variations to this publication, known as errata. PLX assumes no liability whatsoever, including infri ngement of any patent or
copyright, for sale and use of PLX products.
PLX Technology and the PLX logo are registered trademarks of PLX Technology, Inc.
Other brands and names are the property of their respective owners.
Document Number: PEX8615BA-Base Board RDK-HRM-1.0
April 15, 2009
This document contains PLX Confidential and Proprietary information. The contents of this document may not be
copied nor duplicated in any form, in whole or in part, without prior written consent from PLX Technology, Inc.
PLX provides the information and data included in this document for your benefit, but it is not possible to entirely
verify and test all the information, in all circumstances, particularly information relating to non-PLX manufactured
products. PLX makes neither warranty nor representation relating to the quality, content, or adequacy of this
information. The information in this document is subject to change without notice. Although every effort has been
made to ensure the accuracy of this manual, PLX shall not be liable for any errors, incidental, or consequential
damages in connection with the furnishing, performance, or use of this manual or examples herein. PLX assumes
no responsibility for damage or loss resulting from the use of this manual, for loss or claims by third parties, which
may arise through the use of the RDK, or for any damage or loss caused by deletion of data as a result of
malfunction or repair.
ABOUT THIS MANUAL
This document describes the PLX PEX 8615BA-Base Board RDK, a Rapid Development Kit, from a hardware
perspective. It contains a description of all major functional circuit blocks on the board and also is a reference for
the creation of software for this product. This manual also includes complete schematics and bill of materials.
ABOUT THIS MANUAL ..................................................................................................................................................... i
REVISION HISTORY .................................................................................................................................................... i
1.General Information ........................................................................................................................................... 1
1.1PEX 8615 Features ................................................................................................................................... 1
1.2PEX 8615BA-BB RDK Features ................................................................................................................ 3
3.8Power Distribution Circuits ....................................................................................................................... 11
4.3Connectors and Headers ......................................................................................................................... 21
4.3.1ATX Peripheral Power Connectors (J1-J4 & J7-J8) ........................................................................ 21
5.RDK Port Configurations .................................................................................................................................. 27
6.Bill of Materials/ Schematics ............................................................................................................................ 30
Figure 8. SERIAL HOT-PLUG Circuits .................................................................................................................... 10
Figure 9. RDK ATX Power Connectors ................................................................................................................... 11
Figure 10. RDK Power Distribution Circuits ............................................................................................................ 12
Figure 11. FPGA Interface on RDK ......................................................................................................................... 13
Figure 12. RDK Dip Switch Groups ......................................................................................................................... 16
Figure 13. Group1 of Switches ................................................................................................................................ 16
Figure 14. Group 2 of Dipswitches .......................................................................................................................... 17
Figure 15. Group 3 of Dip Switches ......................................................................................................................... 19
Figure 16. x1 upstream and 11x1 downstream (PCFG=0000) ............................................................................... 27
Table 5. Functional Description of Group 1 Dip Switches ....................................................................................... 17
Table 6. Functional Description of Group 2 Dip Switches ....................................................................................... 18
Table 7. Port Configurations use Dipswitch SW2 .................................................................................................... 19
Table 8. Functional Descriptions of SW3, SW6, SW13-SW14 ............................................................................... 20
Table 9. Signal Names of J1-J4 & J7-J8 ................................................................................................................. 21
Table 10. Signal Names of J5 and J6 ...................................................................................................................... 21
Table 11. Signal Names of J9 ................................................................................................................................. 22
Table 12. Signal Names of J10 ............................................................................................................................... 22
Table 13. Signal Names of J12 ............................................................................................................................... 22
Table 14. Signal Names of J13 ............................................................................................................................... 23
Table 15. Pin assignment of JP3 ............................................................................................................................. 23
Table 16. Signal Names of JP5 ............................................................................................................................... 23
Table 17. Signal Names of JP6 ............................................................................................................................... 23
Table 18. Pin assignment of JP8 ............................................................................................................................. 24
Table 19. Pin assignment of JP9 & JP11 ................................................................................................................ 24
Table 20. Pin assignment of JP10 ........................................................................................................................... 26
Table 21. Pin assignment of JP100 ......................................................................................................................... 26
The PLX PEX 8615BA Base Board RDK is a Rapid Development Kit based on the PEX 8615, a 12-lane, 12-port
PCI Express switch based in the PCI Express Specification rev 2.0 with SerDes capable of running at 5 GT/s. The
PEX 8615BA Base Board RDK provides a complete hardware and software development platform that facilitates
getting designs up and running quickly, lowering risk and reducing time-to-market. This RDK consists a base
board containing three hardware configuration Modules, a PCI Express cable adapter board that plugs into the
host system, and up to two x4 PCI Express cables that used to connect the RDK to the cable adapter. This
manual primarily focuses on the PEX 8615BA Base Board RDK, and its use with other parts to demonstrate the
various functions of PEX 8615 chip. Figure 1 provides a top view (component side) of the PEX 8615BA Base
Board RDK.
1.1 PEX 8615 Features
• 12-lane, 12-port PCI Express Gen 2 switch with integrated on-chip SerDes
• 120 GT/s aggregate bandwidth (5.0GT/s/Lane x 16 Lanes x 2 (full duplex))
• 19mm
• Typical Power – 1.7W
• Cut-Thru packet latency of less than 160ns
• Low power SerDes (under 90mW per lane)
• Fully non-blocking switch architecture
• Flexible port configuration
• Flexible device configuration
• Maximum packet payload size of 2,048 bytes
• Designate any Port as the Upstream Port (Port 0 is recommended)
• Dynamic Buffer Pool Architecture
• Read Pacing (allows user to throttle Read requests from Downstream Ports to allow for more efficient
• Dual-Cast (enhances performance by sending date from one ingress port to two egress ports)
• Integrated Direct Memory Access (DMA) engine
• Dynamic speed (2.5 GT/s or 5.0 GT/s) negotiation
• Dynamic link-width negotiation (automatically negotiates down to optimal link-width based on traffic
• Lane and polarity reversal
• Non-Transparent Bridging support
• Conventional PCI-compatible Link Power Management states – L0, L0s, L1, L2/L3 Ready, and L3 (with
• Conventional PCI-compatible Device Power Management states – D0 and D3hot
• Active State Power Management
• Spread-Spectrum Clock Isolation
• Quality of Service (QoS)
• Reliability, Availability, Serviceability (RAS) features
2
324-ball Plastic Ball Grid Array (PBGA) package
o 12 flexible and configurable ports (x1, or x4 ), x2 is also supported
2
o Configurable via serial EEPROM, I
C, hardware strapping, or by the host
performance)
density)
o Enables Dual-Host, Host-Failover applications
Vaux not supported)
o Dual-clock Domain
o Two Virtual Channels (VC0 and VC1) and Eight Traffic classes (TC)
o Weighted Round-Robin Port and Virtual Channel arbitration
2
o All ports are Hot-Plug capable through I
C (Serial Hot-Plug Controller on every port)
o Advanced Error Reporting capability
o Performance Monitoring
Per-Port Payload and Header Counters
Per-traffic type (write, Read, Completion) Counters
o JTAG AC/DC boundary scan
o 12 Lane status balls (PEX_LANE_GOOD[11:0]#)
•INTA# (PEX_INTA#) and FATAL ERROR (FATAL_ERR#) (Conventional PCI SERR# equivalent) ball
support
•Compliant to the following specifications:
o PCI Local Bus Specification, Revision 3.0 (PCI r3.0)
o PCI Bus Power Management Interface Specification, Revision 1.2 (PCI Power Mgmt. r1.2)
o PCI to PCI Bridge Architecture Specification, Revision 1.2 (PCI-to-PCI Bridge r1.2)
o PCI Express Base Specification, Revision 1.1 (PCI Express Base r1.1)
o PCI Express Base Specification, Revision 2.0 (PCI Express Base r2.0)
o IEEE Standard 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture,
1990 (IEEE Standard 1149.1-1990)
o IEEE Standard 1149.1a-1993, IEEE Standard Test Access Port and Boundary-Scan Architecture
o IEEE Standard 1149.1-1994, Specifications for Vendor-Specific Extensions
o IEEE Standard 1149.6-2003, IEEE Standard Test Access Port and Boundary-Scan Architecture
Extensions (IEEE Standard 1149.6-2003)
2
o The I
C-Bus Specification, Version 2.1 (I2C Bus v2.1)
1.2 PEX 8615BA-BB RDK Features
• PLX PEX 8615 PCI Express switch in a 324-ball Plastic BGA package
• Based on PCI Express Card Electromechanical (CEM) Specification 2.0 and PCI Express External
Cabling Specification 1.0
•Supports up to 3 different port configurations with 4x PCI Express cable connection(s) to the upstream
PC
• Non-Transparent Bridging support
• One x8 Gen 2 Midbus probe footprint for upper 4 lanes of PCI Express signal probing for the chip
The PEX 8615BA-Base Board RDK is a 21” x 10” bench top board for silicon evaluation and design reference for
the PEX 8615 PCI Express Gen 2 switch. This RDK consists of three main hardware components: the base
board, the PCI Express External Cable Adapter and PCI Express Cable assembly. Figure 1 represents the
placement of major component blocks on the RDK base board. Figure 2 and Figure 3 provide diagrams of the
RDK being used in a PC. The RDK provides up to 11 PCI Express slots for add-in cards and visual indicators for
port, link status and speed information. The RDK is designed to be powered up with an ATX power supply.
Figure 2. Connecting The RDK to a PC with x1 or x4 link
3. Hardware Architecture
The PEX 8615BA Base Board RDK is de
based on the PCI Express CEM 2.0 Specification. The RDK offers PCI Express interfaces to 11 PCI Express
Edge Card Connectors, two x4 PCI Express External cable connectors, and three configuration modules. The
RDK is designed to support 3 different port configurations (see Table 1 for details) and to connect to its upstrea
PC through its PCI Express Cable Connectors. The RDK relies on the PC connected to its PCI Express Cable
Connector J5 to obtain it primary PCI Express reference clock and reset to support the RDK normal functions.
Also, the RDK provides visual indications for power, link speed, port status, port number, and link width.
signed around the PEX 8615, a 12-port, 12-lane Gen 2 switch, and
m
Page 10
3.1 PEX 8615
The PEX 8615 is a 12-lane, 12-port PCI Express Gen 2 (5.0GT/s) switch. It is in 19mmx19mm package. It
supports 4 different types of port configurations with any port can be upstream or NT port. It supports SpreadSpectrum Clocking Isolation function. It also provides 12 lane status drivers and 32 GPIOs.
3.2 PCI Express Interfaces
The RDK provides 11 PCI Express connectors and one x4 PCI Express External Cable Connectors for PCI
Express connections of PEX 8615. The RDK supports 3 different port configurations of PEX 8615. With the
correct port configuration STRAP pin settings and the right Configuration Modules are installed, the RDK can
demonstrate up to 12 ports and a up to x4 link upstream connection PCI Express Gen 2 switch. Table 1 shows all
port configurations supported by the RDK while sections 3.2.1 to 3.2.5 describe the Configuration Modules and
hardware configurations of grouped of each four PCI Express lanes in details.
Table 1. Port Configurations Supported by the RDK
Strap pin Settings
STRAP_PORTCFG[3:0]
0000 x1x1x1x1x1x1x1x1x1x1x1x1 0108 at U74;0108 at U75; and 0108 at U76
0001 x4x1x1x1x1x1x1x1x1 0107 at U74;0108 at U75; and 0108 at U76
0010 x4x4x1x1x1x1 0107 at U74;0108 at U75; and 0107 at U76
Port Configurations
Configuration Modules Used*
Note: * Three Configuration Modules may use for the RDK. They are “configuration Module 01 07-0109”; U74, U75
and U76 are receptacles on the RDK for Configuration Modules to be installed
3.2.1 RDK Configuration Modules and Their Receptacles
Each Configuration Module is a plug of a 200-pin board-to-board Mezzanine Connector assembled on a PCB. For
the RDK, it is used to connect x4 link of PCI Express signals from PEX 8615 to one particular hardware
connections. Only three Configuration Modules may be used on the PEX 8615BA base board RDK. These
modules are labeled on their PCB silk screen as:
• Configuration Module 0107
• Configuration Module 0108
• Configuration Module 0109
On the RDK side, three receptacles of same Mezzanine Connectors are placed at U74, U75 and U76 where the
Configuration Modules can be manually plugged in to complete the RDK PCI Express hardware configurations.
3.2.2 PCI Express Lane 0 to Lane 3
PCI Express lanes 0 - 3 of PEX 8615 are routed to the receptacle U74 as shown in Figure 4. When Configuration
Module 0108 is plugged into U74 at Case (a), lanes 0-3 will be separately connected with a single line going to
the following: PCI Express cable connector J5, PCI Express SLOT 1, PCI Express SLOT 2 and PCI Express
SLOT 3. This results in x1 links to form port 0, 4, 6, and 8. When Configuration Module 0107 is plugged into U74
at Case (b), all four lanes will be connected to x4 PCI Express cable connector J5 to form a x4 link at port 0. Note
that the PCIe signals to PCIe Cable Connector J5 can be an independent x4 port or the lower lanes of a x8 port.
Figure 3. Lanes 0-3 Hardware Connections on the RDK
3.2.3 PCI Express Lane 4 to Lane 7
PCI Express lanes 4-7 of PEX 8615 are routed to the receptacle U75 as shown in Figure 5. When Configuration
Module 0108 is plugged into U75 at Case (a), lanes 4-7 will be separately connected to PCI Express SLOT 4 to
SLOT 7 with x1 link each to form ports 2, 10, 12, and 14. When Configuration Module 0107 is plugged into U75 at
Case (b), four lanes will be connected to SLOT 4 to form a x4 link (port 4).
Figure 4. Lanes 4-7 Hardware Connections on the RDK
3.2.4 PCI Express Lane 8 to Lane 11
PCI Express lanes 8-11 of PEX 8615 are routed to the receptacle U76 as shown in Figure 6. When Configuration
Module 0108 is plugged into U76 at Case (a), lanes 8-11 will be separately connected to PCI Express SLOT 8 to
SLOT 11 with x1 link each to form ports 1, 5, 7, and 9. When Configuration Module 0107 is plugged into U76 at
Case (b), four lanes will be connected to SLOT 8 to form a x4 link (port 1).
Figure 5. Lanes 8-11 Hardware Connections on the RDK
The RDK reference clock circuits contain one crystal-to HCSL clock generator ( U108) from On Semiconductor
(NB3N5573), two one-to-four differential clock fan out buffer (U28 and U61) from SpectraLinear (CY2840 0-2), two
1-to-10 differential clock drivers (U113-U114) from On Semiconductor (MC100LVEP111), AC coupling capacitors,
and resistors for source terminations and voltage dividers.The clock circuits are designed to perform two major
clock functions: reference clock fan out and Spread-Spectrum Clock Isolation.Refer to Figure 8, the PCI Express
clock (CREFCLKp and CREFCLKn) from x4 PCI Express External Cable Connector J5 feeds into 1-to-4 fan out
buffer U28.The outputs from U28 support the primary REFCLK of the PEX 8615 and connect to the inputs of
clock drivers U113 and U114.The Constant frequency output from the clock generator (U108) is connected to a
1-to-4 fan out buffer U61. The outputs from U61 support the input to CFC_REFCK on the PEX 8615 as well as
inputs to U113 and U114. When Spread Spectrum Clocking Crossing is enabled, the PEX 8615 can be made part
of two clock domains. Port 0 is part of the SSC domain while all on-board PCI Express SLOT 1 to SLOT 11 are
part of the constant frequency domain. Add-in cards connected to SLOT1 – SLOT11 will operate in a constant
frequency clock. The SSC isolation feature can be enabled with a pull-down resistor on
STRAP_SSC_ISO_ENABLE# pin. On the RDK, this can be done in Dipswitch SW6 position 1 set to ‘ON’. This
feature is disabled on the RDK by default.
Figure 6. RDK Reference Clock Circuits
3.4 Reset Circuits
Refer to Figure 9, the RDK reset circuits include two National NC7S08 2-input AND gate (U17&U21), two Maxim
MAX6420 reset controllers (U18 and U20), one Xilinx FPGA (U115), a Serial Hot-Plug controller, momentary
switches (S1 and S3), resistors and capacitors.
The Reset Circuits contains two independent circuits: (a) the circuits reset the FPGA; (b) the circuits reset PEX
8615 and sends resets to 11 PCI Express connectors. The first one detect the power good signal,
PS_PWR_GOOD, from the ATX 24-pin Main Power Connector and reset from momentary switch S3 to generate
reset, FPGA_RESET, to the FPGA U115. The second detect the reset input, CPERST_n from the PCI Express
Cable Connector J5 and the reset from momentary switch S1 input them to the FPGA that fans out the resets,
PERST_n_SL[15:9, 7:1] , to 10 PCI Express slots, PEX_PERST_n to reset the PEX 8615, and PERST_n_SL8 to
reset the PIC Express SLOT 8 through the Serial Hot-Plug Controller (see Figure 9 an Figure 10 for details)
3.5 Serial Hot-Plug (SHP) Controller Circuits
With external IO expenders and Hot-Plug controllers, PEX 8615 supports up to 12 PCI Express Serial Hot-Plug
ports/ SLOTs. The RDK implements a serial Hot-Plug controller circuitry to PCI Express SLOT 8 for the SHP
function demonstration. By default, the serial Hot-Plug circuit is enabled.
Refer to Figure 10 above, the serial Hot-Plug controller consists of MAX7311 I/O expander (U71), a TI TPS2311
dual hot–swap power controller (U70), a quad TI SN74LVC157 2-to-1 multiplexer (U72), two power MOSFET
IRF7470 (Q1 and Q2), LEDs, manual switch, dipswitches and resistors.The PEX 8615 master I
designed for the specific control use of the serial Hot-Plug controller. The maste r I
I/O expander and the interrupt output from the I/O expander connects to the SHP_INT# of the PEX 8615. When
power is applied to the PEX 8615, the master I
of the I/O expander. If an I/O expander is detected, the I
2
C interface will scan the bus and attempts to detect the presence
2
C master will program it as a “remote parallel Hot-Plug
2
C interface connected to the
2
C interface is
controller” and assign an available serial Hot-Plug port to the I/O expander. The IO expender then generates
PWREN, CLKEN#, and PERST# outputs to control the power enable, clock enable# and reset# of the SHP
SLOT8 and drives the LEDs at PWRLED#, ATNLED# and INTERLOCK# outputs. Also, it accepts BUTTON#,
PWRFLT#, PWRGOOD, PRSNT# and MRL# inputs and generates interrupts to PEX 8615 for SHP status
changes.
The RDK also provides dip switch (SW10) for setting the SLOTID [3:0]for the SLOT 8, and another dipswitch
(SW11) to control the Serial Hot-Plug controller functions (enable/disable it), a test point for access the GPIO pin,
and three pull-down resistors to set ADD [2:0] of the I/O expander U71. The LEDs D29 and D32 a re 12V and 3.3V
power indicators when power reaches PCI Express con nector SLOT 82.
3.6 Serial EEPROM
The PEX 8615BA Base Board RDK contains a blank surface mount Atmel AT25256A 32-Kbit serial EEPROM
(U19) which is directly interfaced to the PEX 8615. When programmed correctly, the serial EEPROM can be used
to change the default configuration and internal register values of the PEX 8615. A blank EEPROM results in the
default register values set in the PEX 8615. Refer to the Software Development Kit (SDK) documentation for more
information of how to program the serial EEPROM.
3.7 I2C Interface
The PEX 8615 implements an I2C slave interface (I2C port 0), which allows an external I2C master to read and
write device registers through an out-of-band mechanism. The PEX 8615 I
address, at data rates from 100 Kbps up to 3.4 Mbps. The RDK provides a 2x2, 0.1” pitch header (JP8), which
interface to the PEX 8615’s I
such as Total Phase Aardvark I
C port. This allows using standard ribbon cable, and/or connecting to an I2C master
2
C controller. (See 4.3.10 for pin assignment of JP8.)
2
C interface is accessible via a 7-bit
Page 16
3.8 Power Distribution Circuits
To support the power of the RDK and the power of the PCI Express add-in cards plug into up to 15 PCI Express
Edge Card connectors, an external ATX power supply is required. Refer to Figure 11, the RDK has 8 different
ATX power connectors for power connections. These include one 24-pin ATX Main Power Connector J9, six 4-pin
Peripheral Power Connectors J1- J4 & J7 - J8, and one 8-pin +12 V Power Connector.
The 24-pin ATX Power Connector should be connected to J9 an d two or three 4-pin ATX Peripheral Power
Connectors should be connected to either J1-J4 or J7-J8 depending on the power co nsumption requirements of
the PCI Express add-in cards plugging into the PCI Express slots of the RDK.
Note Some 600 watt power supplies in the market such as the NSpire model PSH600V-D 600 Watt powe r supply
requires a minimum power consumption at +12V output to stabilize its +5V outputs.Without 0.8A loading at +12V
outputs, the NSpire 600 watt power supply will drop its +5V output to near 3.9V-4.2V levels. The RDK only uses
+5V output from the ATX power supply to generated lower DC voltages to support the PEX 8615 chip and the on
board FPGA and other circuits. This particular power supply does not operate correctly unless there i s eno ugh
loading on the +12V supply. An Nvidia Geforce 8800GT high power graphic card can be plugged into one of PCI
Express slots on the RDK in order to provide enough loading on the +12V supply.
Refer to Figure 12, 11 PCI Express slots including the Serial Hot-Plug controlled SLOT 8get 3.3 volt and 12 volt
power from 24-pin ATX Main Power Connector, 4-pin ATX Peripheral Power Connectors and the +1 2V Power
Connector. The RDK on board circuits and the PEX 8615 get their power from the +5V input from the ATX power
supply. DC/DC converter U4 uses 5V input generates 3.3VCC1 to the on board circuit. The 3.3VCC1 further steps
down by voltage regulator U117 to generate 2.5V and 1.2V for Xilinx FPGA (U115).Three DC/DC converters U2,
U3 and U5 use 5V input to generate 1.0VCC, 1.0VCC_A and 2.5VCC for PEX 8615. Dip switch SW15 can be set
to turn off these dc/dc converters for external power margin tests for PLX use only.
3.9 FPGA Interface
The RDK contains a Xilinx Spartan-3 FPGA which is used to perform 6 major functions (see Figure 13 for details):
• Connects to GPIOs, lane and chip status and spare pins of PEX 8615 ( for PLX use only)
• Controls the 7-segment displays for port numbers and link width for PCI Express Cable Connectors J5
and J6 and PCI Express connectors SLOT 1 to SLOT11
• Decodes lane status and converts them to link speed and status LED display
• Communicates with the thermal sensor and displays the junction temperature of PEX 8615 in 4 digits
• Connects to users defined Dipswitches
• Fans out reset signals to PEX 8615 and PCI Express slots
The RDK provides 31 LEDs and forty 7-segment displays for power indicators, Hot-Plug output indicators, link
speed/status, port numbers and link width of each port.
3.10.1 LED Indicators
All LED indicators and their associated functions are described in the Table 2 below.
Table 2. RDK LED Indicator descriptions
Indicator Type Locations LED Functions
D1 On: 12V_A is applied to the RDK from the ATX power supply
D2 On: 5V_A is applied to the RDK from the ATX power supply
D3 On: 3.3VCC is applied to the RDK from the ATX power supply
Page 19
Indicator Type Locations LED Functions
D9 On: 3.3VCC1 from dc/dc converter U4
D4 On: 2.5VCC_A is applied to PEX 8615
D5 On: 2.5VCC is applied to PEX 8615
Green LED on: 2.5VCC to PEX 8615 is within 10% range
Red LED on: 2.5VCC to PEX 8615 is out of 10% range
Green LED on: 1.0VCC to PEX 8615 is within 10% range
Red LED on: 1.0VCC to PEX 8615 is out of 10% range
Green LED on: port 0 link up with GEN 2 speed (5Gbps) at connector J5
Yellow LED on: port 0 link up with GEN 1 speed (2.5Gbps) at connector J5
Both LED off: port 0 link down or no connected or no configured
Power LEDs/dual color: green
and red
SERIAL HOT-PLUG (SHP)
LEDs/green color
Port Link Status and Speed
LEDs / Dual color: green and
yellow
D8
D10
D28 On: SHP power LED output active at SLOT 8
D29 On: 12V is applied to PCI Express SLOT 8
D30 On: 3.3V is applied to PCI Express SLOT 8
D31 On: SHP Attention LED output active at SLOT 8
D32 On: SHP Interlock LED output active at SLOT 8
D12
D16 Same function as D12 for port 4 at SLOT1
D20 Same function as D12 for port 6 at SLOT2
D24 Same function as D12 for port 8 at SLOT3
D13 Same function as D12 for port 2 at SLOT4
D17 Same function as D12 for port 10 at SLOT5
D21 Same function as D12 for port 12 at SLOT6
D25 Same function as D12 for port 14 at SLOT7
D14 Same function as D12 for port 1 at SLOT8
D18 Same function as D12 for port 5 at SLOT9
D22 Same function as D12 for port 7 at SLOT10
D26 Same function as D12 for port 9 at SLOT11
3.10.2 7-Segment Displays
The RDK has forty 7-segment displays. Thrity-four of them are used for port number and link width indicators of
each PCI Express SLOTs, two are user defined 7-segment displays, and four of them are used for junction
temperature display. (See
Table 3. RDK 7-Segment Display Functions
Location of Display 7-Segment Display Functions
DS37 For port 0 at cable connector J5, When enabled, LED display is 0
DS39 Link Width of port0, LED display is 1 or 4 depending on the port configuration
DS33 Copy DS37 if cable connector J6 is used. Otherwise it would be off
DS35 Copy DS39 if cable connector J6 is used. Otherwise it would be off
DS2 For port 4 at SLOT1, When enabled, LED display is 4
DS6 Link Width of port 4, When enabled, LED display is 1
DS9 For port 6 at SLOT2, When enabled, LED display is 6
DS13 Link Width of port 6, When enabled, LED display is 1
DS1 For port 8 at SLOT3, When enabled, LED display is 8
DS5 Link Width of port 8, When enabled, LED display is 1
DS12 For port 2 at SLOT4, When enabled, LED display is 2
DS16 Link Width of port 2, it can be 1 or 4 depends the port configuration
DS4 For port 10 at SLOT5, When it is on, it would be A
DS8 Link Width of port 10, When it is on, it would be 1
DS11 For port 12 at SLOT6, When it is on, it would be C
DS15 Link Width of port 12, When it is on, it would be 1
DS3 For port 14 at SLOT7, When it is on, it would be E
DS7 Link Width of port 14, When it is on, it would be 1
DS26 For port 1 at SLOT8, When it is on, it would be 1
DS30 Link Width of port 1, it can be 1 or 4 depends the port configuration
DS18 For port 5 at SLOT9, When it is on, it would be 5
DS22 Link Width of port 5, When it is on, it would be 1
DS25 For port 7 at SLOT10, When it is on, it would be 7
DS29 Link Width of port 7, When it is on, it would be 1
DS17 For port 9 at SLOT11, When it is on, it would be 9
DS21 Link Width of port 9, When it is on, it would be 1
DS10 and DS14 Users’ defined 7-segment displays
DS34, DS36, DS38,
DS40
They are used to display junction temperature of PEX 8615 in degree C
3.11 GPIO Pins
The PEX 8615 has thirty-two GPIO pins. Depends on the TEST MODE pin settings, 16 of them, GPIO[15:0], can
be configured to perform Serial Hot-Plug reset output functions (PERSTx#).
3.12 Reserved Pins
The PEX 8615 has 2 STRAP_RESERVED pins. They are factory use only and should be set to know logic states.
Table 4 shows the list of these reserved pins and their connections in the RDK.
Table 4. Strap_Reserved Pin Connections
Name Pin Location Connections on PEX 8615BA Base Board RDK
STRAP_RESERVED16 D14 Pull-down with a 1K ohm resistor
STRAP_RESERVED17# F1 Pull-up with a 4.7K ohm resistor
The PEX 8615BA Base Board RDK contains eleven DIP switches for various functions. Refer to Figure 14; they
can be divided into three groups. The Group1 contains three dip switches and is located at the lower left corner of
the RDK, Group2 contains three dip switches and is located at the middle of right edge, and the last group
contains five dip switches and is located at the lower right hand corner of the RDK
Figure 12. RDK Dip Switch Groups
4.1.1 Dip Switch Group 1
This group includes three dipswitches, SW10, SW11 and SW15. Figure 15 shows the default settings of these
dipswitches and Table 5 describes the functions of each dipswitches
Table 5. Functional Description of Group 1 Dip Switches
Name
Function
SW10 Slot number of Serial Hot-Plug port
PCIe connectro SPLT8
Default: on, on, on, on (0000)
4: SLOT 3
Settings
3: SLOT 2
2: SLOT 1
1: SLOT 0
SW11 Serial Hot-Plug Port input and
control
2. HP_SL8_CTL : on: enable Serial Hot-Plug (SHP) control outputs—
PWREN_S, PERST#_S and CLKEN#_S; off: bypass above SHP control
ouputs
1. MRLI#_S: on: enable SHP MRL# input; off: disable it
Default: on,on (enable SHP functions at SLOT 8)
SW15 Debug function and dc/dc converter
controls
4: Debug_normal_#: on : for normal operation; off: for debug us
3-1: for PLX use only
Default: on, off,off,off
4.1.2 Dip Switch Group 2
This group includes three dipswitches, SW4, SW5 and SW7. Figure 16 shows the default settings of these
dipswitches and Table 6 describes the functions of each dipswitches
This group includes five dipswitches, SW2, SW3, SW6, SW13 and SW14. Figure 17 shows the default settings of
these dipswitches. Table 7 and Table 8 describe the functions of them.
Clocking (SSC) crossing, off: disable it, default is disable
SSC crossing function
2. PP_PYPASS_n: for PLX use only
3: GEN 1_N: for PLX use only
4. FAST_BRINGUP_n: for PLX use only
Default: 1-4: off,off,off,off
Settings
SW13 Users Define Mode Switches 1. UMODE3
2: UMODE2
3. UMODE1
4: UMODE0
Default: 1-4: off,off,off,off
SW14 Users Define Mode Switches 1. UMODE7
2: UMODE6
3. UMODE5
4: UMODE4
Default: 1-4: off,off,off,off
4.2 Push-Button Switches
4.2.1 Manual Reset# (S1)
The RDK provides a manual switch (S1) for manual PERST# capability. Note that manual PERST# will only apply
warm reset to the PEX 8615 as well as PCI Express SLOT 1 to SLOT 11.
4.2.2 FPGA Manual Reset# (S2)
This momentary switch (S2) provides manual reset to the FPGA (U115) on the RDK.
4.2.3 Serial Hot-Plug Controller Attention Button (S3)
The RDK provides a manual switch (S3) for attention button to the Serial Hot-Plug circuit. When pushed and
released, the switch generates an active low pulse to the Attention Button Input to the IO Expender U71 which will
generate interrupt signal, INT#, to the PEX 8615 for attention (see section 3.5 for details).
4.3 Connectors and Headers
4.3.1 ATX Peripheral Power Connectors (J1-J4 & J7-J8)
The 2x5 header JP3 provides a direct connection to the PEX 8615 JTAG interface. The 10-pin connector is
designed to allow a direct interface to 3rd party JTAG controllers, such as the Corelis USB-1149.1/E controller.
The pin assignment for the JTAG header (JP3) is listed at Table 15.
A. R277, R314, R315, R407and R408 are placed at pad 1 and 3
B. Header JP13 jump 1-2,3-4 and 5-6
C. 2"x1/4" label with wording "PEX8615BA-BB4U1D RDK", place it at the upper right hand corner in the box
E. R343, R345, R360 and R361 are used for rework the board (see assembly instructions for details)
870 W Maude Ave, Sunnyvale, CA 94085
www.plxtech.com
www.plxtech.com
Title
Title
Title
Size Document NumberRev
Size Document NumberRev
Size Document NumberRev
C
C
C
Date:Sheet
Date:Sheet
5
4
3
2
Date:Sheet
www.plxtech.com
8615 Base Board RDK
8615 Base Board RDK
8615 Base Board RDK
91-0132-000-A0
91-0132-000-A0
91-0132-000-A0
1
126Thursday, February 12, 2009
126Thursday, February 12, 2009
126Thursday, February 12, 2009
of
of
of
Page 42
5
4
3
2
1
RELEASE NOTES:
Initial Release: Apr 18, 2008
Release 0.1: May 15, 2008
- changed the RefClock Fanout Buffer to MC100LVEP111
- Chnaged the Xilinx FPGA part from XCS40XL to XC3S200 and the associated prom
- Added the Multioutput Voltage regulator for the new Xilin FPGA
DD
- Updated the JTAG interface to USB to conform to latest Xilinx Tools
Release 0.2: March 9, 2009
- changed the R510 from 120 ohm to 1K ohm on page 6
CC
BB
AA
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
www.plxtech.com
www.plxtech.com
Title
Title
Title
Size Document NumberRev
Size Document NumberRev
Size Document NumberRev
C
C
C
Date:Sheet
Date:Sheet
5
4
3
2
Date:Sheet
www.plxtech.com
8615 Base Board RDK
8615 Base Board RDK
8615 Base Board RDK
91-0132-000-A0
91-0132-000-A0
91-0132-000-A0
1
226Monday, March 09, 2009
226Monday, March 09, 2009
226Monday, March 09, 2009
of
of
of
Page 43
5
4
3
2
1
RELEASE NOTES:
DD
CC
BB
AA
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
www.plxtech.com
www.plxtech.com
Title
Title
Title
Size Document NumberRev
Size Document NumberRev
Size Document NumberRev
C
C
C
Date:Sheet
Date:Sheet
5
4
3
2
Date:Sheet
www.plxtech.com
8615 Base Board RDK
8615 Base Board RDK
8615 Base Board RDK
91-0132-000-A0
91-0132-000-A0
91-0132-000-A0
1
326Thursday, February 12, 2009
326Thursday, February 12, 2009
326Thursday, February 12, 2009
of
of
of
Page 44
5
ATX HD POWER CONNECTORS
12V_A
TV1
J1
+12VDC
COM0
COM1
DD
+5VDC
15244449J115244449
J3
+12VDC
COM0
COM1
+5VDC
15244449J315244449
CPERST_n[16]
CC
DEBUG_NORMAL_n[26]
TV1
Prototyping Pad
Prototyping Pad
1
2
3
4
1
2
3
4
3.3VCC
TV3
TV3
Prototyping Pad
Prototyping Pad
TV5
TV5
Prototyping Pad
Prototyping Pad
TV7
TV7
Prototyping Pad
Prototyping Pad
R59 0R590
R9
4.7KR94.7K
8A
+
+
C2
C4
C3
C3
22uF
22uF
5V_A
4A
C9
C9
22uF
22uF
12V_A
8A
C17
C17
22uF
22uF
5V_A
4A
C29
C29
22uF
22uF
SW15 SW DIP-4SW15 SW DIP-4
5
6
7
8
C4
1uFC21uF
22uF
22uF
C11
C11
+
+
C10
C10
1uF
1uF
22uF
22uF
+
+
C18
C18
C20
C20
1uF
1uF
22uF
22uF
C30
C30
C25
C25
+
+
1uF
1uF
22uF
22uF
4
SW1 SETTINGS:
3
1: OFF
2
2: ON
1
J2
1
+12VDC
+
+
C1
1uFC11uF
2
COM0
3
COM1
4
C12
C12
1uF
1uF
C19
C19
1uF
1uF
C26
C26
1uF
1uF
+5VDC
15244449J215244449
J4
+12VDC
+5VDC
15244449J415244449
COM0
COM1
1
2
3
4
SW PUSHBUTTON
SW PUSHBUTTON
+
+
+
+
+
+
TV2
TV2
Prototyping Pad
Prototyping Pad
TV4
TV4
Prototyping Pad
Prototyping Pad
TV6
TV6
Prototyping Pad
Prototyping Pad
TV8
TV8
Prototyping Pad
Prototyping Pad
3.3VCC
S1
S1
13
R57
R57
51K
51K
8A
4A
8A
4A
R58
R58
10K
10K
42
4
12V_A
C5
C5
22uF
22uF
5V_A
C14
C14
22uF
22uF
12V_A
C22
C22
22uF
22uF
5V_A
C31
C31
22uF
22uF
MAN_PST_S3
+
+
C6
C7
C7
1uFC61uF
22uF
22uF
C13
C13
C15
C15
+
+
1uF
1uF
22uF
22uF
+
+
C23
C23
C21
C21
1uF
1uF
22uF
22uF
+
+
C27
C27
C32
C32
1uF
1uF
22uF
22uF
3.3VCC
RESET CIRCUIT
U17
U17
5
VCC
Y
1
A
2
GND
B
NC7S08
NC7S08
3
12V_A
TV45
1
2
3
4
1
2
3
4
U18
U18
RST IN3VCC
RESET#
SRT4GND
MAX6420
MAX6420
TV45
Prototyping Pad
Prototyping Pad
8A
TV46
TV46
Prototyping Pad
Prototyping Pad
4A
TV43
TV43
Prototyping Pad
Prototyping Pad
8A
TV44
TV44
Prototyping Pad
Prototyping Pad
4A
5
PERST#_9
1
2
5V_A
12V_A
5V_A
3.3VCC
C299
C299
22uF
22uF
C300
C300
22uF
22uF
C303
C303
22uF
22uF
C304
C304
22uF
22uF
C87
C87
0.1uF
0.1uF
+
+
+
+
+
+
+
+
R61 0R61 0
+
+
C302
C302
C307
1uF
1uF
C301
C301
1uF
1uF
C306
C306
1uF
1uF
C305
C305
1uF
1uF
C307
22uF
22uF
C308
C308
R15NLR15
1uF
1uF
NL
+
C309
+
C309
22uF
22uF
C295
C295
22uF
22uF
C297
C297
22uF
22uF
R60
R60
5.1K
5.1K
C310
C310
1uF
1uF
+
+
C296
C296
1uF
1uF
+
+
C298
C298
1uF
1uF
C37 IS USED TO SET THE RESET TIMEOUT PERIOD
FOR U18. A VALUE OF 0.001UF RESULTS IS
APPROXIMATELY 3MS. SEE MANUFACTURER
DATASHEET FOR DETAILS.
FPGA_PEX_PERST_n [26]
R55NLR55
NL
J7
C8
1uFC81uF
1uF
1uF
1uF
1uF
1uF
1uF
0.001uF
0.001uF
+12VDC
COM0
COM1
+5VDC
C16
C16
15244449J715244449
J8
+12VDC
C24
C24
COM0
COM1
+5VDC
C28
C28
15244449J815244449
RST_8
SRT_8
C88
C88
+
+
+
+
+
+
+
+
4
3
2
3.3VCC12V_A35V_A
R48NLR48
R52NLR52
R51NLR51
NL
NL
NL
TV57
TV57
Prototyping Pad
Prototyping Pad
R18NLR18
R19NLR19
NL
NL
PS_ON_n[26]
1
2
3
4
5
6
7
8
9
10
11
12
The Circuit on Board is Designed to
provides Enough Load for all RAILS.
These Resistor are there Just in Case
the Power Supply Continues to Trip
Because of Min Load Requirement
870 W Maude Ave, Sunnyvale, CA 94085
www.plxtech.com
www.plxtech.com
Title
Title
Title
Size Document NumberRev
Size Document NumberRev
Size Document NumberRev
C
C
C
Date:Sheet
Date:Sheet
5
4
3
2
Date:Sheet
www.plxtech.com
8615 Base Board RDK
8615 Base Board RDK
8615 Base Board RDK
91-0132-000-A0
91-0132-000-A0
91-0132-000-A0
1
1626Thursday, February 12, 2009
1626Thursday, February 12, 2009
1626Thursday, February 12, 2009
of
of
of
Page 57
5
3.3VCC1
U80A
U80A
147
PEX_PERST_n[8,18,19,21,26]
DD
LEDSET1_DATA[26]
12
74LVC04/SO
74LVC04/SO
LEDSET1_CLK[26]
LEDSET0_DATA[26]
LEDSET0_CLK[26]
U80B
U80B
74LVC04/SO
74LVC04/SO
34
U80C
U80C
74LVC04/SO
74LVC04/SO
56
U80D
U80D
74LVC04/SO
74LVC04/SO
98
U80E
U80E
74LVC04/SO
74LVC04/SO
1110
subpart F not used
1
2
8
9
MM74HC164
MM74HC164
CC
3.3VCC1
1
2
8
9
MM74HC164
LEDSET7_DATA[26]
LEDSET7_CLK[26]
U92E
U92E
74LVC04/SO
74LVC04/SO
1110
MM74HC164
3.3VCC1
1
BB
2
8
9
MM74HC164
MM74HC164
3.3VCC1
1
2
8
9
MM74HC164
MM74HC164
3.3VCC1
4
3.3VCC1
3.3VCC1
U29
U29
14
QA
A
VCC
QB
B
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
RN14
RN14
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
Port ID3
7
89
A
6
7
B
4
6
C
2
5
D
1
4
E
9
3
F
10
2
G
5
1
DP
DS1
DS1
Red
Red
3.3VCC1
8
ANODE03ANODE1
1
2
8
9
MM74HC164
MM74HC164
3.3VCC1
3.3VCC1
U33
U33
14
QA
A
QB
B
VCC
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
3.3VCC1
U37
U37
14
QA
A
QB
B
VCC
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
3.3VCC13.3VCC1
U41
U41
14
QA
A
VCC
QB
B
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
RN18
RN18
3
4
10
5
11
6
12
10
13
11
14
12
15
16
13
220
220
RN22
RN22
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
RN26
RN26
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
Port STS3
89
7
A
6
7
B
4
6
C
2
5
D
1
4
E
9
3
F
10
2
G
1
5
DP
DS5
DS5
Red
Red
Port ID2
7
89
A
6
7
B
4
6
C
2
5
D
1
4
E
9
3
F
10
2
G
5
1
DP
DS9
DS9
Red
Red
Port STS2USERDEBUG0
7
89
A
6
7
B
4
6
C
2
5
D
1
4
E
9
3
F
10
2
G
5
1
DP
DS13
DS13
Red
Red
3.3VCC1
8
ANODE03ANODE1
3.3VCC1
1
2
8
9
MM74HC164
MM74HC164
Place the USERDEBUG[1:0] related
components close to the ATX
power connector
3.3VCC1
8
ANODE03ANODE1
3.3VCC13.3VCC13.3VCC13.3VCC1
8
ANODE03ANODE1
1
2
8
9
MM74HC164
MM74HC164
Place USERDEBUG0 and USERDEBUG1 at
the top right of the Board.
USERDEBUG0 is Unit Digit and
USERDEBUG1 is tens digit. Place it
close to the ATX24 power connector
3.3VCC13.3VCC1
1
2
8
9
MM74HC164
MM74HC164
3.3VCC1
3
3.3VCC1
3.3VCC13.3VCC1
U30
U30
14
QA
A
VCC
QB
B
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
RN15
RN15
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
Port ID1
7
89
6
7
4
6
2
5
1
4
9
3
10
2
5
1
DS2
DS2
Red
Red
3.3VCC1
8
A
B
C
D
E
F
G
DP
1
2
8
ANODE03ANODE1
9
MM74HC164
MM74HC164
3.3VCC1
3.3VCC1
U34
U34
14
QA
A
QB
B
VCC
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
RN19
RN19
3
4
10
5
11
6
12
10
13
11
14
12
15
16
13
220
220
Port STS1
89
7
6
7
4
6
2
5
1
4
9
3
10
2
1
5
DS6
DS6
Red
Red
3.3VCC1
8
A
B
C
D
E
F
G
DP
1
2
8
ANODE03ANODE1
9
MM74HC164
MM74HC164
3.3VCC1
3.3VCC1
U38
U38
14
3
QA
A
4
10
QB
B
VCC
5
11
QC
6
CLK
CLR
GND
7
U42
U42
14
A
VCC
B
CLK
CLR
GND
7
12
QD
10
13
QE
11
14
QF
12
15
QG
13
16
QH
3
QA
4
10
QB
5
11
QC
6
12
QD
10
13
QE
11
14
QF
12
15
QG
13
16
QH
USERDEBUG1Port ID6Port ID4
RN23
RN23
220
220
RN27
RN27
220
220
7
89
6
7
4
6
2
5
1
4
9
3
10
2
5
1
DS10
DS10
Red
Red
7
89
6
7
4
6
2
5
1
4
9
3
10
2
5
1
DS14
DS14
Red
Red
3.3VCC1
8
A
B
C
D
E
F
G
DP
8
A
B
C
D
E
F
G
DP
1
2
8
ANODE03ANODE1
9
MM74HC164
MM74HC164
1
2
8
ANODE03ANODE1
9
MM74HC164
MM74HC164
3.3VCC1
2
LEDSET1
U31
U31
A
B
CLK
CLR
14
QA
VCC
QB
QC
QD
QE
QF
QG
QH
GND
7
RN16
RN16
3
4
5
6
10
11
12
13
89
7
10
6
11
5
12
4
13
3
14
2
15
1
16
220
220
3.3VCC1
Port ID7Port ID5
7
A
6
B
4
C
2
D
1
E
9
F
10
G
5
DP
DS3
DS3
Red
Red
3.3VCC13.3VCC1
8
ANODE03ANODE1
1
2
8
9
MM74HC164
MM74HC164
3.3VCC1
3.3VCC1
U35
U35
14
QA
A
QB
B
VCC
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
RN20
RN20
3
4
10
5
11
6
12
10
13
11
14
12
15
16
13
220
220
Port STS7
89
7
A
6
7
B
4
6
C
2
5
D
1
4
E
9
3
F
10
2
G
1
5
DP
DS7
DS7
Red
Red
3.3VCC1
8
ANODE03ANODE1
1
2
8
9
MM74HC164
MM74HC164
3.3VCC1
3.3VCC1
U39
U39
14
QA
A
QB
B
VCC
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
3.3VCC13.3VCC1
U43
U43
14
QA
A
VCC
QB
B
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
RN24
RN24
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
7
89
A
6
7
B
4
6
C
2
5
D
1
4
E
9
3
F
10
2
G
5
1
DP
DS11
DS11
Red
Red
Port STS6Port STS4
RN28
RN28
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
7
89
A
6
7
B
4
6
C
2
5
D
1
4
E
9
3
F
10
2
G
5
1
DP
DS15
DS15
Red
Red
3.3VCC1
8
ANODE03ANODE1
1
2
8
9
MM74HC164
MM74HC164
3.3VCC1
8
ANODE03ANODE1
1
2
8
9
3.3VCC1
1
3.3VCC1
LEDSET1LEDSET0LEDSET0
3.3VCC1
U32
U32
14
QA
A
VCC
QB
B
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
RN17
RN17
3
4
5
6
10
11
12
13
89
7
10
6
11
5
12
4
13
3
14
2
15
1
16
220
220
8
7
A
6
B
4
C
2
ANODE03ANODE1
D
1
E
9
F
10
G
5
DP
DS4
DS4
Red
Red
3.3VCC1
3.3VCC1
U36
U36
14
QA
A
QB
B
VCC
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
RN21
RN21
3
4
10
5
11
6
12
10
13
11
14
12
15
16
13
220
220
Port STS5
89
7
6
5
4
3
2
1
8
7
A
6
B
4
C
2
ANODE03ANODE1
D
1
E
9
F
10
G
5
DP
DS8
DS8
Red
Red
3.3VCC1
3.3VCC1
U40
U40
14
QA
A
QB
B
VCC
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
U44
U44
14
QA
A
VCC
QB
B
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
MM74HC164
MM74HC164
7
RN25
RN25
3
4
5
6
10
11
12
13
3
4
5
6
10
11
12
13
89
7
10
6
11
5
12
4
13
3
14
2
15
1
16
220
220
RN29
RN29
89
7
10
6
11
5
12
4
13
3
14
2
15
1
16
220
220
8
7
A
6
B
4
C
2
ANODE03ANODE1
D
1
E
9
F
10
G
5
DP
DS12
DS12
Red
Red
8
7
A
6
B
4
C
2
ANODE03ANODE1
D
1
E
9
F
10
G
5
DP
DS16
DS16
Red
Red
C215
C212
C212
C213
C213
C214
C211
AA
5
C211
0.01uF
0.01uF
0.01uF
0.01uF
4
0.01uF
0.01uF
C214
0.01uF
0.01uF
C215
0.01uF
0.01uF
C216
C216
0.01uF
0.01uF
C218
C218
C217
C217
0.01uF
0.01uF
0.01uF
0.01uF
3
C219
C219
0.01uF
0.01uF
C220
C220
0.01uF
0.01uF
C221
C221
0.01uF
0.01uF
C222
C222
0.01uF
0.01uF
2
C224
C224
C225
C223
C223
0.01uF
0.01uF
Title
Title
Title
Size Document NumberRev
Size Document NumberRev
Size Document NumberRev
C
C
C
Date:Sheet
Date:Sheet
Date:Sheet
C225
C226
0.01uF
0.01uF
8615 Base Board RDK
8615 Base Board RDK
8615 Base Board RDK
91-0132-000-A0
91-0132-000-A0
91-0132-000-A0
C226
0.01uF
0.01uF
0.01uF
0.01uF
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
www.plxtech.com
www.plxtech.com
www.plxtech.com
1
1726Thursday, February 12, 2009
1726Thursday, February 12, 2009
1726Thursday, February 12, 2009
of
of
of
Page 58
5
3.3VCC1
U85A
U85A
74LVC04/SO
74LVC04/SO
147
PEX_PERST_n[8,17,19,21,26]
DD
12
subpart F not used
U85C
U85C
74LVC04/SO
74LVC04/SO
56
4
3
2
1
LEDSET2_DATA[26]
LEDSET2_CLK[26]
CC
U85E
U85E
74LVC04/SO
74LVC04/SO
1110
3.3VCC1
3.3VCC1
3.3VCC1
LEDSET2LEDSET2
3.3VCC1
U45
U45
1
2
8
9
MM74HC164
MM74HC164
14
QA
A
QB
B
VCC
QC
CLK
QD
QE
CLR
QF
QG
QH
GND
7
RN30
RN30
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
Port ID11
8
7
89
A
6
7
B
4
6
C
2
5
4
3
2
1
ANODE03ANODE1
D
1
E
9
F
10
G
5
DP
DS17
DS17
Red
Red
3.3VCC1
U49
U49
1
A
2
B
8
CLK
9
CLR
MM74HC164
MM74HC164
3.3VCC1
14
VCC
GND
7
RN34
RN34
3
QA
10
4
QB
5
11
QC
6
12
QD
10
13
QE
11
14
QF
12
15
QG
13
16
QH
220
220
Port STS11
89
7
6
5
4
3
2
1
8
7
A
6
B
4
C
2
ANODE03ANODE1
D
1
E
9
F
10
G
5
DP
DS21
DS21
Red
Red
3.3VCC1
3.3VCC1
U46
U46
1
A
2
B
8
CLK
9
CLR
MM74HC164
MM74HC164
U50
U50
1
A
2
B
8
CLK
9
CLR
MM74HC164
MM74HC164
3.3VCC1
14
VCC
GND
7
3.3VCC1
14
VCC
GND
7
3.3VCC1
Port ID9
RN31
RN31
3
QA
4
QB
5
QC
6
QD
10
QE
11
QF
12
QG
13
QH
89
7
10
6
11
5
12
4
13
3
14
2
15
1
16
220
220
8
7
A
6
B
4
C
2
ANODE03ANODE1
D
1
E
9
F
10
G
5
DP
DS18
DS18
Red
Red
3.3VCC1
Port STS9
RN35
RN35
3
QA
4
QB
5
QC
6
QD
10
QE
11
QF
12
QG
13
QH
89
7
10
6
11
5
12
4
13
3
14
2
15
1
16
220
220
8
7
A
6
B
4
C
2
ANODE03ANODE1
D
1
E
9
F
10
G
5
DP
DS22
DS22
Red
Red
3.3VCC13.3VCC1
3.3VCC1
3.3VCC1
U53
U53
14
1
QA
A
2
VCC
QB
B
QC
BB
8
CLK
9
CLR
MM74HC164
MM74HC164
QD
QE
QF
QG
QH
GND
7
RN38
RN38
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
Port ID10
89
7
A
6
7
B
4
6
C
2
5
D
1
4
E
9
3
F
10
2
G
5
1
DP
DS25
DS25
Red
Red
3.3VCC1
3.3VCC1
U54
8
ANODE03ANODE1
U54
1
A
2
B
8
CLK
9
CLR
MM74HC164
MM74HC164
14
QA
VCC
QB
QC
QD
QE
QF
QG
QH
GND
7
RN39
RN39
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
Port ID8
89
7
6
5
4
3
2
1
8
7
A
6
B
4
C
2
ANODE03ANODE1
D
1
E
9
F
10
G
5
DP
DS26
DS26
Red
Red
3.3VCC13.3VCC1
C230
C230
0.01uF
0.01uF
Port STS10
7
89
A
6
7
B
4
6
C
2
5
D
1
4
E
9
3
F
10
2
G
5
1
DP
DS29
DS29
Red
Red
3.3VCC1
U58
8
ANODE03ANODE1
U58
1
A
2
B
8
CLK
9
CLR
MM74HC164
MM74HC164
3.3VCC13.3VCC1
C231
C231
0.01uF
0.01uF
14
QA
VCC
QB
QC
QD
QE
QF
QG
QH
GND
7
C232
C232
0.01uF
0.01uF
RN43
RN43
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
C233
C233
0.01uF
0.01uF
3
3.3VCC1
3.3VCC13.3VCC1
U57
U57
14
1
QA
A
2
VCC
QB
B
QC
8
CLK
QD
QE
9
CLR
QF
QG
QH
GND
7
MM74HC164
MM74HC164
C227
AA
5
C227
0.01uF
0.01uF
C228
C228
0.01uF
0.01uF
4
RN42
RN42
3
4
10
5
11
6
12
10
13
11
14
12
15
13
16
220
220
C229
C229
0.01uF
0.01uF
C234
C234
89
7
6
5
4
3
2
1
0.01uF
0.01uF
Port STS8
7
A
6
B
4
C
2
D
1
E
9
F
10
G
5
DP
DS30
DS30
Red
Red
8
ANODE03ANODE1
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
www.plxtech.com
The above FOUR 7Segs should Be placed in
accordance with their Name.
TEMPERATURE.01 is the LSD and
TEMPERATURE100 is the MSD.
3
Page 60
5
Except for PEX_LN0_xpxG LED all of
the LEDs on this page are associated
to slots. Place them accordingly with
the Port IDx(x) and Port STSx(x). The
PEX_LN0_XpxG should be placed with
the close to Port ID/Port STS LED
for the PCIe Receptacle
DD
PEX_LN0_2p5G[19]
PEX_LN0_5p0G[19]
D12
D12
R216
R216
390
390
3.3VCC1
43
R
R
21
R217
R217
390
390
G
G
GREEN_AMBER_LED
GREEN_AMBER_LED
4
3.3VCC1
R219
R219
R218
R218
390
390
390
390
21
43
G
Y
G
Y
D13
D13
GREEN_AMBER_LED
PEX_LN4_2p5G[19]
PEX_LN4_5p0G[19]
GREEN_AMBER_LED
3
3.3VCC1
R221
R221
R220
R220
390
390
390
390
21
43
G
Y
G
Y
D14
D14
GREEN_AMBER_LED
PEX_LN8_2p5G[19]
PEX_LN8_5p0G[19]
GREEN_AMBER_LED
2
1
D17
D17
D21
D21
D25
D25
R226
R226
390
390
R234
R234
390
390
R242
R242
390
390
3.3VCC1
43
Y
Y
3.3VCC1
43
Y
Y
3.3VCC1
43
Y
Y
21
21
21
R227
R227
390
390
G
G
GREEN_AMBER_LED
GREEN_AMBER_LED
R235
R235
390
390
G
G
GREEN_AMBER_LED
GREEN_AMBER_LED
R243
R243
390
390
G
G
GREEN_AMBER_LED
GREEN_AMBER_LED
PEX_LN9_2p5G[19]
PEX_LN9_5p0G[19]
PEX_LN10_2p5G[19]
PEX_LN10_5p0G[19]
PEX_LN11_2p5G[19]
PEX_LN11_5p0G[19]
3.3VCC1
R225
R225
R224
R224
390
390
390
390
21
43
G
Y
G
Y
D16
D16
GREEN_AMBER_LED
D20
D20
D24
D24
R232
R232
390
390
R240
R240
390
390
3.3VCC1
43
Y
Y
3.3VCC1
43
Y
Y
21
21
GREEN_AMBER_LED
R233
R233
390
390
G
G
GREEN_AMBER_LED
GREEN_AMBER_LED
R241
R241
390
390
G
G
GREEN_AMBER_LED
GREEN_AMBER_LED
PEX_LN1_2p5G[19]
PEX_LN1_5p0G[19]
CC
PEX_LN2_2p5G[19]
PEX_LN2_5p0G[19]
BB
PEX_LN3_2p5G[19]
PEX_LN3_5p0G[19]
PEX_LN5_2p5G[19]
PEX_LN5_5p0G[19]
PEX_LN6_2p5G[19]
PEX_LN6_5p0G[19]
PEX_LN7_2p5G[19]
PEX_LN7_5p0G[19]
D18
D18
D22
D22
D26
D26
R228
R228
390
390
R236
R236
390
390
R244
R244
390
390
3.3VCC1
43
Y
Y
3.3VCC1
43
Y
Y
3.3VCC1
43
Y
Y
21
G
G
21
G
G
21
G
G
R229
R229
390
390
GREEN_AMBER_LED
GREEN_AMBER_LED
R237
R237
390
390
GREEN_AMBER_LED
GREEN_AMBER_LED
R245
R245
390
390
GREEN_AMBER_LED
GREEN_AMBER_LED
AA
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
www.plxtech.com
www.plxtech.com
Title
Title
Title
Size Document NumberRev
Size Document NumberRev
Size Document NumberRev
C
C
C
Date:Sheet
Date:Sheet
5
4
3
2
Date:Sheet
www.plxtech.com
8615 Base Board RDK
8615 Base Board RDK
8615 Base Board RDK
91-0132-000-A0
91-0132-000-A0
91-0132-000-A0
1
2026Thursday, February 12, 2009
2026Thursday, February 12, 2009
2026Thursday, February 12, 2009
of
of
of
Page 61
5
4
3
2
1
SERIAL HOT PLUG CIRCUIT FOR SLOT 8
To demonstrate the serial hot plug function of PEX 8614
requires the chip to boot with EEPROM and sets both
870 W Maude Ave, Sunnyvale, CA 94085
www.plxtech.com
www.plxtech.com
Title
Title
Title
Size Document NumberRev
Size Document NumberRev
Size Document NumberRev
C
C
C
Date:Sheet
Date:Sheet
2
Date:Sheet
www.plxtech.com
8615 Base Board RDK
8615 Base Board RDK
8615 Base Board RDK
91-0132-000-A0
91-0132-000-A0
91-0132-000-A0
1
2226Thursday, February 12, 2009
2226Thursday, February 12, 2009
2226Thursday, February 12, 2009
of
of
of
Page 63
5
DD
PS_Pwr_Good[4,26]
CC
BB
3.3VCC13.3VCC1
R66
R66
R67
R67
51K
51K
10K
10K
S3
S3
MAN_FPGA_RST
13
42
SW PUSHBUTTON
SW PUSHBUTTON
XILINX_VCC_CORE_1p2XILINX_VCC_AUX_2p5
R348
R348
10K
10K
U21
U21
5
4
VCC
Y
1
A
3
2
GND
B
NC7S08
C78
C78
0.1uF
0.1uF
NC7S08
C79
C79
1000pf
1000pf
R347
R347
200
200
C77
C77
47uF
47uF
C153
C153
0.001uF
0.001uF
L2
1uHL21uH
Inductor/Bead Should be Rated Above 3AmpsInductor/Bead Should be Rated Above 3Amps
R349
R349
C81
C81
10K
10K
1uF NL
1uF NL
C80
C80
330pf
330pf
U20
U20
RST IN3VCC
SRT4GND
MAX6420
MAX6420
C74
C74
C75
C75
0.1uF
0.1uF
10uF
10uF
C76
C76
0.1uF
0.1uF
RESET#
C72
C72
0.1uF
0.1uF
U117
U117
27
28
24
25
26
21
22
23
30
4
5
1
2
REG_VDD
IN1_1
IN1_2
PGND1_1
PGND1_2
PGND1_3
BST1
LX1_1
LX1_2
COMP1
3.3VCC1
3
VDD
R34610R346
10
C154
C154
0.1uF
0.1uF
3.3VCC1
R62 0R62 0
R64
R64
This Net should go to FPGA GSR Capable Pin
5.1K
5.1K
FPGA_RESET
C73
C73
0.1uf
0.1uf
6
DUAL OUTPUT VOLTAGE REGULATOR
DUAL OUTPUT VOLTAGE REGULATOR
VDL
13
IN2_1
14
IN2_2
PGND2_1
PGND2_2
PGND2_3
BST2
LX2_1
LX2_2
COMP2
C83
C83
0.1uF
0.1uF
15
16
17
20
C86
C86
0.1uF
0.1uF
18
19
11
FPGA_RESET [26]
C84
C84
10uF
10uF
L3
1uHL31uH
C161
C161
C162
C162
1uF
1uF
1uF NL
1uF NL
R35333R353
3
TP4
TP4
EXT_NVM_VDDQ
EXT_NVM_VDDQ
TP3
TP3
Prototyping Pad
Prototyping Pad
TP2
TP2
Prototyping Pad
Prototyping Pad
C156
C156
R3501KR350
- Make the common trace on NVM_VDDQ thicker - Make the
traces on pin 2 of both the Resistors Thicker - Populate
1 to 3 connection on Both of these shunts
EN_NVM_VDDQ[26]
SMBCLK_16[26]
SMBDATA_16[26]
ALERT_n[26]
OVERT_n[26]
C157
C157
22uF
22uF
0.1uF
0.1uF
R351
R351
1K
20K
20K
C160
C160
150pf
150pf
33
3.3VCC1
2
4
JP5
JP5
HDR 2X2
HDR 2X2
C389
C389
1uF
1uF
C407
C407
1000pF
1000pF
C383
C383
1000pF
1000pF
2
C395
C395
1uF
1uF
C399
C399
1000pF
1000pF
C259
C259
1000pF
1000pF
C261
C261
.1uF
.1uF
3.3VCC1
R278
R278
200
200
U78
U78
1
VCC
8
SMBCLK
7
SMBDATA
6
ALTER#
4
OVERT1#
MAX6658
MAX6658
Decoupling Caps for FPGA. Place
1000pf close to the pins.
Sprinkle 0.01uf around the chip.
Sprinkle 1uf around the chip
C396
C396
1uF
1uF
C400
C400
1000pF
1000pF
C260
C260
1000pF
1000pF
C401
C401
1000pF
1000pF
C334
C334
1000pF
1000pF
C387
C387
0.01uF
0.01uF
C402
C402
1000pF
1000pF
C378
C378
1000pF
1000pF
R340
R340
12
3
0 Shunt
0 Shunt
R339
R339
12
3
0 Shunt
0 Shunt
112
334
3.3VCC
C391
C391
1uF
1uF
C408
C408
1000pF
1000pF
C394
C394
1000pF
1000pF
C392
C392
1uF
1uF
C410
C410
1000pF
1000pF
C397
C397
1000pF
1000pF
RN56
RN56
10K
10K
123
C393
C393
1uF
1uF
C409
C409
1000pF
1000pF
C398
C398
1000pF
1000pF
NVM_VDDQ [8]
678
45
1
2
DXP
C262
C262
2200pF
2200pF
3
DXN
5
GND
C384
C384
0.01uF
0.01uF
C403
C403
1000pF
1000pF
C379
C379
1000pF
1000pF
C385
C385
0.01uF
0.01uF
C404
C404
1000pF
1000pF
C380
C380
1000pF
1000pF
C386
C386
0.01uF
0.01uF
C405
C405
1000pF
1000pF
C381
C381
1000pF
1000pF
TDIODE_p [8]
TDIODE_n [8]
C388
C388
0.01uF
0.01uF
C406
C406
1000pF
1000pF
C382
C382
1000pF
1000pF
C390
C390
0.01uF
0.01uF
XILINX_VCC_AUX_2p5
C418
C411
C411
0.01uF
0.01uF
C413
C413
0.01uF
0.01uF
C412
C412
C415
C415
C416
C416
1000pF
1000pF
1000pF
1uF
1uF
1000pF
C417
C417
1000pF
1000pF
C418
1000pF
1000pF
31
FB1
R359
R359
10K
10K
2
REFIN
C82
C82
REG_VDD
R357
AA
R357
20K
20K
REG_VDD
R352
R352
20K
20K
1000pf
1000pf
EN1EN2
5
32
SS1
5
NC
1
PWRGD1
29
EN1
GND
4
4
FSYNC
PWRGD2
EP
33
10
FB2
R358
R358
20K
R3545KR354
7
20K
XILINX_VCC_CORE_1p2
5K
C422
C421
SS2
EN2
0.022uF
0.022uF
8
12
REG_VDD
R355
R355
20K
20K
REG_VDD
R356
R356
20K
20K
3
C163
C163
9
C414
0.01uF
0.01uF
2
0.01uF
0.01uF
1uF
1uF
C423
C423
C424
C424
C414
C421
C419
C419
1000pF
1000pF
1000pF
1000pF
Title
Title
Title
Size Document NumberRev
Size Document NumberRev
Size Document NumberRev
C
C
C
Date:Sheet
Date:Sheet
Date:Sheet
C422
C420
C420
1000pF
1000pF
1000pF
1000pF
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
PLX TECHNOLOGY, INC.
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
870 W Maude Ave, Sunnyvale, CA 94085
www.plxtech.com
TV58Prototyping Pad TV58Prototyping Pad
TV59Prototyping Pad TV59Prototyping Pad
TV60Prototyping Pad TV60Prototyping Pad
TV61Prototyping Pad TV61Prototyping Pad
TV62Prototyping Pad TV62Prototyping Pad
TV63Prototyping Pad TV63Prototyping Pad
TV64Prototyping Pad TV64Prototyping Pad
TV65Prototyping Pad TV65Prototyping Pad
TPV5 Prototyping PadTPV5 Prototyping Pad
TPV16 Prototyping PadTPV16 Prototyping Pad
TPV17 Prototyping PadTPV17 Prototyping Pad
TPV18 Prototyping PadTPV18 Prototyping Pad
TPV19 Prototyping PadTPV19 Prototyping Pad
TPV20 Prototyping PadTPV20 Prototyping Pad
TPV21 Prototyping PadTPV21 Prototyping Pad
TV70Prototyping Pad TV70Prototyping Pad
TV71Prototyping Pad TV71Prototyping Pad
TV72Prototyping Pad TV72Prototyping Pad
TV73Prototyping Pad TV73Prototyping Pad
TV66Prototyping Pad TV66Prototyping Pad
TV67Prototyping Pad TV67Prototyping Pad
TV68Prototyping Pad TV68Prototyping Pad
TV69Prototyping Pad TV69Prototyping Pad
TV74Prototyping Pad TV74Prototyping Pad
TV75Prototyping Pad TV75Prototyping Pad