PMC PM7324-BI Datasheet

S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
PM7324
S/UNI-ATLAS
SATURN USER NETWORK INTERFACE
DATASHEET
ISSUE 7: JANUARY, 2000
PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 604 .415.6000
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
PUBLIC REVISION HISTORY
Issue No.
1 2
3
4
5
6 7
Issue Date Details of Change
Sep., 1997 Nov., 1997
Initial release Revised F4toF5 AIS processing and numerous other
clarifications and expanded descriptions.
Feb., 1998
Updated the Ingress and Egress VC Tables to include room for Segment Defect Location and Defect Type fields. Also included GFR policing. Modified PM internal RAM to 80­bits wide to include support for I.356 measurement requirements.
Oct., 1998
Updated VC Table and Register Addresses. Included 432SBGA package drawing. Enhanced description of OAM processing, GFR policing, per-PHY policing, etc.
Jan., 1999
Removed “Proprietary and Confidential”. No content change.
Sep., 1999 Jan., 2000
Aligns with Revision C Corrected Reliability Calculations. Corrected Block Diagram to reflect correct ingress/egress
backward cell interface block positions. Modified RPOLL, IPOLL and TPOLL pin descriptions. Table 37 – Added VOH specification. Table 38 – Changed the timing specification to become
“Typical” for tSALR, tHALR, tSLR, tHLR. Table 40 – Changed IAVALID setup and hold times (t
t
) to become “Typical”.
hold
setup
and
Table 40-45 – Changed Min CLK Frequency for RFCLK, TFCLK, IFCLK, OFCLK, ISYSCLK, ESYSCLK.
Table 40-43 – Changed Utopia input hold times for IWRENB[4:1], IAVALID, IADDR[4:0], IDAT[15:0], IPRTY, ISOC, ORDENB, RPRTY, RDAT[15:0], RCA[4:1], RSOC and TCA[4:1].
Table 40, 44, 45 – Changed prop delay times for ICA[4:1], ISD[63:0], ISP[7:0], ESD[31:0] and ESP[3:0].
PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 604 .415.6000
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
CONTENTS
1 FEATURES..................................................................................................................................... 1
1.1 POLICING ........................................................................................................................ 5
1.2 CELL COUNTING............................................................................................................. 5
2 APPLICATIONS.............................................................................................................................. 6
3 REFERENCES...............................................................................................................................7
4 APPLICATION EXAMPLES............................................................................................................ 8
5 DESCRIPTION............................................................................................................................... 9
6 PIN DIAGRAM.............................................................................................................................. 10
7 PIN DESCRIPTION...................................................................................................................... 11
8 FUNCTIONAL DESCRIPTION...................................................................................................... 42
8.1 INGRESS VC TABLE..................................................................................................... 45
8.2 CONNECTION IDENTIFICATION.................................................................................. 47
8.2.1 INGRESS CONNECTION IDENTIFICATION................................................... 47
8.3 SEARCH TABLE DATA STRUCTURE........................................................................... 52
8.3.1 PRIMARY SEARCH TABLE............................................................................. 52
8.3.2 SECONDARY SEARCH KEY TABLE.............................................................. 53
8.4 INGRESS CELL PROCESSING..................................................................................... 54
8.5 EGRESS VC TABLE...................................................................................................... 63
8.5.1 EGRESS CONNECTION IDENTIFICATION.................................................... 64
8.6 EGRESS CELL PROCESSING...................................................................................... 67
8.7 PERFORMANCE MONITORING.................................................................................... 76
8.7.1 PERFORMANCE MONITORING FLOWS........................................................ 86
8.8 CHANGE OF CONNECTION STATE............................................................................. 88
8.9 HEADER TRANSLATION............................................................................................... 90
8.10 CELL ROUTING............................................................................................................. 91
8.11 CELL RATE POLICING.................................................................................................. 91
8.11.1 PER-PHY POLICING....................................................................................... 99
8.11.2 GUARANTEED FRAME RATE ...................................................................... 104
8.11.3 CONTINUOUSLY VIOLATING MODE........................................................... 107
8.11.4 ATLAS POLICING CONFIGURATION........................................................... 107
8.12 CELL COUNTING......................................................................................................... 108
8.13 OPERATIONS, ADMINISTRATION AND MAINTENANCE (OAM) CELL SERVICING 111
8.14 FAULT MANAGEMENT CELLS................................................................................... 113
8.15 LOOPBACK CELLS...................................................................................................... 115
8.16 ACTIVATION/DEACTIVATION CELLS ........................................................................ 115
8.17 SYSTEM MANAGEMENT CELLS................................................................................ 115
PROPRIETARY AND CONFIDENTIAL i
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
8.18 F4 TO F5 OAM PROCESSING.................................................................................... 115
8.19 F5 TO F4 OAM PROCESSING.................................................................................... 124
8.20 RESOURCE MANAGEMENT CELLS .......................................................................... 129
8.21 S/UNI-ATLAS BACKGROUND PROCESSES.............................................................. 129
8.22 INGRESS BACKWARD OAM CELL INTERFACE........................................................ 131
8.23 EGRESS BACKWARD OAM CELL INTERFACE......................................................... 131
8.24 JTAG TEST ACCESS PORT........................................................................................ 132
8.25 MICROPROCESSOR INTERFACE.............................................................................. 132
8.26 EXTERNAL SRAM ACCESS........................................................................................ 132
8.27 WRITING CELLS.......................................................................................................... 133
8.28 READING CELLS......................................................................................................... 134
8.29 ATLAS DLL CLOCK OPERATION............................................................................... 138
9 NORMAL MODE REGISTER MEMORY MAP............................................................................ 139
9.1 NORMAL MODE REGISTER DESCRIPTION.............................................................. 147
10 TEST FEATURES DESCRIPTION............................................................................................. 407
10.1 TEST MODE 0 DETAILS.............................................................................................. 410
10.2 JTAG TEST PORT....................................................................................................... 410
11 OPERATION............................................................................................................................... 415
11.1 SCI-PHY EXTENDED CELL FORMAT......................................................................... 415
11.2 SYNCHRONOUS STATIC RAMS ................................................................................ 417
11.2.1 INGRESS VC-TABLE SRAM ......................................................................... 417
11.2.2 EGRESS VC-TABLE SRAM........................................................................... 418
11.3 ATM CELL PROCESSING........................................................................................... 419
11.3.1 OAM CELL FORMAT..................................................................................... 419
11.4 INGRESS VC IDENTIFICATION SEARCH ALGORITHM............................................ 421
11.4.1 OVERVIEW.................................................................................................... 422
11.4.2 INGRESS PERFORMANCE MONITORING ACTIVATION / DEACTIVATION428
11.5 EGRESS VC TABLE OPERATION.............................................................................. 428
11.5.1 INITIALIZATION PROCEDURE..................................................................... 428
11.5.2 CONNECTION SETUP.................................................................................. 429
11.5.3 EGRESS PERFORMANCE MONITORING ACTIVATION / DEACTIVATION 430
11.6 JTAG SUPPORT.......................................................................................................... 431
11.6.1 TAP CONTROLLER....................................................................................... 432
12 FUNCTIONAL TIMING ............................................................................................................... 436
12.1 INGRESS INPUT CELL INTERFACE........................................................................... 436
12.2 INGRESS OUTPUT CELL INTERFACE....................................................................... 439
12.3 EGRESS INPUT CELL INTERFACE............................................................................ 441
12.4 EGRESS OUTPUT CELL INTERFACE........................................................................ 444
PROPRIETARY AND CONFIDENTIAL ii
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
13 ABSOLUTE MAXIMUM RATINGS.............................................................................................. 447
14 D.C. CHARACTERISTICS.......................................................................................................... 448
15 A.C. TIMING CHARACTERISTICS............................................................................................. 450
16 MECHANICAL INFORMATION .................................................................................................. 464
PROPRIETARY AND CONFIDENTIAL iii
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
LIST OF FIGURES
FIGURE 1 S/UNI-ATLAS BLOCK DIAGRAM................................................................................................ 8
FIGURE 2 VC SEARCH KEY COMPOSITION........................................................................................... 47
FIGURE 3 PARAMETERS OF THE PRIMARY KEY AND SECONDARY KEY.......................................... 49
FIGURE 4 SEARCH KEY LOCATIONS WITHIN THE ROUTING WORD ................................................. 50
FIGURE 5 ATLAS SEARCH TABLE STRUCTURE.................................................................................... 52
FIGURE 6 EGRESS ROUTING WORD AND EGRESS LOOKUP ADDRESS............................................ 65
FIGURE 7 ATLAS PM FLOWS ........................................................................................................ 86
FIGURE 8 F4 TO F5 OAM FLOWS ...................................................................................................... 116
FIGURE 9 INGRESS TERMINATION OF F4 SEGMENT AND END-TO-END-POINT
CONNECTIONS............................................................................................. 117
FIGURE 10 INGRESS TERMINATION OF F4 SEGMENT AND END-TO-END POINT CONNECTION .. 118
FIGURE 11 INGRESS TERMINATION OF F4 SEGMENT END-POINT CONNECTION.......................... 119
FIGURE 12 INGRESS TERMINATION OF F4 END-TO-END POINT CONNECTION.............................. 120
FIGURE 13 F5 TO F4 OAM FLOWS ...................................................................................................... 124
FIGURE 14 EGRESS TERMINATION OF A VPC SEGMENT END-POINT............................................. 125
FIGURE 15 VPC INTERMEDIATE POINT............................................................................................... 126
FIGURE 16 VCC INTERMEDIATE POINT................................................................................................ 126
FIGURE 17 VPC SEGMENT END-POINT................................................................................................ 127
FIGURE 18 VCC SEGMENT END POINT................................................................................................ 127
FIGURE 19 VPC SEGMENT END-POINT AND END-TO-END POINT.................................................... 128
FIGURE 20 INGRESS VPC END-TO-END POINT AND SEGMENT END-POINT, VC SEGMENT
END-POINT AND SEGMENT SOURCE POINT. EGRESS VPC END-TO-
END AND SEGMENT SOURCE POINT WITH VCC SEGMENT END-
POINT AND VCC SEGMENT SOURCE POINT ............................................ 128
FIGURE 21 INGRESS VPC END-TO-END AND SEGMENT END POINT WITH VC INTERMEDIATE
POINT. EGRESS VPC END-TO-END AND SEGMENT SOURCE POINT
WITH VC INTERMEDIATE POINT AND VC SEGMENT SOURCE POINT. .. 129
FIGURE 22 INPUT OBSERVATION CELL (IN_CELL)............................................................................ 413
FIGURE 23 OUTPUT CELL (OUT_CELL)................................................................................................ 413
FIGURE 24 BI-DIRECTIONAL CELL (IO_CELL)...................................................................................... 414
FIGURE 25 LAYOUT OF OUTPUT ENABLE AND BI-DIRECTIONAL CELLS......................................... 414
FIGURE 26 EIGHT BIT WIDE CELL FORMAT......................................................................................... 416
FIGURE 27 SIXTEEN BIT WIDE CELL FORMAT .................................................................................... 417
FIGURE 28 COMMON OAM CELL FORMAT........................................................................................... 419
FIGURE 29 SPECIFIC FIELDS FOR AIS/RDI FAULT MANAGEMENT CELL......................................... 420
FIGURE 30 SPECIFIC FIELDS FOR THE FPM CELL ............................................................................. 420
FIGURE 31 SPECIFIC FIELDS FOR THE BR CELL................................................................................ 421
FIGURE 32 CONNECTION INSERTION WHEN BINARY TREE IS EMPTY............................................ 424
FIGURE 33 CONNECTION INSERTION WHEN BINARY TREE CONTAINS ONLY SINGLE VC
RECORD. ...................................................................................................... 424
FIGURE 34 CONNECTION INSERTION AT THE ROOT OF THE TREE................................................. 425
FIGURE 35 CONNECTION INSERTION IN THE MIDDLE OF THE BINARY TREE................................ 426
FIGURE 36 NEW SECONDARY SEARCH TABLE ENTRY INSERTED AT A LEAF. .............................. 427
FIGURE 37 BOUNDARY SCAN ARCHITECTURE................................................................................... 431
FIGURE 38 TAP CONTROLLER FINITE STATE MACHINE.................................................................... 433
FIGURE 39 INGRESS INPUT CELL INTERFACE (RPOLL=0) ................................................................ 436
FIGURE 40 INGRESS INPUT CELL INTERFACE (RPOLL=1) EXAMPLE 1........................................... 437
FIGURE 41 INGRESS INPUT CELL INTERFACE (RPOLL=1) EXAMPLE 2............................................ 438
FIGURE 42 INGRESS OUTPUT CELL INTERFACE (OTSEN=0)............................................................ 439
FIGURE 43 INGRESS OUTPUT CELL INTERFACE (OTSEN=1)............................................................ 440
FIGURE 44 EGRESS INPUT CELL INTERFACE (IPOLL=0)................................................................... 441
FIGURE 45 EGRESS INPUT CELL INTERFACE POLLED MODE (IPOLL=1) ........................................ 443
FIGURE 46 EGRESS OUTPUT CELL INTERFACE DIRECT MODE (TPOLL=0).................................... 444
FIGURE 47 EGRESS OUTPUT CELL INTERFACE POLLED MODE (TPOLL=1)................................... 445
FIGURE 48 MICROPROCESSOR INTERFACE READ TIMING.............................................................. 451
PROPRIETARY AND CONFIDENTIAL iv
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
FIGURE 49 MICROPROCESSOR INTERFACE WRITE TIMING............................................................. 453
FIGURE 50 EGRESS INPUT CELL INTERFACE TIMING....................................................................... 454
FIGURE 51 INGRESS OUTPUT CELL INTERFACE TIMING.................................................................. 455
FIGURE 52 INGRESS INPUT CELL INTERFACE TIMING..................................................................... 456
FIGURE 53 EGRESS OUTPUT CELL INTERFACE TIMING................................................................... 457
FIGURE 54 INGRESS SRAM INTERFACE TIMING................................................................................. 459
FIGURE 55 EGRESS SRAM INTERFACE TIMING.................................................................................. 460
FIGURE 56 JTAG PORT INTERFACE TIMING........................................................................................ 461
FIGURE 57 ATLAS THETA JA VS. AIR FLOW GRAPH........................................................................... 463
FIGURE 58 432 PIN SBGA – 40 X 40 MM BODY -(B SUFFIX)................................................................ 464
PROPRIETARY AND CONFIDENTIAL v
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
LIST OF TABLES
TABLE 1 INGRESS VC TABLE ........................................................................................................46
TABLE 2 INGRESS VC TABLE CELL FIELDS........................................................................................... 48
TABLE 3 INGRESS VC TABLE STATUS FIELD........................................................................................ 55
TABLE 4 INGRESS VC TABLE CONFIGURATION FIELD....................................................................... 56
TABLE 5 INGRESS VC TABLE OAM CONFIGURATION FIELD.............................................................. 58
TABLE 6 INGRESS INTERNAL STATUS FIELD....................................................................................... 59
TABLE 7 INGRESS VC TABLE MISCELLANEOUS FIELDS..................................................................... 61
TABLE 8 INGRESS VC TABLE ACTIVATION FIELDS ............................................................................. 62
TABLE 9 EGRESS VC TABLE ........................................................................................................63
TABLE 10 EGRESS VC TABLE CONNECTION IDENTIFIER FIELDS..................................................... 64
TABLE 11 EGRESS VC TABLE ACTIVATION FIELD............................................................................... 68
TABLE 12 EGRESS VC TABLE STATUS FIELD. ..................................................................................... 68
TABLE 13 EGRESS VC TABLE CONFIGURATION FIELD....................................................................... 69
TABLE 14 EGRESS OAM CONFIGURATION FIELD................................................................................ 71
TABLE 15 EGRESS INTERNAL STATUS FIELD...................................................................................... 73
TABLE 16 EGRESS VC TABLE MISCELLANEOUS FIELDS.................................................................... 74
TABLE 17 INTERNAL PM TABLE ........................................................................................................ 76
TABLE 18 PM TABLE CONFIGURATION FIELD...................................................................................... 77
TABLE 19 QOS PARAMETERS FOR PERFORMANCE MONITORING................................................... 79
TABLE 20 INGRESS AND EGRESS CHANGE OF STATE FIFO .............................................................. 89
TABLE 21 ATLAS ACTIONS ON POLICING WITH COCUP=0................................................................. 97
TABLE 22 ATLAS ACTIONS ON POLICING WITH COCUP=1................................................................. 97
TABLE 23 ATLAS ACTIONS WITH PER-PHY POLICING ...................................................................... 100
TABLE 24 INTERNAL PER-PHY POLICING RAM................................................................................... 101
TABLE 25 PER-PHY AND PER-VC NON-COMPLIANT CELL COUNTING PHYVCCOUNT=0.............. 103
TABLE 26 PER-PHY AND PER-VC NON-COMPLIANT CELL COUNTING PHYVCCOUNT=1.............. 104
TABLE 27 INGRESS/EGRESS OAM CONFIGURATION FIELD............................................................. 111
TABLE 28 F4 TO F5 FAULT MANAGEMENT PROCESSING.................................................................. 122
TABLE 29 REGISTER MEMORY MAP..................................................................................................... 139
TABLE 30 INSTRUCTION REGISTER..................................................................................................... 410
TABLE 31 IDENTIFICATION REGISTER................................................................................................. 410
TABLE 32 BOUNDARY SCAN REGISTER .............................................................................................. 411
TABLE 33 ATLAS VC-TABLE AVAILABLE SRAM TYPES....................................................................... 418
TABLE 34 OAM TYPE AND FUNCTION TYPE IDENTIFIERS................................................................. 419
TABLE 35 VC TABLE CONNECTION SETUP.......................................................................................... 429
TABLE 36 ABSOLUTE MAXIMUM RATINGS........................................................................................... 447
TABLE 37 D.C. CHARACTERISTICS ......................................................................................................448
TABLE 38 MICROPROCESSOR INTERFACE READ ACCESS.............................................................. 450
TABLE 39 MICROPROCESSOR INTERFACE WRITE ACCESS............................................................. 452
TABLE 40 EGRESS INPUT CELL INTERFACE....................................................................................... 454
TABLE 41 INGRESS OUTPUT CELL INTERFACE.................................................................................. 455
TABLE 42 INGRESS INPUT CELL INTERFACE...................................................................................... 456
TABLE 43 EGRESS OUTPUT CELL INTERFACE................................................................................... 457
TABLE 44 INGRESS SRAM INTERFACE................................................................................................ 458
TABLE 45 EGRESS SRAM INTERFACE................................................................................................. 459
TABLE 46 JTAG PORT INTERFACE ...................................................................................................... 460
TABLE 47 ORDERING INFORMATION.................................................................................................... 463
TABLE 48 THERMAL INFORMATION...................................................................................................... 463
PROPRIETARY AND CONFIDENTIAL vi
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
1

FEATURES

Point form summary of features.
Monolithic single chip device which handles bi-directional ATM Layer functions including VPI/VCI address translation, cell appending (ingress only), cell rate policing (ingress only), per-connection counting and I.610 compliant OAM requirements for 65536 VCs (virtual connections).
Instantaneous bi-directional transfer rate of 800 Mbit/s supports a bi-directional cell transfer rate of 1.42x10
The Ingress input interface supports an 8 or 16 bit SCI-PHY interface using direct addressing
6
cells/s (one STS-12c or four STS-3c).
for up to 4 PHY devices (compatible with Utopia Level 1 cell-level handshaking) and Multi-PHY addressing for up to 32 PHY devices (Utopia Level 2 compatible).
The Ingress output interface supports an 8 or 16 bit SCI-PHY (52 – 64 byte extended ATM cell with prepend/postpend) interface (compatible with Utopia Level 1 cell-level handshaking) to a switch fabric.
The Egress input interface supports an 8 or 16 bit extended cell format SCI-PHY interface using direct addressing for up to 4 PHY devices (compatible with Utopia Level 1 cell-level handshaking) and Multi-PHY addressing for up to 32 PHY devices (Utopia Level 2 compatible).
The Egress output interface supports an 8 or 16 bit extended cell format SCI-PHY interface using direct addressing for up to 4 PHY devices (compatible with Utopia Level 1 cell-level handshaking) and Multi-PHY addressing for up to 32 PHY devices (Utopia Level 2 compatible).
Compatible with a wide range of switching fabrics and traffic management architectures including per-VC or per-PHY queuing.
Highly flexible OAM-type cell and connection identification which can use arbitrary PHYID/VPI/VCI values and/or cell appended bytes for connection identification (N.B. this is an ingress function only). A direct lookup function is provided in the egress direction. The direct lookup can use an arbitrary header or prepend/postpend location.
Ingress functionality includes a highly flexible search engine that covers the entire PHYID/VPI/VCI address range, programmable dual leaky bucket UPC/NPC, per-connection CLP0 and CLP1 cell counts (programmable), OAM-PM termination, generation and monitoring, and OAM-FM termination, generation and alarm generation (monitoring).
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 1
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
Egress functionality includes programmable direct lookup function, OAM-PM termination,
PM7324 S/UNI-ATLAS
generation and monitoring, per-connection CLP0 and CLP1 cell counts (programmable) and OAM-FM termination, generation and alarm generation (monitoring). An egress per-PHY output buffering scheme resolves the head-of-line blocking issue.
UPC/NPC function is a programmable dual leaky bucket policing device with a programmable action (tag, discard, or count only) for each bucket. A total of 3 programmable 16 bit non­compliant cell counts are provided. The non-compliant cell counts may be programmed to count, for example, dropped CLP0 cells, dropped CLP1 cells, and tagged CLP0 cells. The UPC/NPC function also has a continuously violating mode, where a programmable action is taken on all cells regardless of their compliance. AAL5 partial packet discard is also provided so that the remainder of an AAL5 packet can be tagged or discarded if a single cell in the packet is tagged or discarded as a result of violating policing.
In addition to the per-connection dual leaky bucket, a single leaky bucket UPC/NPC function is provided on a per-PHY basis. A programmable action (tag, discard or count only) may be configured for each PHY policing device. Three programmable non-compliant cell counts are provided for each PHY. The non-compliant cell counts may be programmed to count, for example, dropped CLP0 cells, dropped CLP1 cells and tagged CLP0 cells. The per-PHY policing parameters and non-compliant cell counts are maintained in an on-chip RAM that can be programmed and read via the 16-bit general purpose microprocessor interface.
Guaranteed Frame Rate frame-based policing selectable on a per-connection basis.
OAM-Performance monitoring is provided in the ingress and egress direction for bi-directional PM sessions. A maximum of 512 (256 bi-directional sessions) PM sessions may be simultaneously active. PM is supported on the F4 and F5 levels. The S/UNI-ATLAS provides for the generation of Forw ard Monitoring and Backward Reporting PM cells (both segment and end-to-end), the termination of Forward Monitoring and Backward Reporting cells, and for non-intrusive monitoring of Forward Monitoring and Backward Reporting cells. The following statistics are collected when terminating or monitoring PM flows:
1. Forward Impaired Block.
2. Forward Lost/Misinserted Impaired Block
3. Forward Severely Errored Cell Block (Lost).
4. Forward Severely Errored Cell Block (Misinserted).
5. Forward Severely Errored Cell Block (BIP-16 violations).
6. Forward Severely Errored Cell Block Combined (non-saturating)
7. Forward Lost CLP0+1 cell count.
8. Forward Lost CLP0 cell count.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 2
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
9. Forward Tagged CLP0 cell count
10. Forward Misinserted CLP0+1 cell count.
11. Forward Errored cell count.
12. Forward Total Lost CLP0+1 cell count.
13. Forward Total Lost CLP0 cell count.
14. Forward Lost Forward Monitoring cell count.
15. Backward Impaired Block.
16. Backward Lost/Misinserted Impaired Block.
17. Backward Severely Errored Cell Block (Lost).
18. Backward Severely Errored Cell Block (Misinserted).
19. Backward Severely Errored Cell Block (BIP-16 violations).
20. Backward Severely Errored Cell Block Combined (non-saturating)
21. Backward Severely Errored Cell Block Combined (saturating)
22. Backward Lost CLP0+1 cell count.
23. Backward Lost CLP0 cell count.
24. Backward Tagged CLP0 cell count.
25. Backward Misinserted CLP0+1 cell count.
26. Backward Errored cell count.
27. Backward Total Lost CLP0+1 cell count.
28. Backward Total Lost CLP0 cell count.
29. Backward Lost Fwd Monitoring PM cell count.
30. Backward Lost Backward Reporting PM cell count.
31. Total Transmitted CLP0+1 cell count.
32. Total Transmitted CLP0 cell count.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 3
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Statistics for PM sessions are held in on-chip RAM that can be read at any time through the 16-bit general-purpose microprocessor port.
Paced insertion of PM cells is provided.
PM block size generation and termination is per-session programmable ranging from 128 – 32768 cells.
Each of the 512 PM sessions can be configured to be a source, sink or non-intrusive monitoring point of PM cells.
OAM-F ault Management is provided on a per-connection basis in the ingress and egress directions. Simultaneous segment and end-to-end F4 and F5 AIS, RDI and CC cell generation, termination and monitoring is supported. Alarm bits and interrupt masks are provided on a per-connection basis. F4 to F5 AIS alarm splitting is provided in the Ingress direction. Paced insertion of FM cells is provided.
OAM-Loopback extraction (to a Microprocessor Cell Interface) is per-connection configurable in both the ingress and egress directions.
Includes a FIFO buffered microprocessor bus interface for cell insertion and extraction (in both the ingress and egress directions), Ingress and Egress VC Table access, control and status monitoring and configuration of the device.
Supports DMA access for cell extraction.
Uses common external Synchronous Flow-Through SRAM (with or without parity) for maintaining per-connection information. Separate SRAM’s are used for the Ingress and Egress context tables.
Provides a standard 5 signal P1149.1 JTAG test port for boundary scan board test purposes.
Provides a generic 16 bit microprocessor bus interface for configuration, control and status monitoring.
Low power 0.35 micron, 3.3V CMOS technology with a 3.3V UTOPIA (SCI-PHY), 3.3/5V Microprocessor I/O interfaces and 3.3V external synchronous SRAM interfaces.
The UTOPIA (SCI-PHY) and external Synchronous SRAM interfaces are 52 MHz max.
432 Super BGA package.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 4
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
1.1
1.2

Policing

Cell Counting

Policing is performed in the ingress direction for adherence to peak cell rate (PCR), cell delay variation tolerance (CD VT), sustained cell rate (SCR) and burst tolerance (BT). Violating cells can be noted, dropped or tagged.
Policing is performed using the virtual scheduling Generic Cell Rate Algorithm (GCRA) described in ITU-T I.371.
Two policing instantiations available per VC. The policed cell streams can be any combination of user cells, OAM cells, Resource Management, high priority cells or low priority cells.
Per-PHY policing may also be enabled. Each of 32 PHY devices may have a single leaky bucket enabled, in addition to the dual leaky bucket of the connection. Violating cells can be noted (counted only), dropped or tagged.
Counts maintained on a per-VC basis include total low priority cells, total high priority cells and cells violating the traffic contract. Per-VC counts are maintained for both the ingress and egress directions.
Counts maintained on a per-PHY basis (in both the Ingress and Egress directions) include: number of CLP0 cells received, number of CLP1 cells received, number of OAM cells received, number of RM cells received, number of errored OAM cells, number of errored RM cells, number of cells with unassigned/invalid VPI/VCI/PTI and the number of cells received with a non-zero GFC (ingress UNI only).
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 5
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
2

APPLICATIONS

Wide Area Network ATM Core and Edge switches.
ATM Enterprise and Workgroup switches.
Broadband Access multiplexers.
XDSL Access Multiplexers (DSLAMs).
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 6
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
3

REFERENCES

ATM Forum – ATM User-Network Interface Specification, V3.1 September, 1994
ITU-T Recommendation I.361 – “B-ISDN ATM Layer Specification”, November 1995
ITU-T Recommendation I.371 – “Traffic Control and Congestion Control in B-ISDN”, May, 1996
ITU-T Recommendation I.610 – “B-ISDN Operation and Maintenance Principles and Functions”, June, 1997 (Rapporteur’s edition)
Bell Communications Research – Broadband Switching System (BSS) Generic Requirements, GR-1110-CORE, Issue 1, September 1994
Bell Communications Research – Asynchronous Transfer Mode (ATM) and ATM Adaptation Layer (AAL) Protocols, GR-1113-CORE, Issue 1, July 1994
Bell Communications Research – Generic Requirements for Operations of Broadband Switching Systems, GR-1248-CORE, Issue 3, August, 1996.
IEEE 1149.1 – Standard Test Access Port and Boundary Scan Architecture, May 21, 1990
PMC-940212, ATM SCI-PHY, “SATURN Compliant Interface for ATM Devices”, July 1994, Issue 2.
ATMF TM4.0 – ATM Forum Traffic Management Specification Version 4.0, af-tm-0056.000, April, 1996.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 7
S/UNI-ATLAS
PM7324 S/UNI-ATLAS
DATASHEET PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
4

APPLICATION EXAMPLES

Figure 1 S/UNI-ATLAS Block Diagram
M A R S s u
no o
hr nc
y S
l na
r te
x E
To
isadsb isoeb isrwb
isa[19:0]
isp[7:0]
isd[63:0]
isysclk
(Slave) SCI-PHY Level1 Interface
0] 5: [1
y
at
rt
od
op
b n
c
lk
a
o
de
c
os
ofc
o
or
t
s es
utpu
gr
O
In
r
s
so
l
s
es
el
ce
gr
C
o
In
r P
s
e
h c
in
es
r
r
g
a
g
e
n
S
E
In
s
t
es gr
Inpu
In
] :0
15
n
t[
se
ida
ot
e
l
ac
el
erf
C
Int
d
e
ar
l
ac
w
el
erf
gress
C
ck
t
E
a
In
B
n
s
Y
o
H
ti
tic
P
-
tis
r
lec
l
e
ta
o
P
S
C
d
e
ar
l
ac
w
el
ress
erf
C
ck
t
a
Ing
In
B
e
l
ac
el
erf
C
Int
1]
c
k
ty
o
ipr
is
ifcl
ica[
e
s
t
l
s
ac
e
el
pu
r
erf
C
In
Eg
Int
r
s
so
l
s
s
e
el
r
ce
C
g
o
E
r P
e
t
s
l
s
ac
e
el
tpu
r
erf
u
C
g
O
E
Int
b[1] ren
iw
] :2 [3
ca
[4]
/i
ca
:3
/i d
[4 dr
ail iav
iad
e
G
ac
A
erf
JT
Int
or ss
s s
ce
e
r g
pro
E
ro ic M
or ss
s
ce
es gr
pro
In
ro ic M
or ss
e
ce
ac erf
pro ro
Int ic M
(Slave) SCI-PHY Level1/Level2 Interface
] :2
b[4 ren
iw 0]/
2: dr[ iad
ipoll
e
l
ac
el
erf
C
Int
e
l
ac
el
erf
C
Int
tdi
trstb tms tck
tdo
busyb
edreq
idreq
intb
wrb
rdb
csb ale
M A R S
esoeb esrwb
esadsb
esp[3:0]
esysclk
rstb
a[11:0] d[15:0]
s
u no
o hr nc
y
esa[19:0]
S
l na
r te
x
esd[31:0]
E To
halfsecclk
]
]
]
ty
:0
r
15
rp
t[ rda
]
:2
[1]
[4
[1]
b
a[3
rca
en
rca
/
rc
d
]/
rrd
:3
ali
[4
rav
dr rad
:2
c o
b[4
rs en rd
/r :0]
[2 dr
rad
l
k
0]
rfcl
rpol
15: t[
tda
(Master) SCI-PHY Level1/Level2 Interface
[1] renb
tw
1] tca[
]
2]
2]
oc
3:
a[4
ts
tfclk
[4: b
en
r w ]/t
2:0 dr[ tad
tpoll
(Master) SCI-PHY Level1/Level2 Interface
a[
/tc
/tc
lid
3] [4:
tava
r d
tad
ty tpr
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 8
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
5

DESCRIPTION

The S/UNI-ATLAS is a bi-directional ATM Layer device that implements the ATM layer functions including header translation, policing, fault management, performance monitoring, per-connection and per-PHY counting. The S/UNI-ATLAS is intended to be situated between a switch core and a physical layer device. The S/UNI-ATLAS supports a sustained throughput of 1.42x10
6
cells/s in both the ingress (from the PHY into the switch core) and the egress (from the switch core to the PHY device) directions. The S/UNI-ATLAS uses external synchronous flow-through SRAM to store the per-connection data structures. The device is capable of supporting up to 65536 connections.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 9
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
6

PIN DIAGRAM

The S/UNI-ATLAS is packaged in a 432 thermally enhanced BGA -SBGA package having a body size of 40 mm x 40 mm x 1.54 mm and a ball pitch of 1.27 mm. This pin diagram can be downloaded from the PMC-Sierra website (http://www.pmc-sierra.com).
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 10
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
7

PIN DESCRIPTION

Pin Name Type Pin
Function
No.
Ingress Input Cell Interface: 28 pins RFCLK Input U3 The Ingress Input Cell Interface clock (RFCLK) is used to read
words from the PHY receive side into the S/UNI-ATLAS Ingress Input Cell Interface. RFCLK must cycle at a 52 MHz or lower instantaneous rate. RSOC, RCA[4:1], RPRTY and RDAT[15:0] are sampled on the rising edge of RFCLK. RRDENB[4:1], RADDR[4:0] and RAVALID are updated on the rising edge of RFCLK.
RPOLL Input U4 The Ingress Input Cell Interface Poll pin (RPOLL) is used to
control whether the Ingress Input Cell Interface operates in SCI­PHY Level 1 mode or SCI-PHY Level 2 mode. If RPOLL is low, the Ingress Input Cell Interface operates in SCI-PHY Level 1 mode (compatible with UTOPIA Level 1 cell-level handshaking). This is a direct addressing mode using the RCA[4:1] inputs and the RRDENB[4:1] outputs. If RPOLL is high, the Ingress Input Cell Interface operates in a SCI-PHY Level 2 mode (compatible with UTOPIA Level 2). This is a polled addressing mode using the RADDR[4:0], RAVALID and RRDENB[1] outputs, and the RCA[1] input. If fewer than 32 PHY devices are used, the RAVALID pin need not be connected.
Note: In direct addressing mode, the 4-PHY configuration is not recommended. Instead the 4-PHY address-polling mode should be used. This does not apply to the Single or Dual-PHY configurations.
RPOLL is assumed to be a static input.
RSOC Input V2 The Ingress Input Cell Interface Start of Cell (RSOC) marks the
start of the cell on the RDAT[15:0] bus. When RSOC is high, the first word of the cell structure is present on the RDAT[15:0] stream. It is not necessary for RSOC to be asserted for each cell. An interrupt may be generated if RSOC is high during any word other than the first word of the cell structure.
RSOC is sampled on the rising edge of RFCLK and considered valid only when one of the RRDENB[4:1] signals so indicates.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 11
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
No.
RCA[1] RCA[2] RCA[3] RCA[4]
I/O U2
T1 R3 R4
RCA[4:1] (continued)
Function
The active polarity of these signals is programmable and defaults to active high.
If the RPOLL pin is low, the ATLAS asserts the appropriate RRDENB[4:1] signal in response to a round robin polling of the RCA[4:1] signals. Once committed, the ATLAS will transfer an entire cell from a single PHY before servicing the next. The ATLAS will complete the read of an entire cell even if the associated RCA[4:1] input is deasserted during the cell transfer. Sampling of the RCA[4:1] inputs resumes the cycle after the last octet of a cell has been transferred.
Note, RCA[1] is an input only. If the RPOLL pin is high, the RCA[3:2] pins are redefined as
RADDR[4:3] and the RCA[4] pin is redefined as RAVALID. If the RPOLL pin is high, the ATLAS polls up to 32 PHYs using
the PHY address signals RADDR[4:0]. A PHY device being addressed by RADDR[4:0] is expected to indicate whether or not it has a complete cell available for transfer by driving RCA[1] during the clock cycle foll owing that in which it is addressed. When a cell transfer is in progress, the ATLAS will not poll the PHY device which is sending the cell and so PHY devices need not support the cell availability indication during cell transfer. The selection of a particular PHY device from which to transfer a cell is indicated by the state of RADDR[4:0] and when RRDENB[1] is asserted.
Note, RCA[1] is an input only. The RCA[4:1] signals are sampled on the rising edge of RFCLK.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 12
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
No.
RRDENB[1] RRDENB[2] RRDENB[3] RRDENB[4]
RADDR[4] RADDR[3] RADDR[2] RADDR[1] RADDR[0]
Output U1
T4 T3 T2
Output R3
T1 T2 T3 T4
Function
The active low read enable (RRDENB[4:1]) outputs are used to initiate the reading of cells from a PHY device into the Ingress Input Cell Interface.
If the RPOLL pin is low, the ATLAS asserts one of the RRDENB[4:1] outputs to transfer a cell from one of up to 4 PHY devices. A valid word is expected on the RDAT[15:0] bus at the second rising edge of RFCLK after one of the enables is asserted. When all of the enables are deasserted, no valid data is expected.
The RRDENB[4:1] outputs are updated on the rising edge of RFCLK.
If the RPOLL pin is high, the RRDENB[4:2] pins are redefined as RADDR[2:0]. The RRDENB[1] pin is used to transfer all cells. The source PHY is selected by the RADDR[4:0] signals.
If the RPOLL pin is high, the RADDR[4:0] pins are used for PHY addressing. If the RPOLL pin is low, the RADDR[4:0] pins are redefined as RCA[3:2] and RRDENB[4:2].
If the RPOLL pin is high, the RADDR[4:0] signals are used to address up to 32 PHY devices for the purposes of polling and selection for cell transfer. When conducting polling, in order to avoid bus contention, the ATLAS inserts gap cycles during which RADDR[4:0] is set to 0x1F and RAVALID is logic 0. When this occurs, no PHY device should drive RCA[1] during the following clock cycle. Polling is performed in incrementing sequential order. The PHY device selected for transfer is based on the RADDR[4:0] value present when RRDENB[1] is falls. The RADDR[4:0] bus is updated on the rising edge of RFCLK.
RAVALID I/O R4 If the RPOLL pin is high, the PHY Address Valid (RAVALID) pin is
active. If the RPOLL pin is low, the RAVALID pin is redefined as RCA[4].
If the RPOLL pin is high, the RAVALID pin indicates that the RADDR[4:0] bus is asserting a valid PHY address for polling purposes. When this signal is deasserted, the RADDR[4:0] bus is set to 0x1F.
RAVALID is not necessary when less than 32 PHY devices are being polled. RAVALID is updated on the rising edge of RFCLK.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 13
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
No.
RDAT[15] RDAT[14] RDAT[13] RDAT[12] RDAT[11] RDAT[10] RDAT[9] RDAT[8] RDAT[7] RDAT[6] RDAT[5] RDAT[4] RDAT[3] RDAT[2]
Input W1
W2 W3 Y1 Y2 W4 Y3 AA1 AA2 Y4 AA3 AB1 AB2 AA4
Function
The Ingress Input Cell Interface cell data bus (RDAT[15:0]) carries the ATM cell octets that are written to the Ingress Input Cell Interface. The RDAT[15:0] bus is sampled on the rising edge of RFCLK and considered valid only when one of the RRDENB[4:1] signals so indicates. RDAT[15:8] is only valid if the RBUS8 register bit is low.
RDAT[1] RDAT[0]
AB3 AC1
RPRTY Input V3 The Ingress Input Cell Interface parity (RPRTY) signal indicates
the parity (programmable for odd or even parity) of the RDAT[15:0] bus. If the RBUS8 register bit is low, the RPRTY signal indicates parity over the RDAT[15:0] data bus. If RBUS8 is high, the RPRTY signal indicates parity over the RDAT[7:0] data bus. A maskable interrupt status is generated upon a parity error; no other actions are taken. The RPRTY signal is sampled on the rising edge of RFCLK and is considered valid only when
one of the RRDENB[4:1] signals so indicates. Ingress SRAM Interface: 96 pins ISYSCLK Input AH21 The Ingress System clock (ISYSCLK) is used for the Ingress
portion of the ATLAS. ISYSCLK must cycle at a 52 MHz or lower
instantaneous rate, but a high enough rate to maintain an
800Mbit/s throughput. ISADSB, ISOEB, ISRWB are updated on
the rising edge of ISYSCLK. When ISD[63:0] and ISP[7:0] are
outputs, they are updated on the rising edge of ISYSCLK. When
ISD[63:0] and ISP[7:0] are inputs, they are sampled on the rising
edge of ISYSCLK.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 14
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
No.
ISD[63] ISD[62] ISD[61] ISD[60] ISD[59] ISD[58] ISD[57] ISD[56] ISD[55] ISD[54] ISD[53] ISD[52] ISD[51] ISD[50]
I/O AG1
AG2 AF4 AG3 AH1 AJ5 AH6 AK5 AL5 AJ6 AK6 AL6 AJ7 AH8
Function
The bi-directional Ingress VC Table SRAM data bus (ISD[63:0])
pins interface directly with the synchronous SRAM data ports.
A SRAM read is performed when the ATLAS drives the address
strobe (ISADSB) low and the ISRWB output high. The ATLAS
tristates the ISD[63:0] pins and samples the value driven by the
SRAM on the second rising edge of the ISYSCLK input after
ISADSB is asserted.
A SRAM write is performed when the ATLAS drives the address
strobe low (ISADSB) and the ISRWB output low. The ATLAS
presents valid data on the ISD[63:0] pins upon the rising edge of
ISYSCLK which is written into the SRAM on the next ISYSCLK
rising edge. ISD[63:0] is tristated on the rising edge of ISYSCLK.
Contention is avoided by not performing a write during the cycle
after a read burst.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 15
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
No.
ISD[49] ISD[48] ISD[47] ISD[46] ISD[45] ISD[44] ISD[43] ISD[42] ISD[41] ISD[40] ISD[39] ISD[38] ISD[37] ISD[36]
I/O AK7
AL7 AJ8 AH9 AK8 AL8 AJ9 AK9 AL9 AJ10 AH11 AK10 AL10 AJ11
Function
Continued
ISD[35] ISD[34] ISD[33] ISD[32]
AH12 AK11 AL11 AJ12
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 16
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
No.
ISD[31] ISD[30] ISD[29] ISD[28] ISD[27] ISD[26] ISD[25] ISD[24] ISD[23] ISD[22] ISD[21] ISD[20] ISD[19] ISD[18]
I/O AH13
AK12 AL12 AJ13 AK13 AL13 AJ14 AK14 AH15 AJ15 AL16 AK16 AJ16 AH16
Function
Continued
ISD[17] ISD[16]
AL17 AK17
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 17
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
No.
ISD[15] ISD[14] ISD[13] ISD[12] ISD[11] ISD[10] ISD[9] ISD[8] ISD[7] ISD[6] ISD[5] ISD[4] ISD[3] ISD[2]
I/O AJ17
AK18 AH17 AJ18 AL19 AK19 AJ19 AL20 AK20 AH19 AJ20 AL21 AK21 AH20
Function
Continued
ISD[1] ISD[0]
AJ21 AL22
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 18
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
No.
ISP[7] ISP[6] ISP[5] ISP[4] ISP[3] ISP[2] ISP[1] ISP[0]
I/O AD3
AE1 AE2 AD4 AE3 AF1 AF2 AF3
Function
The Ingress VC Table SRAM parity (ISP[7:0]) pins provide parity
protection over the ISD[63:0] data bus.
ISP[0] completes odd parity for ISD[7:0]
ISP[1] completes odd parity for ISD[15:8]
ISP[2] completes odd parity for ISD[23:16]
ISP[3] completes odd parity for ISD[31:24]
ISP[4] completes odd parity for ISD[39:32]
ISP[5] completes odd parity for ISD[47:40]
ISP[6] completes odd parity for ISD[55:48]
ISP[7] completes odd parity for ISD[63:56]
ISP[7:0] has the same timing as ISD[63:0]. When data are being
written into the SRAM, the ATLAS generates correct parity.
When data are being read from the SRAM, the ATLAS asserts a
maskable interrupt indication upon parity error detection. No
other action is taken, therefore, the ISP[7:0] may be unconnected
if parity protection is not required.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 19
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
No.
ISA[19] ISA[18] ISA[17] ISA[16] ISA[15] ISA[14] ISA[13] ISA[12] ISA[11] ISA[10] ISA[9] ISA[8] ISA[7] ISA[6]
Output AJ23
AL24 AK24 AH23 AJ24 AL25 AK25 AH24 AJ25 AL26 AK26 AJ26 AL27 AK27
Function
The Ingress VC Table SRAM (ISA[19:0]) outputs identify the
SRAM locat ions accessed.
The 16 least significant bits (ISA[15:0]) locate 1 of 65536
possible Ingress VC Table entries. If 65536 connections are not
required, the most significant bits of ISA[15:0] may be
unconnected with no physical memory associated with the
unused memory space.
The four most significant bits (ISA[19:16]) identify the fields
within an Ingress VC Table record. In most applications, the
ISA[19:16] pins are decoded to SRAM chip selects. Physical
memory need not be allocated for unused fields.
The ISA[15:0] outputs are also used to access the Ingress VC
Table Search Table.
The ISA[19:0] bus is updated on the rising edge of ISYSCLK.
ISA[5] ISA[4] ISA[3] ISA[2] ISA[1] ISA[0]
AH26 AJ27 AH31 AG29 AF28 AG30
ISRWB Output AJ22 The Ingress VC Table SRAM Read Write Bar (ISRWB) qualifies
the data and parity busses. If the ISRWB output is asserted
high, a read operation is performed and the ATLAS tristates the
data and parity busses so they may be driven by the SRAM. If
the ISRWB output is asserted low, a write operation is performed
and the ATLAS drives the data and parity busses.
ISRWB is updated on the rising edge of ISYSCLK. ISADSB Output AK23 The Ingress VC Table SRAM Address Strobe (ISADSB) qualifies
the address bus. If the ISADSB output is asserted low, an SRAM
access is initiated.
ISADSB is updated on the rising edge of ISYSCLK.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 20
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
Function
No.
ISOEB Output AL23 The Ingress VC Table asynchronous SRAM Output Enable
(ISOEB) controls the SRAM tristate outputs. When ISOEB is low
during a read cycle, the selected SRAM (as determined by
ISA[19:0] decoding) is expected to drive the ISD[63:0] and
ISP[7:0] data busses.
ISOEB is updated on the rising edge of ISYSCLK. Ingress Output Cell Interface: 22 pins OFCLK Input AA29 The Ingress Output Cell Interface clock (OFCLK) is used to read
words from the Ingress Output Cell Interface. OFCLK must cycle
at a 52 MHz or lower instantaneous rate, but a high enough rate
to avoid a FIFO overflow. OSOC, OCA, OPRTY and ODAT[15:0]
are updated on the rising edge of OFCLK. ORDENB is sampled
on the rising edge of OFCLK. ORDENB Input Y28 The active low read enable (ORDENB) signal is used to indicate
transfers from the Ingress Output Cell Interface. When ORDENB
is sampled low, using the rising edge of OFCLK, a word is read
from the internal synchronous Ingress Output Cell Interface
FIFO, and output on bus ODAT[15:0]. When ORDENB is
sampled high, no read is performed and outputs ODAT[15:0],
OPRTY and OSOC are tristated if the OTSEN input is high.
ORDENB must operate in conjunction with OFCLK to access the
FIFO at a high enough rate to avoid a FIFO overflow.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 21
S/UNI-ATLAS DATASHEET
PMC-1971154 ISSUE 7 S/UNI-ATM LAYER SOLUTION
PM7324 S/UNI-ATLAS
Pin Name Type Pin
No.
ODAT[15] ODAT[14] ODAT[13] ODAT[12] ODAT[11] ODAT[10] ODAT[9] ODAT[8] ODAT[7] ODAT[6] ODAT[5] ODAT[4] ODAT[3] ODAT[2]
Tristate
AG31 AF29 AF30 AF31 AE29 AD28 AE30 AE31 AD29 AC28 AD30 AD31 AC29 AC30
Function
The Ingress Output Cell Interface data bus (ODAT[15:0]) carries
the ATM cell octets that are read from the Ingress Output Cell
Interface FIFO. If the OBUS8 register bit is high, only ODAT[7:0]
carries cell octets, The ODAT[15:0] bus is updated on the rising
edge of OFCLK.
When the Ingress Output Cell Interface is configured for tristate
operation using the OTSEN input, tristating of the ODAT[15:0]
output bus is controlled by the ORDENB input.
When OTSEN is low, the ODAT[15:0] bus is low when no cells
are being transferred.
ODAT[1] ODAT[0] OPRTY
OSOC
Tristate
Tristate
AC31 AB29 AA28 The Ingress Output Cell Interface parity (OPRTY) signal
indicates the parity of the ODAT[15:0] data bus. OPRTY is the
parity (programmable odd or even parity) calculation over the
ODAT[15:0] data bus if the OBUS8 register bit is low. If OBUS8
is high, OPRTY indicates the parity of the ODAT[7:0] data bus.
OPRTY is updated on the rising edge of OFCLK.
When the Ingress Output Cell Interface is configured for tristate
operation using the OTSEN input, tristating of the OPRTY output
signal is controlled by the ORDENB input.
AB30 The Ingress Output Cell Interface start of cell (OSOC) signal
marks the start of cell on the ODAT[15:0] data bus. When OSOC
is high, the first word of the cell structure is present on the
ODAT[15:0] bus. OSOC is updated on the rising edge OFCLK.
When the Ingress Output Cell Interface is configured for tristate
operation using the OTSEN input, tristating of the OSOC output
is controlled by the ORDENB input.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC AND FOR ITS CUSTOMERS’ INTERNAL USE 22
Loading...
+ 443 hidden pages