PMC PM4318-BI Datasheet

PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
PM4318
OCTLIU
OCTAL E1/T1/J1 LINE INTERFACE
DATASHEET
PROPRIETARY AND CONFIDENTIAL
PRELIMINARY
ISSUE 3: APRIL 2001
PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 604 .415.6000
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU

CONTENTS

1 FEATURES........................................................................................................................ 1
1.1 EACH RECEIVER SECTION: .............................................................................. 2
1.2 EACH TRANSMITTER SECTION: ....................................................................... 2
2 APPLICATIONS.................................................................................................................4
3 REFERENCES ..................................................................................................................5
4 APPLICATION EXAMPLES............................................................................................... 7
5 BLOCK DIAGRAM............................................................................................................. 9
6 DESCRIPTION ................................................................................................................ 11
7 PIN DIAGRAM................................................................................................................. 12
8 PIN DESCRIPTION .........................................................................................................13
9 FUNCTIONAL DESCRIPTION ........................................................................................35
9.1 OCTANTS...........................................................................................................35
9.2 RECEIVE INTERFACE ......................................................................................35
1.3 CLOCK AND DATA RECOVERY (CDRC).......................................................... 36
1.4 RECEIVE JITTER ATTENUATOR (RJAT) .........................................................38
1.5 T1 INBAND LOOPBACK CODE DETECTOR (IBCD) ....................................... 38
1.6 T1 PULSE DENSITY VIOLATION DETECTOR (PDVD) ................................... 39
1.7 PERFORMANCE MONITOR COUNTERS (PMON).......................................... 39
1.8 PSEUDO RANDOM BINARY SEQUENCE GENERATION AND DETECTION
(PRBS) ...............................................................................................................39
1.9 T1 INBAND LOOPBACK CODE GENERATOR (XIBC)..................................... 39
1.10 PULSE DENSITY ENFORCER (XPDE)............................................................. 39
1.11 TRANSMIT JITTER ATTENUATOR (TJAT) ....................................................... 40
1.12 LINE TRANSMITTER......................................................................................... 44
1.13 TIMING OPTIONS (TOPS) ................................................................................ 44
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE i
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
1.14 SCALEABLE BANDWIDTH INTERCONNECT (SBI) INTERFACE ................... 44
1.14.1 INTERFACING OCTLIUS TO A HIGH DENSITY FRAMER.................. 45
1.15 SBI EXTRACTER AND PISO............................................................................. 46
1.16 SBI INSERTER AND SIPO ................................................................................ 46
1.17 SBI TO CLK/DATA CONVERTER ...................................................................... 46
1.18 SERIAL PROM INTERFACE.............................................................................. 46
1.19 JTAG TEST ACCESS PORT.............................................................................. 48
1.20 MICROPROCESSOR INTERFACE ................................................................... 48
2 NORMAL MODE REGISTER DESCRIPTION ................................................................ 49
2.1 NORMAL MODE REGISTER MEMORY MAP ................................................... 50
3 TEST FEATURES DESCRIPTION................................................................................ 169
3.1 JTAG TEST PORT............................................................................................ 169
4 OPERATION.................................................................................................................. 172
4.1 CONFIGURING THE OCTLIU FROM RESET................................................. 172
4.2 SERVICING INTERRUPTS.............................................................................. 172
4.3 USING THE PERFORMANCE MONITORING FEATURES ............................173
4.4 USING THE TRANSMIT LINE PULSE GENERATOR ..................................... 173
4.5 USING THE LINE RECEIVER ......................................................................... 194
4.6 USING THE PRBS GENERATOR AND DETECTOR ......................................201
4.7 LOOPBACK MODES ....................................................................................... 201
4.7.1 LINE LOOPBACK................................................................................ 201
4.7.2 DIAGNOSTIC DIGITAL LOOPBACK ..................................................202
4.8 JTAG SUPPORT ..............................................................................................202
4.8.1 TAP CONTROLLER ............................................................................204
5 FUNCTIONAL TIMING ..................................................................................................210
5.1 SBI BUS INTERFACE TIMING ........................................................................210
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE ii
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
5.2 LINE CODE VIOLATION INSERTION ............................................................. 211
5.3 ALARM INTERFACE........................................................................................ 213
6 ABSOLUTE MAXIMUM RATINGS ................................................................................214
7 D.C. CHARACTERISTICS ............................................................................................215
8 MICROPROCESSOR INTERFACE TIMING CHARACTERISTICS .............................217
9 OCTLIU TIMING CHARACTERISTICS......................................................................... 221
9.1 RSTB TIMING (FIGURE 33) ............................................................................ 221
9.2 XCLK INPUT TIMING (FIGURE 34)................................................................. 221
9.3 TRANSMIT SERIAL INTERFACE (FIGURE 35) .............................................. 222
9.4 RECEIVE SERIAL INTERFACE (FIGURE 36)................................................. 223
9.5 SBI INTERFACE (FIGURE 37 TO FIGURE 39)............................................... 224
9.6 SERIAL PROM (SPI) INTERFACE (FIGURE 40) ............................................227
9.7 ALARM INTERFACE (FIGURE 41).................................................................. 228
9.8 INGRESS CLK/DATA INTERFACE (FIGURE 42)............................................ 228
9.9 EGRESS CLK/DATA INTERFACE (FIGURE 43) ............................................. 229
9.10 JTAG PORT INTERFACE (FIGURE 44) ..........................................................230
10 ORDERING AND THERMAL INFORMATION .............................................................. 232
11 MECHANICAL INFORMATION .....................................................................................233
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE iii
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU

LIST OF FIGURES

FIGURE 1 – T1/E1 FRAMER/TRANSCEIVER APPLICATION................................................. 7
FIGURE 2 – HIGH DENSITY T1/E1 FRAMER/TRANSCEIVER APPLICATION ...................... 7
FIGURE 3 – HIGH DENSITY LEASED LINE CIRCUIT EMULATION APPLICATION.............. 7
FIGURE 4 – METRO OPTICAL ACCESS EQUIPMENT .......................................................... 8
FIGURE 5 – OCTLIU BLOCK DIAGRAM – LIUS ENABLED ................................................... 9
FIGURE 6 – OCTLIU BLOCK DIAGRAM – SBI TO CLK/DATA CONVERTER, LIUS
DISABLED .......................................................................................................... 10
FIGURE 7 – PIN DIAGRAM .................................................................................................... 12
FIGURE 8 – EXTERNAL ANALOGUE INTERFACE CIRCUITS ............................................35
FIGURE 9 – T1 JITTER TOLERANCE ...................................................................................37
FIGURE 10 – COMPLIANCE WITH ITU-T SPECIFICATION G.823 FOR E1 INPUT JITTER .38
FIGURE 11 – TJAT JITTER TOLERANCE ............................................................................... 41
FIGURE 12 – TJAT MINIMUM JITTER TOLERANCE VS. XCLK ACCURACY........................ 42
FIGURE 13 – TJAT JITTER TRANSFER.................................................................................. 43
FIGURE 14 – SBI TO FRAMER LINE SIDE INTERFACE ........................................................ 45
FIGURE 15 – SERIAL PROM CASCADE INTERFACE ...........................................................46
FIGURE 16 – SERIAL PROM COMMAND FORMAT............................................................... 47
FIGURE 17 – TRANSMIT TIMING OPTIONS........................................................................... 75
FIGURE 18 – LINE LOOPBACK ............................................................................................. 202
FIGURE 19 – DIAGNOSTIC DIGITAL LOOPBACK................................................................ 202
FIGURE 20 – BOUNDARY SCAN ARCHITECTURE ............................................................. 203
FIGURE 21 – TAP CONTROLLER FINITE STATE MACHINE ............................................... 205
FIGURE 22 – INPUT OBSERVATION CELL (IN_CELL) ........................................................ 208
FIGURE 23 – OUTPUT CELL (OUT_CELL) OR ENABLE CELL (ENABLE).......................... 208
FIGURE 24 – BIDIRECTIONAL CELL (IO_CELL).................................................................. 209
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE iv
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
FIGURE 25 – LAYOUT OF OUTPUT ENABLE AND BIDIRECTIONAL CELLS .....................209
FIGURE 26 – SBI BUS FUNCTIONAL TIMING...................................................................... 210
FIGURE 27 – B8ZS LINE CODE VIOLATION INSERTION ................................................... 211
FIGURE 28 – HDB3 LINE CODE VIOLATION INSERTION................................................... 212
FIGURE 29 – AMI LINE CODE VIOLATION INSERTION ...................................................... 213
FIGURE 30 – LOS ALARM SERIAL OUTPUT........................................................................ 213
FIGURE 31 – MICROPROCESSOR INTERFACE READ TIMING......................................... 218
FIGURE 32 – MICROPROCESSOR INTERFACE WRITE TIMING ....................................... 220
FIGURE 33 – RSTB TIMING................................................................................................... 221
FIGURE 34 – XCLK INPUT TIMING ....................................................................................... 221
FIGURE 35 – TRANSMIT SERIAL INTERFACE TIMING DIAGRAM..................................... 222
FIGURE 36 – RECEIVE SERIAL INTERFACE TIMING DIAGRAM .......................................223
FIGURE 37 – SBI FRAME PULSE TIMING ............................................................................ 224
FIGURE 38 – SBI ADD BUS TIMING .....................................................................................225
FIGURE 39 – SBI DROP BUS TIMING .................................................................................. 226
FIGURE 40 – SPI INTERFACE TIMING ................................................................................. 227
FIGURE 41 – ALARM INTERFACE TIMING........................................................................... 228
FIGURE 42 – INGRESS CLK/DATA INTERFACE TIMING DIAGRAM................................... 229
FIGURE 43 – EGRESS CLK/DATA INTERFACE TIMING DIAGRAM .................................... 229
FIGURE 44 – JTAG PORT INTERFACE TIMING................................................................... 231
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE v
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU

LIST OF TABLES

TABLE 1 – EXTERNAL COMPONENT DESCRIPTIONS ....................................................36
TABLE 2 – SERIAL PROM COMMANDS – CODE BITS .....................................................47
TABLE 3 – SERIAL PROM SPECIAL COMMANDS ............................................................ 47
TABLE 4 – NORMAL MODE REGISTER MEMORY MAP ................................................... 50
TABLE 5 – CLOCK SYNTHESIS MODE.............................................................................. 65
TABLE 6 – TJAT FIFO OUTPUT CLOCK SOURCE ............................................................ 74
TABLE 7 – TJAT PLL SOURCE............................................................................................ 74
TABLE 8 – INSBI TRIBUTARY CHARACTERISTICS ..........................................................89
TABLE 9 – EXSBI TRIBUTARY CHARACTERISTICS....................................................... 105
TABLE 10 – EXSBI CLOCK GENERATION OPTIONS........................................................ 106
TABLE 11 – TRANSMIT IN-BAND CODE LENGTH ............................................................ 114
TABLE 12 – LOOPBACK CODE CONFIGURATIONS......................................................... 126
TABLE 13 – LOSS OF SIGNAL THRESHOLDS ..................................................................131
TABLE 14 – TRANSMIT OUTPUT AMPLITUDE .................................................................. 148
TABLE 15 – ALOS DETECTION/CLEARANCE THRESHOLDS.......................................... 154
TABLE 16 – EQUALIZATION FEEDBACK FREQUENCIES................................................ 161
TABLE 17 – VALID PERIOD................................................................................................. 162
TABLE 18 – BOUNDARY SCAN REGISTER ....................................................................... 170
TABLE 19 – DEFAULT SETTINGS....................................................................................... 172
TABLE 20 – T1.102 TRANSMIT WAVEFORM VALUES FOR T1 LONG HAUL (LBO 0 DB)175
TABLE 21 – T1.102 TRANSMIT WAVEFORM VALUES FOR T1 LONG HAUL (LBO 7.5 DB)
.......................................................................................................................... 176
TABLE 22 – T1.102 TRANSMIT WAVEFORM VALUES FOR T1 LONG HAUL (LBO 15 DB)
.......................................................................................................................... 177
TABLE 23 – T1.102 TRANSMIT WAVEFORM VALUES FOR T1 LONG HAUL (LBO 22.5 DB)
.......................................................................................................................... 178
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE vi
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
TABLE 24 – T1.102 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (0 – 110 FT.)
.......................................................................................................................... 179
TABLE 25 – T1.102 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (110 –
220 FT.) ............................................................................................................. 180
TABLE 26 – T1.102 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (220 –
330 FT.) ............................................................................................................. 181
TABLE 27 – T1.102 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (330 –
440 FT.)............................................................................................................. 182
TABLE 28 – T1.102 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (440 –
550 FT.) ............................................................................................................. 183
TABLE 29 – T1.102 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (550 –
660 FT.) ............................................................................................................. 184
TABLE 30 – TR62411 TRANSMIT WAVEFORM VALUES FOR T1 LONG HAUL (LBO 0 DB)
.......................................................................................................................... 185
TABLE 31 – TR62411 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (0 – 110 FT.)186
TABLE 32 – TR62411 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (110 –
220 FT.) ............................................................................................................. 187
TABLE 33 – TR62411 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (220 –
330 FT.) ............................................................................................................. 188
TABLE 34 – TR62411 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (330 –
440 FT.) ............................................................................................................. 189
TABLE 35 – TR62411 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (440 –
550 FT.) ............................................................................................................. 190
TABLE 36 – TR62411 TRANSMIT WAVEFORM VALUES FOR T1 SHORT HAUL (550 –
660 FT.) ............................................................................................................. 191
TABLE 37 – TRANSMIT WAVEFORM VALUES FOR E1 120 OHM ....................................192
TABLE 38 – TRANSMIT WAVEFORM VALUES FOR E1 75 OHM ......................................193
TABLE 39 – RLPS REGISTER PROGRAMMING................................................................ 194
TABLE 40 – RLPS EQUALIZER RAM TABLE (T1 MODE) .................................................. 195
TABLE 41 – RLPS EQUALIZER RAM TABLE (E1 MODE) .................................................. 198
TABLE 42 – RLPS EQUALIZER RAM TABLE (MONITOR MODE) .....................................201
TABLE 43 – ABSOLUTE MAXIMUM RATINGS ...................................................................214
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE vii
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
TABLE 44 – D.C. CHARACTERISTICS ............................................................................... 215
TABLE 45 – MICROPROCESSOR INTERFACE READ ACCESS ...................................... 217
TABLE 46 – MICROPROCESSOR INTERFACE WRITE ACCESS..................................... 219
TABLE 47 – RTSB TIMING................................................................................................... 221
TABLE 48 – XCLK INPUT TIMING....................................................................................... 221
TABLE 49 – TRANSMIT SERIAL INTERFACE ....................................................................222
TABLE 50 – RECEIVE SERIAL INTERFACE....................................................................... 223
TABLE 51 – CLOCKS AND SBI FRAME PULSE .................................................................224
TABLE 52 – SBI ADD BUS ................................................................................................... 225
TABLE 53 – SBI DROP BUS ................................................................................................225
TABLE 54 – SPI INTERFACE............................................................................................... 227
TABLE 55 – ALARM INTERFACE ........................................................................................ 228
TABLE 56 – INGRESS CLK/DATA INTERFACE ..................................................................228
TABLE 57 – ENGRESS CLK/DATA INTERFACE................................................................. 229
TABLE 58 – JTAG PORT INTERFACE.................................................................................230
TABLE 59 – ORDERING INFORMATION ............................................................................232
TABLE 60 – OCTLIU THETA JC........................................................................................... 232
TABLE 61 – OCTLIU JUNCTION TEMPERATURE .............................................................232
TABLE 62 – OCTLIU THETA JA VS. AIRFLOW ................................................................... 232
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE viii
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
1 FEATURES
Monolithic device which integrates eight T1/J1 or E1 short haul and long haul line interface circuits.
Software switchable between T1/J1 and E1 operation on a per-device basis.
Meets or exceeds T1/J1 and E1 shorthaul and longhaul network access specifications including ANSI
T1.102, T1.403, T1.408, AT&T TR 62411, ITU-T G.703, G.704 as well as ETSI 300-011, CTR-4, CTR­12 and CTR-13.
Provides encoding and decoding of B8ZS, HDB3 and AMI line codes.
Provides receive equalization, clock recovery and line performance monitoring.
Provides transmit and receive jitter attenuation.
Provides digitally programmable long haul and short haul line build out.
Provides a selectable, per channel independent de-jittered T1 or E1 recovered clock for system timing
and redundancy.
Provides PRBS generators and detectors on each tributary for error testing at DS1 and E1 rates as recommended in ITU-T O.151.
Provides either serial clock/data or parallel Scaleable Bandwidth Interconnect (SBI) interfaces on the system side.
Can be configured to act as a converter between the SBI interfaces and serial clock/data. In this mode, the LIUs are unused.
Provides an 8-bit microprocessor bus interface for configuration, control, and status monitoring.
Provides a hardware-only (no microprocessor) mode in which configuration data is read from an SPI-
compatible serial PROM. The PROM interface can be cascaded such that multiple OCTLIU devices can be configured simultaneously from a single PROM.
Uses line rate system clock.
Provides an IEEE 1149.1 (JTAG) compliant Test Access Port (TAP) and controller for boundary scan
test.
Implemented in a low power 3.3 V tolerant 1.8/3.3 V CMOS technology.
Available in a high density 288-pin Tape-SBGA (23 mm by 23 mm) package.
Provides a –40°C to +85°C Industrial temperature operating range.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 1
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU

1.1 Each Receiver Section:

Supports T1 signal reception for distances with up to 36 dB of cable attenuation at nominal conditions using PIC 22 gauge cable emulation.
Supports E1 signal reception for distances with up to 36 dB of cable attenuation at nominal conditions using PIC 22 gauge cable emulation.
Supports G.772 compliant non-intrusive protected monitoring points.
Recovers clock and data using a digital phase locked loop for high jitter tolerance.
Tolerates more than 0.3 UI peak-to-peak; high frequency jitter as required by AT&T TR 62411 and
Bellcore TR-TSY-000170.
Outputs either dual rail recovered line pulses, a single rail DS-1/E1 signal or parallel data in SBI bus format.
Performs B8ZS or AMI decoding when processing a bipolar DS-1 signal and HDB3 or AMI decoding when processing a bipolar E1 signal.
Detects line code violations (LCVs), B8ZS/HDB3 line code signatures, and 4 (E1+HDB3), 8 (T1+B8ZS) or 16 (AMI) successive zeros.
Accumulates up to 8191 line code violations (LCVs), for performance monitoring purposes, over accumulation intervals defined by the period between software write accesses to the LCV register.
Detects loss of signal (LOS), which is defined as 10, 15, 31, 63, or 175 successive zeros.
Detects programmable inband loopback activate and deactivate code sequences received in the DS-
1 data stream when they are present for 5.1 seconds. Optionally, enters loopback mode automatically on detection of an inband loopback code.
Detects violations of the ANSI T1.403 12.5% pulse density rule over a moving 192-bit window.
11
A pseudo-random sequence user selectable from 2
–1, 215 –1 or 220 –1, may be detected in the T1/E1 stream in either the receive or transmit directions. The detector counts pattern errors using a 24-bit saturating PRBS error counter.
1.2 Each Transmitter Section:
Supports transfer of transmitted single rail PCM and signaling data from 1.544 Mbit/s and 2.048 Mbit/s backplane buses.
Generates DSX-1 shorthaul and DS-1 longhaul pulses with programmable pulse shape compatible with AT&T, ANSI and ITU requirements.
Generates E1 pulses compliant to G.703 recommendations.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 2
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
Provides a digitally programmable pulse shape extending up to 5 transmitted bit periods for custom long haul pulse shaping applications.
Provides line outputs that are current limited and may be tristated for protection or in redundant applications.
Provides a digital phase locked loop for generation of a low jitter transmit clock complying with all jitter attenuation, jitter transfer and residual jitter specifications of AT&T TR 62411 and ETSI TBR 12 and TBR 13.
Provides a FIFO buffer for jitter attenuation and rate conversion in the transmit path.
Allows bipolar violation (BPV) transparent operation for error restoring regenerator applications.
Allows bipolar violation (BPV) insertion for diagnostic testing purposes.
Supports all ones transmission for alarm indication signal (AIS) generation.
Accepts either dual rail or single rail DS-1/E1 signals or parallel data from the SBI interface.
Performs B8ZS or AMI encoding when processing a single rail or SBI-sourced DS-1 signal and HDB3
or AMI encoding when processing a single rail or SBI-sourced E1 signal.
11
A pseudo-random sequence user selectable from 2
–1, 215 –1 or 220 –1, may be inserted into or
detected from the T1 or E1 stream in either the receive or transmit directions.
Detects violations of the ANSI T1.403 12.5% pulse density rule over a moving 192-bit window and optionally stuffs ones to maintain minimum ones density.
Supports transmission of a programmable unframed inband loopback code sequence.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 3
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
2 APPLICATIONS
Metro Optical Access Equipment
Edge Router Linecards
Multiservice ATM Switch Linecards
3G Base Station Controllers (BSC)
3G Base Transceiver Stations (BTS)
Digital Private Branch Exchanges (PBX)
Digital Access Cross-Connect Systems (DACS) and Electronic DSX Cross-Connect Systems
(EDSX)
T1/E1 Repeaters
Test Equipment
SBI to clk/data converter in multi-service access equipment.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 4
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
3 REFERENCES
1. ANSI – T1.102-1993 – American National Standard for Telecommunications – Digital Hierarchy – Electrical Interfaces.
2. ANSI – T1.107-1995 – American National Standard for Telecommunications – Digital Hierarchy – Formats Specification.
3. ANSI – T1.403-1999 – American National Standard for Telecommunications – Carrier to Customer Installation – DS-1 Metallic Interface Specification.
4. ANSI – T1.408-1990 – American National Standard for Telecommunications – Integrated Services Digital Network (ISDN) Primary Rate – Customer Installation Metallic Interfaces Layer 1 Specification.
5. AT&T – TR 62411 – Accunet T1.5 – Service Description and Interface Specification, December 1990.
6. AT&T – TR 62411 – Accunet T1.5 – Service Description and Interface Specification, Addendum 1, March 1991.
7. AT&T – TR 62411 – Accunet T1.5 – Service Description and Interface Specification, Addendum 2, October 1992.
8. TR-TSY-000170 – Bellcore – Digital Cross-Connect System Requirements and Objectives, Issue 1, November 1985.
9. TR-N1WT-000233 – Bell Communications Research – Wideband and Broadband Digital Cross-Connect Systems Generic Criteria, Issue 3, November 1993.
10. TR-NWT-000303 – Bell Communications Research – Integrated Digital Loop Carrier Generic Requirements, Objectives, and Interface, Issue 2, December, 1992.
11. TR-TSY-000499 – Bell Communications Research – Transport Systems Generic Requirements (TSGR): Common Requirement, Issue 5, December, 1993.
12. ETSI – ETS 300 011 – ISDN Primary Rate User-Network Interface Specification and Test Principles, 1992.
13. ETSI – ETS 300 233 – Access Digital Section for ISDN Primary Rates.
14. ETSI – CTR 4 – Integrated Services Digital Network (ISDN); Attachment requirements for terminal equipment to connect to an ISDN using ISDN primary rate access, November 1995.
15. ETSI – CTR 12 – Business Telecommunications (BT); Open Network Provision (ONP) technical requirements; 2 048 kbit/s digital unstructured leased lines (D2048U) Attachment requirements for terminal equipment interface, December 1993.
16. ETSI – CTR 13 – Business Telecommunications (BTC); 2 048 kbit/s digital structured leased lines (D2048S); Attachment requirements for terminal equipment interface, January 1996.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 5
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
17. FCC Rules – Part 68.308 – Signal Power Limitations.
18. ITU-T – Recommendation G.703 – Physical/Electrical Characteristics of Hierarchical Digital Interface, Geneva, 1998.
19. ITU-T – Recommendation G.704 – Synchronous Frame Structures Used at Primary Hierarchical Levels, July 1998.
20. ITU-T Recommendation G.772 – Protected Monitoring Points Provided on Digital Transmission Systems, 1992.
21. ITU-T – Recommendation G.775 – Loss of Signal (LOS), November 1998.
22. ITU-T Recommendation G.823, - The Control of Jitter and Wander Within Digital Networks Which are Based on the 2048 kbit/s Hierarchy, 1993.
23. ITU-T – Recommendation I.431 – Primary Rate User-Network Interface – Layer 1 Specification, 1993.
24. ITU-T Recommendation O.151, - Error Performance Measuring Equipment For Digital Systems at the Primary Bit Rate and Above, 1992.
25. TTC Standard JT-G703 – Physical/Electrical Characteristics of Hierarchical Digital Interfaces,
1995.
26. TTC Standard JT-G704 – Frame Structures on Primary and Secondary Hierarchical Digital Interfaces, 1995.
27. TTC Standard JT-I431 – ISDN Primary Rate User-Network Interface Layer 1 – Specification,
1995.
28. Nippon Telegraph and Telephone Corporation – Technical Reference for High-Speed Digital Leased Circuit Services, Third Edition, 1990.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 6
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
4 APPLICATION EXAMPLES
Figure 1 – T1/E1 Framer/Transceiver Application
8 x T1 lines
8 x E1 lines
OCTLIU
PM4318
OCTLIU
PM4318
Clock and Data
TOCTL
PM4388
Octal T1 Framer
Clock and Data
EOCTL
PM6388
Octal E1 Framer
Backplane
Backplane
Figure 2 – High Density T1/E1 Framer/Transceiver Application
SBI
32 T1/J1
or E1 lines
OCTLIU
OCTLIU
OCTLIU
OCTLIU
PM4318
PM4318
PM4318
PM4318
4xOCTLIU
TE32
PM4332
T1/J1/E1 Framer
H-MVIP or SBI
Figure 3 – High Density Leased Line Circuit Emulation Application
SBI
32 T1/J1
or E1 lines
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 7
OCTLIU
OCTLIU
OCTLIU
OCTLIU
PM4318
PM4318
PM4318
PM4318
4xOCTLIU
AAL1gator 32
PM73122
AAL1 SAR
Utopia L2
ATM
Backbone
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
Figure 4 – Metro Optical Access Equipment
84 T1/J1
or 63 E1 lines
OCTLIU
OCTLIU
OCTLIU
OCTLIU
OCTLIU
OCTLIU
OCTLIU
OCTLIU
OCTLIU
OCTLIU
OCTLIU
PM4318
PM4318
PM4318
PM4318
PM4318
PM4318
PM4318
PM4318
PM4318
PM4318
PM4318
11xOCTLIU or
8xOCTLIU
SBI
TEMAP-84
PM5366
T1/E1 VT/TU Mapper
Telecom Bus
Cross Connect
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 8
PRELIMINARY
PM4318 OCTLIU
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
5 BLOCK DIAGRAM
Figure 5 – OCTLIU Block Diagram – LIUs Enabled
REFCLK
AC1FP
TDN[8:1]
TDP[8:1]
TCLK[8:1]
ADATA[7:0]
ADP
EXSBI-8
XIBC
Generator
back Code
Inband Loop-
XPDE
Enforcer
Pulse Density
APL
SBI Extract
AV5
DC1FP
DDATA[7:0]
DDP
DPL
C1FPOUT
PRBS
Pattern
Detector
Generator /
DV5
RDP[8:1]
RDN/RLCV[8:1]
RCLK[8:1]
DACTIVE
INSBI-8
SBI Insert
RJAT
Attenuator
Digital Jitter
-
IBCD
Detector
back Code
Inband Loop
VCLK
FBLOW
RSTB
SBI_EN
SBI2CLK
LEN1[2:0]
LEN2[2:0]
LEN3[2:0]
LEN4[2:0]
LEN5[2:0]
LEN6[2:0]
LEN7[2:0]
LEN8[2:0]
HW_ONLY
SRCODE
SRCEN
SRCCLK
SRCDO
H/W only
LIU Octant x 8
Auto-config
SRCASC
SREN
SRCLK
SRDI
SRDO
INTB
RDB
WRB
CSB
ALE
A[10:0]
D[7:0]
TRSTB
TDO
PMON
LCODE
Encoder
HDB3 Line
AMI / B8ZS /
TJAT
Attenuator
Digital Jitter
(Diagnostic
Digit al
XLPG
Transmit LIU
TXTIP1[8:1]
TXTIP2[8:1]
TXRING1[8:1]
TXRING2[8:1]
Monitor
Performance
Loopback)
PDVD
Viol. Detector
Pulse Density
(Line
Loopback)
CDRC
Clk/Data
Recovery
RLPS
Receive LIU
RXTIP[8:1]
RXRING[8:1]
JTAG uP Interface
LOS
Serial
Output
TOPS
Timi ng
Options
CSD
Clock
Synthesis /
Distribution
XCLK
RSYNC
TDI
TMS
TCK
LOS
LOS_L1
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 9
PRELIMINARY
PM4318 OCTLIU
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
Figure 6 – OCTLIU Block Diagram – SBI to Clk/Data Converter, LIUs Disabled
REFCLK
AC1FP
Store x8EDATA[8:1]
AV5
DC1FP
DDATA[7:0]
DDP
DPL
C1FPOUT
DV5
DACTIVE
INSBI-8
SBI Insert
SBI2CLK
VCLK
RSTB
SBI_EN
HW _ONLY
SRCODE
SRCEN
SRCCLK
SRCDO
H/W only
Auto-config
SRCASC
SREN
SRCLK
SRDI
SRDO
INTB
RDB
WRB
CSB
ALE
A[10:0]
D[7:0]
ADATA[7:0]
ADP
APL
EXSBI-8
SBI Extract
ELST
Elastic
TRSTB
TDO
CSD
Clock
Synthesis /
Distribution
EFP
ECLK
IFP_IN
ICLK_IN
IFP_OUT
ICLK_OUT
IDATA[8:1]
XCLK
JTAG uP Interface
TDI
TMS
TCK
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 10
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
6 DESCRIPTION
The PM4318 Octal E1/T1/J1 Line Interface Device (OCTLIU) is a monolithic integrated circuit suitable for use in long haul and short haul T1, J1 and E1 systems with a minimum of external circuitry. The OCTLIU is configurable via microprocessor control or SPI-compatible serial PROM interface, allowing feature selection without changes to external wiring.
Analogue circuitry is provided to allow direct reception of long haul E1 and T1 compatible signals with up to 36 dB cable loss (at 1.024 MHz) in E1 mode or up to 36 dB cable loss (at 772 kHz) in T1 mode using a minimum of external components. Typically, only line protection, a transformer and a line termination resistor are required.
The OCTLIU recovers clock and data from the line. Decoding of AMI, HDB3 and B8ZS line codes is supported. In T1 mode, the OCTLIU also detects the presence of in-band loop back codes.
The OCTLIU supports detection of loss of signal, pulse density violation and line code violation alarm conditions. Line code violations are accumulated for performance monitoring purposes.
Internal analogue circuitry allows direct transmission of long haul and short haul T1 and E1 compatible signals using a minimum of external components. Typically, only line protection, a transformer and an optional line termination resistor are required. Digitally programmable pulse shaping allows transmission of DSX-1 compatible signals up to 655 feet from the cross-connect, E1 short haul pulses into 120 ohm twisted pair or 75 ohm coaxial cable, E1 long haul pulses into 120 ohm twisted pair as well as long haul DS-1 pulses into 100 ohm twisted pair with integrated support for LBO filtering as required by the FCC rules. In addition, the programmable pulse shape extending over 5-bit periods allows customization of short haul and long haul line interface circuits to application requirements.
Each channel of the OCTLIU can generate a low jitter transmit clock from the input clock source and also provide jitter attenuation in the receive path. A low jitter recovered T1 clock can be routed outside the OCTLIU for network timing applications.
Serial PCM interfaces to each T1/E1 LIU allow 1.544 Mbit/s or 2.048 Mbit/s backplane receive/backplane transmit system interfaces to be directly supported. Data may be transferred either as dual rail line pulses or single rail DS-1/E1 data. Alternatively, the OCTLIU supports an 8-bit parallel SBI interface for interfacing to high-density framers.
The OCTLIU may be configured to operate in a mode in which the LIUs are disabled and the device acts as a converter between the SBI interface and serial clock and data. Up to 8 serial data streams (sharing a common clock and frame pulse) may be mapped on to the SBI bus in this mode.
The OCTLIU may be configured, controlled and monitored via a generic 8-bit microprocessor bus through which all internal registers are accessed. Alternatively, the device may be operated in a ‘hardware only’ mode in which no microprocessor is required. In this case, the OCTLIU reads configuration information from an SPI-compatible serial PROM interface on power up. Multiple OCTLIUs can be configured from a single serial PROM via a cascade interface on the OCTLIU.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 11
PRELIMINARY
PM4318 OCTLIU
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
7 PIN DIAGRAM
The OCTLIU is packaged in a 288-pin Tape-SBGA package having a body size of 23mm by 23mm.
Figure 7 – Pin Diagram
22212019181716151413121110987654321
ALE/
A
LEN4[2]
B VDD3V3 VDD3V3
A[8]/
C
LEN3[2]
A[4]/
D
LEN2[1]
A[0]/
E
LEN1[0]
F RAVS1[1] RAVD2[1] QAVD[1]
G RAVD1[1] RXTIP[1] RAVS2[1] VDD3V3 RAVS2[8] RXTIP[8] RAVS1[7] TXRING1 [7] G
VSS
A[9]/
LEN4[0]
A[5]/
LEN2[2]
A[1]/
LEN1[1]
D[1]/
LEN6[2]
CSB/
LEN5[2]
A[10]/
LEN4[1]
A[6]/
LEN3[0]
A[2]/
LEN1[2]
D[2]/
LEN7[0]
LEN7[2]
D[0]/
LEN6[1]
LEN7[1]
RDB/
VDD3V3 VDD3V3 VSS
LEN5[1]
WRB/
VSS
LEN5[0]
A[7]/
LEN3[1]
A[3]/
LEN2[0]
D[4]/
VSS VDD1V8 TAVS2[1] TXRING2 [1] TXRING1 [1] TXTIP1[1] TXTIP2[1] TXTIP2 [8] TXTIP1 [8] TXRING1 [8] TXRING2 [8] RS TB LOS SRCCLK SRCLK VDD3V3 TDI A
D[3]/
D[6]/
SBI_EN QAVS[4] RES[5] TAVD3[1] TAVS3[8] TAVD2[8] QAVD[4] VDD1V8 VDD3V3 RES[1] RES[6] SRCDO SRDO SRCASC TDO HW_ONLY B
LEN8[1]
D[7]/
CAVD TAVD2[1] TAVS3[1] TAVD3[8] TAVS2[8] VSS VSS LOS_L1 SRCODE SRCEN SREN VSS TCK SBI2CLK C
LEN8[2]
INTB/
LEN6[0]
D[5]/
VSS
CAVS TAVS1[1] TAVD1[1] TAVD1[8] TAVS1[8] XCLK
LEN8[0]
RSYNC/
VDD3V3 SRDI VSS NC TMS VDD3V3 RAVS1[ 8] D
ICLK_OUT
TRSTB VSS RAVD2[8] RAVD2[7 ] E
QAVS[3] RES[4] RAVS2[7] TXRING2 [7] F
H TXRING2 [2] RAVD2[2] RAVS2[2] RXRING[1] RXRING [8] RAVD1[8] RAVD1[7] TXTIP1 [7] H
J TXRING1 [2] RXTIP[2] RAVS1[2] RXRING [2] RXRING [7] RXTIP[7] TAVS2[7] TXTIP2 [7] J
K TXTIP1[2] RAVD1[2] TAVS2[2] TAVS1[2] TAVS1[7] TAVD2[7] TAVD3[7] TXTIP2 [6] K
L TXT IP2 [2] TAVD2[2] TAVD3[2] TAV D1[2]
M TXTIP2 [3] TAVS3[2] TAVS3[3] TAVD1[3] TAVD1[6] TAVD3[6] TAVD2[6] TXRING1 [6] M
N TXTIP1 [3] TAVD3[3] TAVD2[3] TAVS1[3] TAVS1[6] TAVS2[6] RAVD1[6] TXRING2 [6] N
P TXRING1 [3] TAVS2[3] RAVD1[3] RXRING [3] RXRING [6] RAVS1[6] RAVD2[6] RXTIP[6] P
R TXRING2 [3] RXTIP[3] RAVD2[3] RXTIP[4] RXTIP[5] RXRING [5] RAVD1[5] RAVS2[6] R
T RAVS1[3] RAVS2[3] RAVD1[4] RAVS2[4] QAVD[3] RAVS2[5] RAVD2[5] RAVS1[5] T
U RXRING [4] RAVS1[4] RAVD2[4]
V RES[1] QAVS[1] VSS
TDP[1]/
W
Y
AA
AB VSS VSS VSS
TDN[1]/
ADATA[0]
REFCLK
TDN[2]/
TDP[3]/
AC1FP
ADATA[2]
TCLK[3]/
TDN[3]/
IDATA[3]
DC1FP
22212019181716151413121110987654321
TCLK[1]/
IDATA[1]
TDP[2]/
ADATA[1]
TCLK[2]/
VDD3V3 TDN[4]/ ADP VDD3V3 VDD3V3
IDATA[2]
TDP[4]/
VDD3V3
TCLK[4]/
IDATA[4]
ADATA[3]
RCLK[1]/
EDATA[1]
RDP[1]/
DDATA[0]
VSS
RCLK[2]/
EDATA[2]
RDN[1]/
RLCV[1]/
IFP_OUT
RDP[2]/
DDATA[1]
VSS VSS
RDN[2]/
RLCV[2]/
EFP
RCLK[3 ]/
EDATA[3]
RDP[3]/
DDATA[2]
RDN[3]/
RLCV[3]/
C1FPOUT
VDD3V3
RCLK[4]/
EDATA[4]
RDP[4]/
DDATA[3]
Bottom View
RDP[5]/
VSS TAVS1[4] TAVD1[4] TAVD1[5] TAVS1[5] VDD1V8
RDN[4]/
RLCV[4]/
TAVS2[4] TAVD3[4] TAVS3[5] TAVD2[5] RES[3]
DDP
VDD1V8 QAVD[2] TAVD2[4] TAVS3[4] TAVD3[5] TAVS2[5] QAVS[2] VSS VSS
TXRING2 [4] TXRING1 [4] TXTIP1[4] TXTIP2 [4] TXTIP2 [5] TXTIP1[5] TXRING1 [5] TXRING2 [5]
DDATA[4]
RDN[5]/
RLCV[5 ]/
DPL
RCLK[6 ]/
EDATA[6]
VDD3V3 VSS
RCLK[7 ]/
EDATA[7]
RCLK[5 ]/
EDATA[5]
TAVD1[7] TAVS3[7] TAVS3[6] TXTIP1[6] L
TCLK[7]/
TDN[8]/
IDATA[7]
IFP_IN
TCLK[6]/
TDN[6]/ AV5
IDATA[6]
RDP[8]/
NC VDD3V3
DDATA[7]
RDN[8]/
RDP[7]/
RLCV[8]/
DDATA[6]
RDP[6]/
DDATA[5]
RDN[6]/
RLCV[6 ]/
DV5
VSS
DACTIVE
RDN[7]/
RLCV[7]/
VDD3V3 VSS TDN[5]/ APL AA
ECLK
VDD3V3 VSS
TDP[8]/
ADATA[7]
TDN[7]/
ICLK_IN
TCLK[5]/
IDATA[5]
TDP[5]/
ADATA[4]
RCLK[8]/
EDATA[8]
VSS U
TCLK[8]/
IDATA[8]
TDP[7]/
ADATA[6]
TDP[6]/
ADATA[5]
VDD3V3 AB
V
W
Y
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 12
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
8 PIN DESCRIPTION
By convention, where a bus of eight pins indexed [8:1] is present, the index indicates to which octant the pin applies. With TCLK[8:1], for example, TCLK[1] applies to octant #1, TCLK[2] applies to octant #2, etc.
Pin Name Type Pin
Function
No.
T1 and E1 System Side Serial Clock and Data Interface
TCLK[1]/IDATA[1] TCLK[2]/IDATA[2] TCLK[3]/IDATA[3] TCLK[4]/IDATA[4] TCLK[5]/IDATA[5] TCLK[6]/IDATA[6] TCLK[7]/IDATA[7] TCLK[8]/IDATA[8]
TDP[1]/ADATA[0] TDP[2]/ADATA[1] TDP[3]/ADATA[2] TDP[4]/ADATA[3] TDP[5]/ADATA[4] TDP[6]/ADATA[5] TDP[7]/ADATA[6] TDP[8]/ADATA[7]
Input U19
W20 AA22 AA20 W2 V3 U4 V1
Input W22
V19 Y21 Y19 Y2 Y1 W1 U2
The Transmit Clock inputs (TCLK[8:1]) should be 1.544 MHz for DS1 or 2.048 MHz for E1 data streams and are used to sample the corresponding TDP[8:1] and TDN[8:1] signals.
TCLK[8:1] share the same pins as the IDATA[8:1] inputs. TCLK[8:1] are selected when SBI2CLK is tied low.
Transmit Positive Data (TDP[8:1]). When in single-rail mode, these inputs are the NRZ data signals to be transmitted. These inputs can be configured to be active high or active low. When in dual-rail mode, these inputs are the NRZ positive data signals to be transmitted.
TDP[8:1] can be sampled on either the rising or falling edges of the corresponding TCLK[8:1].
TDP[8:1] share the same pins as the ADATA[7:0] inputs. TDP[8:1] are selected when SBI_EN and SBI2CLK are both tied low.
TDN[1]/REFCLK TDN[2]/AC1FP TDN[3]/DC1FP TDN[4]/ADP TDN[5]/APL TDN[6]/AV5 TDN[7]/ICLK_IN TDN[8]/IFP_IN
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 13
Input W21
Y22 AA21 W18 AA1 V4 V2 U3
Transmit Negative Data (TDN[8:1]). When in dual-rail mode, these inputs are the NRZ negative data signals to be transmitted. These inputs can be sampled on either the rising or falling edges of the corresponding TCLK[8:1]. These input pins are ignored if the device is configured for single-rail (unipolar) transmit mode.
TDN[8:1] share the same pins as the REFCLK, AC1FP, DC1FP, ADP, APL, AV5, ICLK_IN and IFP_IN inputs. TDN[8:1] are selected when SBI_EN and SBI2CLK are both tied low.
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
Pin Name Type Pin
No.
RCLK[1]/EDATA[1] RCLK[2]/EDATA[2] RCLK[3]/EDATA[3] RCLK[4]/EDATA[4] RCLK[5]/EDATA[5] RCLK[6]/EDATA[6] RCLK[7]/EDATA[7] RCLK[8]/EDATA[8]
RDP[1]/DDATA[0] RDP[2]/DDATA[1] RDP[3]/DDATA[2] RDP[4]/DDATA[3] RDP[5]/DDATA[4] RDP[6]/DDATA[5] RDP[7]/DDATA[6] RDP[8]/DDATA[7]
Output AA19
AA18 Y16 AA15 AB6 W7 W6 AB2
Output AB19
Y17 AB16 AB15 W8 AA5 Y5 W5
Function
Recovered Clock Output (RCLK[8:1]). RCLK[8:1] is the clock recovered from the RXTIP[8:1] and RXRING[8:1] input signals.
RCLK[8:1] share the same pins as the EDATA[8:1] outputs. RCLK[8:1] are selected when SBI2CLK is tied low.
Receive Digital Positive Data (RDP[8:1]). When in single rail mode, RDP[8:1] output NRZ sampled DS-1 or E1 data which has been decoded by AMI, B8ZS, or HDB3 line code rules. When in dual rail mode, RDP[8:1] output NRZ sampled bipolar positive pulses.
RDP[8:1] can be updated on either the falling or rising RCLK[8:1] edge.
RDP[8:1] share the same pins as the DDATA[7:0] outputs. RDP[8:1] are selected when SBI_EN and SBI2CLK are both tied low.
RDN/RLCV[1]/IFP_OUT RDN/RLCV[2]/EFP RDN/RLCV[3]/C1FPOUT RDN/RLCV[4]/DDP RDN/RLCV[5]/DPL RDN/RLCV[6]/DV5 RDN/RLCV[7]/ECLK RDN/RLCV[8]/DACTIVE
Output AB18
AB17 W15 Y14 Y8 AB5 AA4 Y4
Receive Digital Negative Data/Line Code Violation Indication (RDN/RLCV[8:1]). When in dual rail mode, RDN/RLCV[8:1] output NRZ sampled bipolar negative pulses. When in single rail mode, RDN/RLCV[8:1] output a NRZ pulse whenever a line code violation or excess zeros condition is detected.
RDN/RLCV[8:1] can be updated on either the falling or rising RCLK[8:1] edge.
RDN/RLCV[8:1] share the same pins as the IFP_OUT, EFP, C1FPOUT, DDP, DPL, DV5, ECLK and DACTIVE outputs. RDN/RLCV[8:1] are selected when SBI_EN and SBI2CLK are both tied low.
SBI System Side Interface
REFCLK/TDN[1] Input W21 The SBI reference clock signal (REFCLK) provides reference
timing for the SBI ADD and DROP busses.
REFCLK is nominally a 50% duty cycle clock of frequency 19.44 MHz ±50ppm.
REFCLK shares the same pin as the TDN[1] input. REFCLK is selected when SBI_EN or SBI2CLK is tied high.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 14
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
Pin Name Type Pin
Function
No.
AC1FP/TDN[2] Input Y22 The SBI ADD bus C1 octet frame pulse signal (AC1FP) provides
frame synchronisation for devices connected via an SBI interface. AC1FP must be asserted for 1 REFCLK cycle every 500 µs or multiples thereof (i.e. every 9720 n REFCLK cycles, where n is a positive integer). All devices connected to the SBI ADD bus must be synchronised to a AC1FP signal from a single source.
AC1FP is sampled on the rising edge of REFCLK.
AC1FP shares the same pin as the TDN[2] input. AC1FP is selected when SBI_EN or SBI2CLK is tied high.
DC1FP/TDN[3] Input AA21 The SBI DROP bus C1 octet frame pulse signal (DC1FP)
provides frame synchronisation for devices connected via an SBI interface. DC1FP must be asserted for 1 REFCLK cycle every 500 µs or multiples thereof (i.e. every 9720 n REFCLK cycles, where n is a positive integer). All devices connected to the SBI DROP bus must be synchronised to a DC1FP signal from a single source.
DC1FP is sampled on the rising edge of REFCLK.
DC1FP shares the same pin as the TDN[3] input. DC1FP is selected when SBI_EN or SBI2CLK is tied high.
C1FPOUT/RDN/RLCV[3]
ADATA[0]/TDP[1] ADATA[1]/TDP[2] ADATA[2]/TDP[3] ADATA[3]/TDP[4] ADATA[4]/TDP[5] ADATA[5]/TDP[6] ADATA[6]/TDP[7] ADATA[7]/TDP[8]
Output W15 The C1 octet frame pulse output signal (C1FPOUT) may be used
to provide frame synchronisation for devices interconnected via an SBI interface. C1FPOUT is asserted for 1 REFCLK cycle every 500 µs (i.e. every 9720 REFCLK cycles). If C1FPOUT is used for synchronisation, it must be connected to the A/DC1FP inputs of all the devices connected to the SBI ADD or DROP bus.
C1FPOUT is updated on the rising edge of REFCLK.
C1FPOUT shares the same pin as the RDN/RLCV[3] output. C1FPOUT is selected when SBI_EN or SBI2CLK is tied high.
Input W22
V19 Y21 Y19 Y2 Y1 W1 U2
The SBI ADD bus data signals (ADATA[7:0]) contain time division multiplexed transmit data from up to 84 independently timed links. Link data is transported as T1 or E1 tributaries within the SBI TDM bus structure. The OCTLIU may be configured to extract data from up to 8 tributaries within the structure.
ADATA[7:0] are sampled on the rising edge of REFCLK.
ADATA[7:0] share the same pins as the TDP[8:1] inputs. ADATA[7:0] are selected when SBI_EN or SBI2CLK is tied high.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 15
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
Pin Name Type Pin
Function
No.
ADP/TDN[4] Input W18 The SBI ADD bus parity signal (ADP) carries the even or odd
parity for the ADD bus signals. The parity calculation encompasses the ADATA[7:0], APL and AV5 signals.
Multiple devices can drive the SBI ADD bus at uniquely assigned tributary column positions. This parity signal is intended to detect accidental driver clashes in the column assignment.
ADP is sampled on the rising edge of REFCLK.
ADP shares the same pin as the TDN[4] input. ADP is selected when SBI_EN or SBI2CLK is tied high.
APL/TDN[5] Input AA1 The SBI ADD bus payload signal (APL) indicates valid data within
the SBI TDM bus structure. This signal is asserted during all octets making up a tributary. This signal may be asserted during the V3 octet within a tributary to accommodate negative timing adjustments between the tributary rate and the fixed TDM bus structure. This signal may be deasserted during the octet following the V3 octet within a tributary to accommodate positive timing adjustments between the tributary rate and the fixed TDM bus structure.
APL is sampled on the rising edge of REFCLK.
APL shares the same pin as the TDN[5] input. APL is selected when SBI_EN or SBI2CLK is tied high.
AV5/TDN[6] Input V4 The SBI ADD bus payload indicator signal (AV5) locates the
position of the floating payloads for each tributary within the SBI TDM bus structure. Timing differences between the port timing and the TDM bus timing are indicated by adjustments of this payload indicator relative to the fixed TDM bus structure. All movements indicated by this signal must be accompanied by appropriate adjustments in the APL signal.
AV5 is sampled on the rising edge of REFCLK.
AV5 shares the same pin as the TDN[6] input. AV5 is selected when SBI_EN or SBI2CLK is tied high.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 16
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
Pin Name Type Pin
No.
DDATA[0]/RDP[1] DDATA[1]/RDP[2] DDATA[2]/RDP[3] DDATA[3]/RDP[4] DDATA[4]/RDP[5] DDATA[5]/RDP[6] DDATA[6]/RDP[7] DDATA[7]/RDP[8]
DDP/RDN/RLCV[4] Tristate
Tristate Output
AB19 Y17 AB16 AB15 W8 AA5 Y5 W5
Y14 The SBI DROP bus parity signal (DDP) carries the even or odd
Output
Function
The SBI DROP bus data signals (DDATA[7:0]) contain time division multiplexed receive data from up to 84 independently timed links. Link data is transported as T1 or E1 tributaries within the SBI TDM bus structure. The OCTLIU may be configured to insert data into up to 8 tributaries within the structure. Multiple LIU devices can drive the SBI DROP bus at uniquely assigned tributary column positions. DDATA[7:0] are tristated when the OCTLIU is not outputting data on a particular tributary column.
DDATA[7:0] are updated on the rising edge of REFCLK.
DDATA[7:0] share the same pins as the RDP[8:1] outputs. DDATA[7:0] are selected when SBI_EN or SBI2CLK is tied high.
parity for the DROP bus signals. The parity calculation encompasses the DDATA[7:0], DPL and DV5 signals.
Multiple LIU devices can drive this signal at uniquely assigned tributary column positions. DDP is tristated when the OCTLIU is not outputting data on a particular tributary column. This parity signal is intended to detect accidental source clashes in the column assignment.
DPL/RDN/RLCV[5] Tristate
Output
DDP is updated on the rising edge of REFCLK.
DDP shares the same pin as the RDN/RLCV[4] output. DDP is selected when SBI_EN or SBI2CLK is tied high.
Y8 The SBI DROP bus payload signal (DPL) indicates valid data
within the SBI TDM bus structure. This signal is asserted during all octets making up a tributary. This signal may be asserted during the V3 octet within a tributary to accommodate negative timing adjustments between the tributary rate and the fixed TDM bus structure. This signal may be deasserted during the octet following the V3 octet within a tributary to accommodate positive timing adjustments between the tributary rate and the fixed TDM bus structure.
Multiple LIU devices can drive this signal at uniquely assigned tributary column positions. DPL is tristated when the OCTLIU is not outputting data on a particular tributary column.
DPL is updated on the rising edge of REFCLK.
DPL shares the same pin as the RDN/RLCV[5] output. DPL is selected when SBI_EN or SBI2CLK is tied high.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 17
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
Pin Name Type Pin
No.
DV5/RDN/RLCV[6] Tristate
AB5 The SBI DROP bus payload indicator signal (DV5) locates the
output
DACTIVE/RDN/RLCV[8]
Output Y4 The SBI DROP bus active indicator signal (DACTIVE) is asserted
Function
position of the floating payloads for each tributary within the SBI TDM bus structure. Timing differences between the port timing and the TDM bus timing are indicated by adjustments of this payload indicator relative to the fixed TDM bus structure.
Multiple LIU devices can drive this signal at uniquely assigned tributary column positions. DV5 is tristated when the OCTLIU is not outputting data on a particular tributary column.
DV5 is updated on the rising edge of REFCLK.
DV5 shares the same pin as the RDN/RLCV[6] output. DV5 is selected when SBI_EN or SBI2CLK is tied high.
whenever the OCTLIU is driving the SBI DROP bus signals, DDATA[7:0], DDP, DPL and DV5.
DACTIVE is updated on the rising edge of REFCLK.
DACTIVE shares the same pin as the RDN/RLCV[8] output. DACTIVE is selected when SBI_EN or SBI2CLK is tied high.
Transmit Line Interface
TXTIP1[1] TXTIP1[2] TXTIP1[3] TXTIP1[4] TXTIP1[5] TXTIP1[6] TXTIP1[7] TXTIP1[8]
TXTIP2[1] TXTIP2[2] TXTIP2[3] TXTIP2[4] TXTIP2[5] TXTIP2[6] TXTIP2[7] TXTIP2[8]
Analogue Output
A12 K22 N22 AB12 AB9 L1 H1 A9
A11 L22 M22 AB11 AB10 K1 J1 A10
Transmit Analogue Positive Pulse (TXTIP1[8:1] and TXTIP2[8:1]). When the transmit analogue line interface is enabled, the TXTIP1[x] and TXTIP2[x] analogue outputs drive the transmit line pulse signal through an external matching transformer. Both TXTIP1[x] and TXTIP2[x] are normally connected to the positive lead of the transformer primary. Two outputs are provided for better signal integrity and must be shorted together on the board.
After a reset, TXTIP1[x] and TXTIP2[x] are high impedance. The HIGHZ bit of the octant’s XLPG Line Driver Configuration register must be programmed to logic 0 to remove the high impedance state.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 18
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
Pin Name Type Pin
No.
TXRING1[1] TXRING1[2] TXRING1[3] TXRING1[4] TXRING1[5] TXRING1[6] TXRING1[7] TXRING1[8]
TXRING2[1] TXRING2[2] TXRING2[3] TXRING2[4] TXRING2[5] TXRING2[6] TXRING2[7] TXRING2[8]
Analogue Output
A13 J22 P22 AB13 AB8 M1 G1 A8
A14 H22 R22 AB14 AB7 N1 F1 A7
Receive Line Interface
RXTIP[1] RXTIP[2] RXTIP[3] RXTIP[4] RXTIP[5] RXTIP[6] RXTIP[7] RXTIP[8]
Analogue Input
G21 J21 R21 R19 R4 P1 J3 G3
Function
Transmit Analogue Negative Pulse (TXRING1[8:1] and TXRING2[8:1]). When the transmit analogue line interface is enabled, the TXRING1[x] and TXRING2[x] analogue outputs drive the transmit line pulse signal through an external matching transformer. Both TXRING1[x] and TXRING2[x] are normally connected to the negative lead of the transformer primary. Two outputs are provided for better signal integrity and must be shorted together on the board.
After a reset, TXRING1[x] and TXRING2[x] are high impedance. The HIGHZ bit of the octant’s XLPG Line Driver Configuration register must be programmed to logic 0 to remove the high impedance state.
Receive Analogue Positive Pulse (RXTIP[8:1]). When the analogue receive line interface is enabled, RXTIP[x] samples the received line pulse signal from an external isolation transformer. RXTIP[x] is normally connected directly to the positive lead of the receive transformer secondary.
RXRING[1] RXRING[2] RXRING[3] RXRING[4] RXRING[5] RXRING[6] RXRING[7] RXRING[8]
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 19
Analogue Input
H19 J19 P19 U22 R3 P4 J4 H4
Receive Analogue Negative Pulse (RXRING[8:1]). When the analogue receive line interface is enabled, RXRING[x] samples the received line pulse signal from an external isolation transformer. RXRING[x] is normally connected directly to the negative lead of the receive transformer secondary.
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
Pin Name Type Pin
No.
SBI to Clk/Data Converter Interface
SBI_EN
Input B16C1The SBI interface enable signals (SBI_EN, SBI2CLK) select
SBI2CLK
IDATA[1]/TCLK[1] IDATA[2]/TCLK[2] IDATA[3]/TCLK[3] IDATA[4]/TCLK[4] IDATA[5]/TCLK[5] IDATA[6]/TCLK[6] IDATA[7]/TCLK[7] IDATA[8]/TCLK[8]
Input U19
W20 AA22 AA20 W2 V3 U4 V1
Function
between the SBI and serial clock/data system side interfaces and allow selection of an operating mode in which the LIUs are disabled and the OCTLIU functions as a converter between the SBI interface and serial clk/data. The signals select the device operating mode as follows:
SBI_EN SBI2CLK Mode 0 0 LIUs enabled, clk/data selected on system
side.
1 0 LIUs enabled, SBI interface selected on
system side. 0 1 LIUs disabled, converter mode. 1 1 Unused
The Ingress Data inputs (IDATA[8:1]) carry eight serial 1.544 Mbps or 2.048 Mbps data streams to be mapped on to the SBI interface when the device is operating as a SBI to clk/data converter. The eight serial data streams are sampled on the rising edge of ICLK_IN.
IDATA[8:1] share the same pins as the TCLK[8:1] inputs. IDATA[8:1] are selected when SBI2CLK is tied high.
ICLK_IN/TDN[7] Input V2 The Ingress Input Clock (ICLK_IN) should be 1.544 MHz for DS1
or 2.048 MHz for E1 data streams and is used to sample the IDATA[8:1] and IFP_IN signals.
ICLK_IN shares the same pin as the TDN[7] input. ICLK_IN is selected when SBI_EN or SBI2CLK is tied high.
IFP_IN/TDN[8] Input U3 The Ingress Frame Pulse input (IFP_IN) should be set high
during the framing bits of DS1 streams or during the first bit of the framing octet of E1 data streams. IFP_IN is sampled on the rising edge of ICLK_IN.
IFP_IN shares the same pin as the TDN[8] input. IFP_IN is selected when SBI_EN or SBI2CLK is tied high.
ICLK_OUT/RSYNC Output D8 The Ingress Output Clock (ICLK_OUT) is a nominal 1.544 MHz
(for DS1) or 2.048 MHz (for E1) clock and may be used as a source for the ICLK_IN clock if desired.
ICLK_OUT shares the same pin as the RSYNC output. ICLK_OUT is selected when SBI2CLK is tied high.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 20
PRELIMINARY
DATASHEET
PMC- 2001578 ISSUE 3 OCTAL E1/T1/J1 LINE INTERFACE DEVICE
PM4318 OCTLIU
Pin Name Type Pin
Function
No.
IFP_OUT/RDN/RLCV[1]
Output AB18 The Ingress Frame Pulse output (IFP_OUT) is pulsed high every
193 ICLK_OUT cycles for DS1 and every 256 ICLK_OUT cycles for E1. It may be used as a framing reference and as a source for IFP_IN if desired. IFP_OUT is updated on the falling edge of ICLK_OUT.
IFP_OUT shares the same pin as the RDN/RLCV[1] output. IFP_OUT is selected when SBI_EN or SBI2CLK is tied high.
EDATA[1]/RCLK[1] EDATA[2]/RCLK[2] EDATA[3]/RCLK[3] EDATA[4]/RCLK[4] EDATA[5]/RCLK[5] EDATA[6]/RCLK[6] EDATA[7]/RCLK[7] EDATA[8]/RCLK[8]
Output AA19
AA18 Y16 AA15 AB6 W7 W6 AB2
The Egress Data outputs (EDATA[8:1]) carry eight serial 1.544 Mbps or 2.048 Mbps data streams de-mapped from the SBI interface when the device is operating as a SBI to clk/data converter. The eight serial data streams are updated on the falling edge of ECLK.
EDATA[8:1] share the same pins as the RCLK[8:1] outputs. EDATA[8:1] are selected when SBI2CLK is tied high.
ECLK/RDN/RLCV[7] Output AA4 The Egress Clock output (ECLK) is a 1.544 MHz (for DS1) or
2.048 MHz (for E1) clock, recovered from one of the SBI tributaries. The SBI tributary used to recover timing is selectable.
ECLK shares the same pin as the RDN/RLCV[7] output. ECLK is selected when SBI_EN or SBI2CLK is tied high.
EFP/RDN/RLCV[2] Output AB17 The Egress Frame Pulse output (EFP) is set high during the
framing bits of DS1 streams or during the first bit of the framing octet of E1 data streams. EFP is updated on the falling edge of ECLK.
EFP shares the same pin as the RDN/RLCV[2] output. EFP is selected when SBI_EN or SBI2CLK is tied high.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 21
Loading...
+ 214 hidden pages