April, 1996.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 9
STANDARD PRODUCT
PM7328 S/UNI-ATLAS-1K800
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
4 APPLICATION EXAMPLES
Figure 2 S/UNI-ATLAS-1K800 Block Diagram
(Slave) SCI-PHY Level1 I nterfac e
] 0 : 5 1
[
y
t
t
a
r
d
p
o
o
M A R S s u o n o
r h c n y S l a n r e
t x E
o T
isadsb
isoeb
isrwb
isa[19:16] [9:0]
isp[7:0]
isd[63:0]
isysc lk
b n
c o s o
s s
l l
e
e
r g
C
n
I
s
h
s
c
e
r
r
a
g
e
n
S
I
n
k
e
l
e
a
d
s
c
c
r
f
t
o
o
o
o
t
s s
u
e
p t
r
u
g n
O
I
r o s s e c o
r P
e n
i g n E
s
t
s
u
e r
p
g
n
I n
I
] 0
: 5 1
[ t
a d
i
e c
l
a
l
f
e
r e
C
t n
I
d
e
r
s
c
a
l
s
a
l
f
e
w
e
r
r
k
e
g
C
c
t
E
a
n
I
B
n
s
Y
o
c
i
i
H
t
t
P
c
s
-
i
e
t
r
l l
a
e
t
o
P
S
C
d
e
r
c
s
a
l
a
s
l
f
w
e
e
r
r
k
e
C
g
c
t
n
a
n
I
I
B
e c
l
a
l
f
e
r e
C
t n
I
] 1
y
k
c
[
t
l
r
o
a
c
p
s
c
f
i
i
i
i
e
s
c
t
l
s
a
l
u
f
e
e
r
r
p
e
C
n
g
I
t
E
n
I
r o
s
s
l
s
l
s
e
e
e
r
c
C
g
o
E
r P
e
t
s
c
l
s
u
a
l
f
e
p
e
r
t
r
e
u
C
g
t
O
E
n
I
(Slave) SCI-PHY Level1/Level2 Interface
] 2
: 4
[
]
b
2
n
:
e
3
r
[
]
a
w
4
i
c
[
/
i /
]
a
] 1 [ b
n e r
w
i
0
c
3 :
:
i
/
2
4
d
[
[
l
r
r
i a v a
i
l
d
d
l o
d
d
p
a
a
i
i
i
trstb
e c
G
a f
A
r
T
e t
J
n
I
r o s s
e
s
e
c
l
s
c
a
l
f
e
o
e
r
r
r
e
C
g
p
t
E
o
n
r
I
c
i M
r o s s
e
s
e
c
l
s
c
a
l
e
f
o
e
r
r
r
e
g
C
p
t
n
o
I
n
r
I
c
i M
r o s s
e
e
c
c
a f
o
r
r
e
p
t
o
n
r
I
c
i M
tms
tck
tdi
tdo
M A R S
esoeb
esrwb
esadsb
esp[3:0]
esd[31:0]
esysclk
busyb
edreq
idreq
intb
rstb
wrb
rdb
csb
ale
a[11:0]
d[15:0]
s u o n o r h c n y S
esa[19:16] [9:0]
l a n
r e
t x E
o T
halfsecclk
]
]
]
]
y
0
t
:
r
5
p
1
r [ t a d r
]
2
2
]
:
1
4
[
1
[
3
[
[
b
a
a
a
c
n
c
r
c
e
r
/
r /
d
d
]
r
i
l
r
3 :
a
4
v
[
a
r
r
d d a
r
l
:
c
4
o
[
s
b
r n e d r r
/ ]
0 :
2 [ r
d d a
r
]
k
l
l c
f r
y t
0
o
r
:
p
5
p
r
t
1 [ t
a d
t
(Master) SCI-PHY Level1 /Level2 I nterf ace
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 10
]
]
]
]
]
1
2
1
4
:
[
[
[
3
a
a
b
[
c
c
n
t
a
t
/
e
c
r
t
d
/
i
l
]
w t
3
a
:
v
4
a
[
t
r d d a
t
l
c
k
l
2
l
o
o
:
c
s
f
4
p
t
t
t
[ b n e
r w
t
/ ]
0 : 2 [ r
d d a
t
(Master) SCI-PHY Level1/Level2 Interface
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
5 DESCRIPTION
The S/UNI-ATLAS-1K800 is a bi-directional ATM Layer device that implements the ATM layer functions including header translation, policing, fault management, performance monitoring, per-connection and per-PHY counting. The S/UNI­ATLAS-1K800 is intended to be situated between a switch core and a physical layer device. The S/UNI-ATLAS-1K800 supports a sustained throughput of
1.42x10
6
cells/s in both the ingress (from the PHY into the switch core) and the egress (from the switch core to the PHY device) directions. The S/UNI-ATLAS­1K800 uses external synchronous flow-through SRAM to store the per­connection data structures. The device is capable of supporting up to 1024 connections.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 11
STANDARD PRODUCT
PM7328 S/UNI-ATLAS-1K800
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
6 PIN DIAGRAM
The S/UNI-ATLAS-1K800 is packaged in a 432 thermally enhanced BGA -SBGA package having a body size of 40 mm x 40 mm x 1.54 mm and a ball pitch of
1.27 mm. This pin diagram can be downloaded from the PMC-Sierra website (http://www.pmc-sierra.com).
NC
NC
NC
NC
NC
NC
NC
NC
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 12
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
7 PIN DESCRIPTION
Pin Name Type Pin No. Function
Ingress Input Cell Interface: 28 pins
RFCLK Input
RPOLL Input
U3 The Ingress Input Cell Interface clock (RFCLK) is
used to read words from the PHY receive side into the S/UNI-ATLAS-1K800 Ingress Input Cell Interface. RFCLK must cycle at a 52 MHz or lower instantaneous rate. RSOC, RCA[4:1], RPRTY and RDAT[15:0] are sampled on the rising edge of RFCLK. RRDENB[4:1], RADDR[4:0] and RAVALID are updated on the rising edge of RFCLK.
U4 The Ingress Input Cell Interface Poll pin (RPOLL) is
used to control whether the Ingress Input Cell Interface operates in SCI-PHY Level 1 mode or SCI­PHY Level 2 mode. If RPOLL is low, the Ingress Input Cell Interface operates in SCI-PHY Level 1 mode (compatible with UTOPIA Level 1 cell-level handshaking). This is a direct addressing mode using the RCA[4:1] inputs and the RRDENB[4:1] outputs. If RPOLL is high, the Ingress Input Cell Interface operates in a SCI-PHY Level 2 mode (compatible with UTOPIA Level 2). This is a polled addressing mode using the RADDR[4:0], RAVALID and RRDENB[1] outputs, and the RCA[1] input. If fewer than 32 PHY devices are used, the RAVALID pin need not be connected.
Note: In direct addressing mode, the 4-PHY configuration is not recommended. Instead the 4­PHY address-polling mode should be used. This does not apply to the Single or Dual-PHY configurations.
RPOLL is assumed to be a static input.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 13
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Pin Name Type Pin No. Function
RSOC Input
RCA[1]
I/O
RCA[2]
RCA[3]
RCA[4]
V2 The Ingress Input Cell Interface Start of Cell (RSOC)
marks the start of the cell on the RDAT[15:0] bus. When RSOC is high, the first word of the cell structure is present on the RDAT[15:0] stream. It is not necessary for RSOC to be asserted for each cell. An interrupt may be generated if RSOC is high during any word other than the first word of the cell structure.
RSOC is sampled on the rising edge of RFCLK and considered valid only when one of the RRDENB[4:1] signals so indicates.
U2
T1
R3
R4
The active polarity of these signals is programmable and defaults to active high.
If the RPOLL pin is low, the ATLAS-1K800 asserts the appropriate RRDENB[4:1] signal in response to a round robin polling of the RCA[4:1] signals. Once committed, the ATLAS-1K800 will transfer an entire cell from a single PHY before servicing the next. The ATLAS-1K800 will complete the read of an entire cell even if the associated RCA[4:1] input is deasserted during the cell transfer. Sampling of the RCA[4:1] inputs resumes the cycle after the last octet of a cell has been transferred.
Note, RCA[1] is an input only.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 14
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Pin Name Type Pin No. Function
RCA[4:1] (continued)
RRDENB[1]
RRDENB[2]
RRDENB[3]
RRDENB[4]
Output
U1
T4
T3
T2
If the RPOLL pin is high, the RCA[3:2] pins are redefined as RADDR[4:3] and the RCA[4] pin is redefined as RAVALID.
If the RPOLL pin is high, the ATLAS-1K800 polls up to 32 PHYs using the PHY address signals RADDR[4:0]. A PHY device being addressed by RADDR[4:0] is expected to indicate whether or not it has a complete cell available for transfer by driving RCA[1] during the clock cycle following that in which it is addressed. When a cell transfer is in progress, the ATLAS-1K800 will not poll the PHY device which is sending the cell and so PHY devices need not support the cell availability indication during cell transfer. The selection of a particular PHY device from which to transfer a cell is indicated by the state of RADDR[4:0] and when RRDENB[1] is asserted.
Note, RCA[1] is an input only. The RCA[4:1] signals are sampled on the rising edge of RFCLK.
The active low read enable (RRDENB[4:1]) outputs are used to initiate the reading of cells from a PHY device into the Ingress Input Cell Interface.
If the RPOLL pin is low, the ATLAS-1K800 asserts one of the RRDENB[4:1] outputs to transfer a cell from one of up to 4 PHY devices. A valid word is expected on the RDAT[15:0] bus at the second rising edge of RFCLK after one of the enables is asserted. When all of the enables are deasserted, no valid data is expected.
The RRDENB[4:1] outputs are updated on the rising edge of RFCLK.
If the RPOLL pin is high, the RRDENB[4:2] pins are redefined as RADDR[2:0]. The RRDENB[1] pin is used to transfer all cells. The source PHY is selected by the RADDR[4:0] signals.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 15
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Pin Name Type Pin No. Function
RADDR[4]
Output
RADDR[3]
RADDR[2]
RADDR[1]
RADDR[0]
RAVALID I/O
R3
T1
T2
T3
T4
If the RPOLL pin is high, the RADDR[4:0] pins are used for PHY addressing. If the RPOLL pin is low, the RADDR[4:0] pins are redefined as RCA[3:2] and RRDENB[4:2].
If the RPOLL pin is high, the RADDR[4:0] signals are used to address up to 32 PHY devices for the purposes of polling and selection for cell transfer. When conducting polling, in order to avoid bus contention, the ATLAS-1K800 inserts gap cycles during which RADDR[4:0] is set to 0x1F and RAVALID is logic 0. When this occurs, no PHY device should drive RCA[1] during the following clock cycle. Polling is performed in incrementing sequential order. The PHY device selected for transfer is based on the RADDR[4:0] value present when RRDENB[1] is falls. The RADDR[4:0] bus is updated on the rising edge of RFCLK.
R4 If the RPOLL pin is high, the PHY Address Valid
(RAVALID) pin is active. If the RPOLL pin is low, the RAVALID pin is redefined as RCA[4].
If the RPOLL pin is high, the RAVALID pin indicates that the RADDR[4:0] bus is asserting a valid PHY address for polling purposes. When this signal is deasserted, the RADDR[4:0] bus is set to 0x1F.
RAVALID is not necessary when less than 32 PHY devices are being polled. RAVALID is updated on the rising edge of RFCLK.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 16
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Pin Name Type Pin No. Function
RDAT[15]
RDAT[14]
RDAT[13]
RDAT[12]
RDAT[11]
RDAT[10]
RDAT[9]
RDAT[8]
RDAT[7]
RDAT[6]
RDAT[5]
RDAT[4]
RDAT[3]
RDAT[2]
RDAT[1]
RDAT[0]
Input
W1
W2
W3
Y1
Y2
W4
Y3
AA1
AA2
Y4
AA3
AB1
AB2
AA4
AB3
The Ingress Input Cell Interface cell data bus (RDAT[15:0]) carries the ATM cell octets that are written to the Ingress Input Cell Interface. The RDAT[15:0] bus is sampled on the rising edge of RFCLK and considered valid only when one of the RRDENB[4:1] signals so indicates. RDAT[15:8] is only valid if the RBUS8 register bit is low.
AC1
RPRTY Input
V3 The Ingress Input Cell Interface parity (RPRTY)
Ingress SRAM Interface: 96 pins
signal indicates the parity (programmable for odd or even parity) of the RDAT[15:0] bus. If the RBUS8 register bit is low, the RPRTY signal indicates parity over the RDAT[15:0] data bus. If RBUS8 is high, the RPRTY signal indicates parity over the RDAT[7:0] data bus. A maskable interrupt status is generated upon a parity error; no other actions are taken. The RPRTY signal is sampled on the rising edge of RFCLK and is considered valid only when one of the RRDENB[4:1] signals so indicates.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 17
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Pin Name Type Pin No. Function
ISYSCLK Input
ISD[63]
I/O AG1
ISD[62]
ISD[61]
ISD[60]
ISD[59]
ISD[58]
ISD[57]
ISD[56]
ISD[55]
ISD[54]
ISD[53]
ISD[52]
ISD[51]
AH21 The Ingress System clock (ISYSCLK) is used for the
Ingress portion of the ATLAS-1K800. ISYSCLK must cycle at a 52 MHz or lower instantaneous rate, but a high enough rate to maintain an 800Mbit/s throughput. ISADSB, ISOEB, ISRWB are updated on the rising edge of ISYSCLK. When ISD[63:0] and ISP[7:0] are outputs, they are updated on the rising edge of ISYSCLK. When ISD[63:0] and ISP[7:0] are inputs, they are sampled on the rising edge of ISYSCLK.
The bi-directional Ingress VC Table SRAM data bus
AG2
AF4
AG3
AH1
(ISD[63:0]) pins interface directly with the synchronous SRAM data ports.
A SRAM read is performed when the ATLAS-1K800 drives the address strobe (ISADSB) low and the ISRWB output high. The ATLAS-1K800 tristates the ISD[63:0] pins and samples the value driven by the
AJ5
AH6
AK5
SRAM on the second rising edge of the ISYSCLK input after ISADSB is asserted.
A SRAM write is performed when the ATLAS-1K800 drives the address strobe low (ISADSB) and the
AL5
AJ6
AK6
AL6
AJ7
ISRWB output low. The ATLAS-1K800 presents valid data on the ISD[63:0] pins upon the rising edge of ISYSCLK which is written into the SRAM on the next ISYSCLK rising edge. ISD[63:0] is tristated on the rising edge of ISYSCLK. Contention is avoided by not performing a write during the cycle after a read burst.
ISD[50]
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 18
AH8
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Pin Name Type Pin No. Function
ISD[49]
ISD[48]
ISD[47]
ISD[46]
ISD[45]
ISD[44]
ISD[43]
ISD[42]
ISD[41]
ISD[40]
ISD[39]
ISD[38]
ISD[37]
ISD[36]
ISD[35]
I/O AK7
AL7
AJ8
AH9
AK8
AL8
AJ9
AK9
AL9
AJ10
AH11
AK10
AL10
AJ11
AH12
Continued
ISD[34]
ISD[33]
ISD[32]
AK11
AL11
AJ12
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 19
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Pin Name Type Pin No. Function
ISD[31]
ISD[30]
ISD[29]
ISD[28]
ISD[27]
ISD[26]
ISD[25]
ISD[24]
ISD[23]
ISD[22]
ISD[21]
ISD[20]
ISD[19]
ISD[18]
ISD[17]
ISD[16]
I/O
AH13
AK12
AL12
AJ13
AK13
AL13
AJ14
AK14
AH15
AJ15
AL16
AK16
AJ16
AH16
AL17
Continued
AK17
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 20
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Pin Name Type Pin No. Function
ISD[15]
ISD[14]
ISD[13]
ISD[12]
ISD[11]
ISD[10]
ISD[9]
ISD[8]
ISD[7]
ISD[6]
ISD[5]
ISD[4]
ISD[3]
ISD[2]
ISD[1]
ISD[0]
I/O
AJ17
AK18
AH17
AJ18
AL19
AK19
AJ19
AL20
AK20
AH19
AJ20
AL21
AK21
AH20
AJ21
Continued
AL22
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 21
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Pin Name Type Pin No. Function
ISP[7]
ISP[6]
ISP[5]
ISP[4]
ISP[3]
ISP[2]
ISP[1]
ISP[0]
I/O
AD3
AE1
AE2
AD4
AE3
AF1
AF2
AF3
The Ingress VC Table SRAM parity (ISP[7:0]) pins provide parity protection over the ISD[63:0] data bus.
ISP[0] completes odd parity for ISD[7:0]
ISP[1] completes odd parity for ISD[15:8]
ISP[2] completes odd parity for ISD[23:16]
ISP[3] completes odd parity for ISD[31:24]
ISP[4] completes odd parity for ISD[39:32]
ISP[5] completes odd parity for ISD[47:40]
ISP[6] completes odd parity for ISD[55:48]
ISP[7] completes odd parity for ISD[63:56]
ISP[7:0] has the same timing as ISD[63:0]. When data are being written into the SRAM, the ATLAS­1K800 generates correct parity. When data are being read from the SRAM, the ATLAS-1K800 asserts a maskable interrupt indication upon parity error detection. No other action is taken, therefore, the ISP[7:0] may be unconnected if parity protection is not required.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 22
STANDARD PRODUCT
DATASHEET
PMC-2010142 ISSUE 2 ATM LAYER SOLUTION
PM7328 S/UNI-ATLAS-1K800
Pin Name Type Pin No. Function
ISA[19]
ISA[18]
ISA[17]
ISA[16]
ISA[9]
ISA[8]
ISA[7]
ISA[6]
ISA[5]
ISA[4]
ISA[3]
ISA[2]
ISA[1]
ISA[0]
Output
AJ23
AL24
AK24
AH23
AK26
AJ26
AL27
AK27
AH26
AJ27
AH31
AG29
AF28
AG30
The Ingress VC Table SRAM (ISA[19:0]) outputs identify the SRAM locations accessed.
The least significant bits (ISA[9:0]) locate 1 of 1024 possible Ingress VC Table entries.
The four most significant bits (ISA[19:16]) identify the fields within an Ingress VC Table record. In most applications, the ISA[19:16] pins are decoded to SRAM chip selects. Physical memory need not be allocated for unused fields.
The ISA[9:0] outputs are also used to access the Ingress VC Table Search Table.
The ISA[19:0] bus is updated on the rising edge of ISYSCLK.
ISRWB Output
ISADSB Output
AJ22 The Ingress VC Table SRAM Read Write Bar
(ISRWB) qualifies the data and parity busses. If the ISRWB output is asserted high, a read operation is performed and the ATLAS-1K800 tristates the data and parity busses so they may be driven by the SRAM. If the ISRWB output is asserted low, a write operation is performed and the ATLAS-1K800 drives the data and parity busses.
ISRWB is updated on the rising edge of ISYSCLK.
AK23 The Ingress VC Table SRAM Address Strobe
(ISADSB) qualifies the address bus. If the ISADSB output is asserted low, an SRAM access is initiated.
ISADSB is updated on the rising edge of ISYSCLK.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC 23
Loading...
+ 475 hidden pages