Planar LC640.480.21-065 User Manual

LC640.480.21-065
HIGH PERFORMANCE 6.5" COLOR TFT AMLCD
Operations Manual
The Definition of Quality
®
Copyright © 2000 by Planar Systems, Inc.
Planar and The Definition of Quality are registered trademarks. ColorBrite is a trademark of Planar Systems, Inc.
Revision Control
Date Description
September 2000 Document number OM610-00
Contents
LC640.480.21-065 Display ............................................................................................................. 1
Features and Benefits................................................................................................................... 1
Installation and Handling................................................................................................................. 2
Mounting the Display .................................................................................................................. 2
Mounting Display Face Down.................................................................................................2
Mounting Display Face Up ..................................................................................................... 2
Thermal Control...................................................................................................................... 2
Isolation and Air Gap..............................................................................................................2
Ambient Light Sensor Clearance.............................................................................................3
Cable Length................................................................................................................................3
Cleaning....................................................................................................................................... 3
Avoiding Image Retention........................................................................................................... 3
Specifications .................................................................................................................................. 4
Environmental Characteristics..................................................................................................... 4
Safety and EMI Certifications................................................................................................. 4
Reliability and Backlight Life.................................................................................................. 4
Mechanical Characteristics..........................................................................................................5
Optical Characteristics................................................................................................................. 6
Viewing Angles........................................................................................................................ 7
Response Times ....................................................................................................................... 7
Interfacing and Operation................................................................................................................ 8
Control Basics.............................................................................................................................. 8
Power Requirements................................................................................................................8
Power Sequencing (LCD)........................................................................................................ 9
Video Signals...............................................................................................................................9
Video Signal Characteristics................................................................................................... 9
Signal Timing......................................................................................................................... 10
Video Characteristics................................................................................................................. 14
Pixel Position......................................................................................................................... 15
Warmup Characteristic ......................................................................................................... 16
Connectors................................................................................................................................. 17
Video Input and Backlight Control Connector (J1).............................................................. 17
Backlight Inverter and Heater Connector (J2) ..................................................................... 19
Ambient Light Sensor (Tethered Option) (J3)....................................................................... 19
Luminance Features....................................................................................................................... 20
Backlight Dimming.................................................................................................................... 20
Manual Dimming...................................................................................................................20
Automatic Dimming (Ambient Light Sensor) ........................................................................ 22
Automatic Dimming (Manual Offset)....................................................................................23
Controlled Luminance Mode................................................................................................. 23
Backlight Enable........................................................................................................................ 24
LC640.480.21-065 Operations Manual (OM610-00) i
Temperature Considerations...................................................................................................... 24
Luminance Variation Due to Ambient Temperature ............................................................. 24
Temperature Sensors............................................................................................................. 25
Heater Operation and Over Heat Status Lines ..................................................................... 25
Backlight Heater................................................................................................................ .... 25
Cell Heater ............................................................................................................................ 28
High Temperature Control.................................................................................................... 30
Defects........................................................................................................................................... 31
Emissive Defects ....................................................................................................................... 31
Cosmetic Defects....................................................................................................................... 32
Display Dimensions....................................................................................................................... 33
Figures
Figure 1. Viewing Angles............................................................................................................ 7
Figure 2. Response Times............................................................................................................ 7
Figure 3. Power Sequencing........................................................................................................ 9
Figure 4. Timing Diagram. ........................................................................................................ 11
Figure 5. Timing Diagram. ........................................................................................................ 12
Figure 6. Timing Diagram. ........................................................................................................ 13
Figure 7. Pixel Position of Input Data. ...................................................................................... 15
Figure 8. Warmup Curve. .......................................................................................................... 16
Figure 9. Connector Locations. ................................................................................................. 17
Figure 10. Dimming Voltage Input on J1 (DIM)....................................................................... 20
Figure 11. Luminance vs. Dimming Voltage: Manual Dimming.............................................. 21
Figure 12. Luminance Levels: Automatic Dimming (Ambient Light Sensor).......................... 22
Figure 13. Luminance Levels: Automatic Dimming (Manual Offset). ..................................... 23
Figure 14. Backlight Power Consumption.................................................................................24
Figure 15. Sensor Temperature vs. Lamp Heater (Inverter Startup Time Delay) ..................... 26
Figure 16. Sensor T emperature vs. Lamp Heater Duty Cycle................................................... 27
Figure 17. Display Warmup Performance................................................................................. 27
Figure 18. Cell Heater Response Time Performance. ............................................................... 28
Figure 19. Cell Heater Maximum Power Time. ........................................................................ 29
Figure 20. Cell Heater Duty Cycle. ........................................................................................... 29
Figure 21. Temperature Control: Maximum Pulse Width Modulation Duty Cycle.................. 30
Figure 22. Diameter Calculation................................................................................................ 32
Figure 23. Display Dimensions. ................................................................................................ 33
LC640.480.21-065 Operations Manual (OM610-00)ii
LC640.480.21-065 Display
The LC640.480.21-065 is a 6.5-inch diagonal VGA active matrix liquid crystal display (AMLCD) designed to meet the demanding SAE specifications for the transportation industry. This display is ideal for a variety of industrial applications, such as point-of­sale and outdoor kiosks. With a typical brightness of 1000 nits, this sunlight-readable display offers high contrast in bright environments along with a wide dimming range for nighttime operation. With its modular design, this display is perfect for mobile computing and rugged applications where a high-performance embedded display is required.
AMLCD Panel: The panel is a color active matrix LCD module incorporating amorphous silicon TFT (thin film transistor) technology with wide viewing angle characteristics. The video interface is digital, 6-bits per color, which allows up to 262,144 different colors.
Backlight Module: The backlight assembly contains six high-efficiency cold cathode fluorescent lamps (CCFL), temperature sensors, and lamp heaters. All the components are mounted to a single circuit board. The CCFLs are heated at low temperatures to increase their luminance and extend their life. Located in front of the backlight module are several diffusing and brightness-enhancement films.
Inverter Module: This assembly contains the backlight inverter electronics, microprocessor, heater control circuitry, and input/output connectors. All the components are mounted to a single circuit board. The microprocessor controls the inverter, heater, and dimming functions. The dimming functions include manual analog and automatic control based upon ambient light.
Ambient Light Sensor: The ambient light sensor can remain attached to the display or mounted remotely using a cable.
Video Interface: Standard VGA TFT interface is digital 6-bit RGB.
Features and Benefits
1000 cd/m2typical luminance for sunlight-readability ♦ 3:1 contrast @ 100K Lux ambient for outdoor daylight useWide +35/-45° vertical / ±50° horizontal viewing angle300:1 digital dimming for efficient control over a wide range of ambient light18-bit ( 6 bits per color) video interface for wide color range (262,144 colors)30,000 hours MTBF for long service-free operating lifeDurable and lightweight for rugged conditionsConvection cooling for operation without cooling fansModular design for easy field replacement of backlight and inverterAutomatic thermal management at low and high temperature extremes
LC640.480.21-065 Operations Manual (OM610-00) 1
Installation and Handling
Do not drop, bend, or flex the display. Do not allow objects to strike the surface of the display.
Mounting the Display
To maximize shock and vibration performance, the display must be properly mounted using all four mounting hole locations. There are two recommended mounting configurations. Appropriate changes to these mounting configurations may be needed to meet specific requirements or applications. Table 1 below lists the recommended mounting hardware.
Table 1. Mounting Hardware.
Screw Washer Tightening torque
M2.5 SS phillips-head or #4 SS phillips-head Lockwasher, split type 4oz-in \ 2.8x105dyne – cm
Mounting Display Face Down
Standoff spacers or bosses with a minimum height of 3.0 mm must be used at all four mounting locations to prevent binding and deflection of the display.
Mounting Display Face Up
Standoff spacers or bosses with a minimum height of 33.0 mm must be used at all four mounting locations to prevent binding and deflection of the display.
Thermal Control
Several thermal sensors located on the backlight module allow the display to operate safely at temperature extremes. At low ambient temperatures, heaters on the backlight module warm t he lamps to a safe temperature before energizing the lamps. This cold­start routine extends the life of the lamps and increases the luminance at low temperatures. During the warm up period, pin 39 on the input connector is set low.
At high ambient temperatures, the luminance will gradually be reduced to maintain acceptable temperatures on the inverter module. If the temperatures remain above the acceptable level after the luminance has been totally reduced, then the inverter will shut down. During the luminance reduction period, pin 40 on the input connector (J1) is set to low.
Isolation and Air Gap
The display generates high voltage AC to drive the CCFL tubes. High voltage is present at numerous points on the backlight and inverter module that forms the rear surface of the display, so your application should not place metal too near the module. In the interests of both high voltage isolation and airflow for cooling, it is recommended that an air gap of .197" (5 mm) or greater be maintained behind the display.
LC640.480.21-065 Operations Manual (OM610-00)2
Ambient Light Sensor Clearance
Two backlight dimming modes utilize automatic brightness control. If the display is to be operated in either of these modes, the ambient light sensor located on the front bezel must be unobstructed. If the sensor is placed behind the same protective window as the display active (viewing) area, the sensor operation may be affected due to light scattering and reflections from display-generated light coupling to the sensor via the window.
Cable Length
Due to the high frequencies present on the video interface, unterminated video cable lengths of more than 12 inches (300 mm) are discouraged.
Cleaning
Care should be taken to minimize scratching. Clean the display front with a dry, soft cloth such as a professional photographic lens cleaner. Disposable cleaning cloths are recommended to minimize the risk of inadvertently scratching the display with particles embedded in a re-used cloth. Particular care should be taken when cleaning displays with polarizers or anti-glare and anti-reflective films. These films may delaminate if exposed to certain chemicals.
Avoiding Image Retention
Image retention may occur when a fixed pattern is displayed for a long time. Use a screen saver or image inversion to avoid image retention on the display.
LC640.480.21-065 Operations Manual (OM610-00) 3
Specifications
Performance characteristics are guaranteed with the display at room temperature (25 °C) and with the operating voltage within specifications, unless otherwise specified. Optical performance is referenced to screen center at normal i ncidence with a full white screen display and the backlight at maximum luminance, 60Hz LCD frame rate, unless otherwise specified.
Environmental Characteristics
Table 2. Environmental Characteristics.
Temperature
Operating Operating survival Storage
Humidity
Operating Non-operating
Altitude
Operating Non-operating
Vibration (random)
Operating/Non-operating 0.02 g2/Hz, 5-500 Hz, 30 min. ea. axis, per IEC 68-2-34
Shock
Operating/Non-operating 100 g, 6 ms, half sine wave, 3 shocks per surface, per IEC 68-2-27
-20 to +71 °C (-40 to +71°C with cell heater/version -01)
-40to+85°C,2hrs.maximum
-45to+90°C,24hrs.maximum
93% RH @ 40 °C, non-condensing, 10 days per IEC 68-2-3 0 to 95% RH @ 25-55 ºC, 6 days per IEC 68-2-30
0 to 10k ft. per IEC 68-2-13 0 to 40k ft. per IEC 68-2-13
Specific profiles for each axis, SAE J1455, section 4.9
Safety and EMI Certifications
The display will not inhibit the end product from compliance with UL1950, CSA22.2, and IEC950. When housed in a suitable enclosure, the display will not inhibit the end product from complying with FCC Part 15, Subpart J Class B, EN55022 Class B, or SAE-J-1113.
Reliability and Backlight Life
The demonstrated system MTBF is to be greater than 30,000 hours with a 90% confidence level at 25 °C. Refer to Table 3 for backlight life.
Table 3. Backlight Life.
Usage Backlight life (typical to 50% of initial luminance)
Continuous at full luminance 20K hours Continuous at half luminance 60K hours Typical use using CBM* 50K hours @ 700 cd/m * Controlled luminance mode
2
LC640.480.21-065 Operations Manual (OM610-00)4
Mechanical Characteristics
Refer to mechanical outline drawing in Figure 23 on page 33. All size measurements shown in Table 3 are in millimeters (inches).
Table 4. Mechanical Characteristics.
Display External Dimensions
width height depth
Weight (normal)
Display Active Area
width height diagonal
Pixel Pitch
width height
178.8 (7.04 ) nominal
126.8 (4.99) nominal
38.3 (1.51) nominal
470 g (1.05 lbs.)
132.48 (5.22) nominal
99.36 (3.91) nominal
165.10 (6.5)
.207 (0.008) nominal .207 (0.008) nominal
LC640.480.21-065 Operations Manual (OM610-00) 5
Optical Characteristics
Table 5. Optical Characteristics.
Luminance (at screen center)
Standard (typical)
1
Controlled (typical)
Contrast Ratio
Dark room ambient 500 Lux ambient 5K Lux ambient 20K Lux ambient
Color Coordinates
2
3cd/m 3cd/m
minimum, 1000 cd/m2maximum (initial)
2
minimum, 700 cd/m2maximum
150: 1 typical, 80:1 minimum 92:1 typical 12:1 typical 4:1 typical
White field x = .362 typical; y = .370 typical
Luminance Non-uniformity
25% maximum With a white screen, max difference between any 2 of 5
points is defined as follows: Lnu (%) = (1- (Lmin/Lmax)) x 100%
Luminance Control (typical))
Dimming range 50:1 initial, 300:1 stabilized (Lmax after > 15 minutes
at max. lum., then Lmin at min. lum; dimming range = Lmax/Lmin)
Ambient Light Sensor
Response Field of view Dynamic range
Viewing Angles
Horizontal Vertical
Visible light filtered ~420 to 675nm @ 50% pts. ±50 degrees typical to half sensitivity 0 to 3000 Lux typ.; assumes 18% scene reflectance
±50 degrees typ., White/black CR 10 +35/-45 degrees typ., White/black CR 10
(See Figure 1)
1
The contrast brightness mode regulates backlight luminance via feedback over the life of the lamps. The lamp and luminance life will vary depending on the chosen controlled luminance level. For more information, see “Backlight Dimming” on page 20.
LC640.480.21-065 Operations Manual (OM610-00)6
Viewing Angles
-
-
+
+
w
Figure 1. Viewing Angles.
Normal Line
θ
H
θ
V
θ
V
θ
H
where:
θ
+Horizontal angle (+50)
+H
θ
-Horizontal angle (-50)
-H
+Vertical angle (+35)
θ
+V
θ
-Vertical angle (-45)
-V
and R/L and U/D = default
6o’clockdirection
Response Times
As shown in Figure 2, the rise response time (from white to black) is 40 ms typical and the fall response time (from black to white) is 50 ms typical.
Figure 2. Response Times.
Photo-
detector
output
(Relative Value)
100%
90%
10%
0%
blackwhite
hite
τr = Rise (wht to blk): 40 ms typ τf=Fall(blktowht): 50mstyp
τr
f
τ
time
LC640.480.21-065 Operations Manual (OM610-00) 7
Interfacing and Operation
Control Basics
Power Requirements
The LC640.480.21-065 display requires two power supplies: +5 Vdc for the LCD logic and +12 Vdc for the backlight. In Table 6 below, the backlight current and power are referenced to maximum luminance, 25 °C ambient temperature.
Table 6. Input Pow er
Panel
Panel voltage (nominal = 5.0V) V Absolute max. V ICC(VCC=5.0V) I
Inverter
Inverter voltage (nominal = +12.0V) V Absolute max. voltage V Current (V
Backlight
Backlight heater voltage V Backlight heater current I Cell heater voltage V Cell heater current I
CC
= 8.0V, max. luminance) I
INV
Symbol Min Typ Max Units
4.75 5.0 5.25 Vdc
-0.3 6.5 Vdc – 470 640 mAdc
8.0 12.0 18.0 Vdc – 20.0 Vdc – 1.6 1.8 Adc
8.0 12.0 18.0 Vdc – 2.0 3.0 Adc
8.0 12.0 18.0 Vdc – 1.0 1.5 Adc
V
CC CC
CC
INV INV
INV
LH
LH
LH
LH
CAUTION: Absolute maximum ratings are those values beyond which damage to
the device may occur.
LC640.480.21-065 Operations Manual (OM610-00)8
Power Sequencing (LCD)
Power-on
Power-off
When performing power sequencing:
Ensure the supply voltage for input signals is the same as for VCC.
Apply VCC within the LCD operation period. When the backlight turns on before
LCD operation or the LCD operation turns off before the backlight turns off, the display may momentarily become white.
When the power is off, keep whole signals (Hsync, Vsync, CLK, DE, and DATA)
low level or high impedance.
Figure 3. Power Sequencing.
SUPPLY VOLTAGE SEQUENCE
VCC
Signal
*1 The supply voltage for input signals should be the same as VCC. *2 Apply VDD within the LCD operation period. When the backlight turns on before LCD operation or the LCD
operation turns off before the backlight turns off, the display may momentarily become white.
*3 When the power is off, please keep whole signals (Hsync, Vsync, CLK, DE, and DATA) low level or high
impedance.
4.75 V
0V
0V
0<t<35ms 0<t<35ms
mst<150
VALID
4.75 V
Video Signals
Video Signal Characteristics
Video signal inputs on J1 are digital inputs and are compatible with CMOS logic.
Table 7. Video Signal DC Characteristics.
Description Symbol Minimum Maximum Units
Absolute maximum input voltage V Low-level input voltage V High-level input voltage V
I
max IL IH
-0.3 6.5 Vdc
00.8Vdc
2.2 5.25 Vdc
LC640.480.21-065 Operations Manual (OM610-00) 9
Signal Timing
Video signal timing diagrams are shown in Figures 2 through 4 on the following pages. Table 8 refers to these diagrams.
Table 8. Video Signal Timing.
Parameter Symbol Min. Typ. Max. Unit
CLK Frequency
Duty tch/tc 0.4 0.5 0.6 – Rise, fall t crf 10 ns
Hsync
Period
Display period t hd 640 CLK Front-porch t hf 2 16 CLK Pulse width t hp 10 96 CLK
CLK-Hsync timing t hch 12 ns Hsync-CLK timing t hcx 8 ns Hsync-Vsync timing t vh 15 ns Vsync-Hsync timing t vs 15 ns Rise, fall t hrf 10 ns
Vsync
Display period t vd 480 H Front-porch t vf 1 12 H Pulse width t vp 2 2 H
Rise, fall 10 ns
DATA R0-R5 G0-G5
CLK-DATA timing t ds 8 ns DATA-CLK timing t dh 12 ns Rise, fall t drf 10 ns
B0-B5 DE
DE-CLK timing t es 8 ns CLK-DE timing t eh 12 ns Rise, fall t erf 10 ns
1
39.722 ns (Typ.)
1
2
1/tc 21.0 25.175 29.0 MHz
th
30.0 31.778 33.6
µs
800 CLK
thb 5 48 CLKBack-porch *)thp+thb 64 144 CLK
3
tv
16.1 16.683 17.2 msPeriod – 525 H
tvb 4 31 HBack-porch *)tvp+tvb 6 33 H
2
31.468 kHz (Typ.)
3
59.94 Hz (Typ.)
Note: Keep all parameters within the specified range. Do not operate the LCD
module without an input DE signal.
LC640.480.21-065 Operations Manual (OM610-00)10
CLK
(R0toR5) (G0toG5) (B0toB5)
Figure 4. Timing Diagram.
tch
IH
V
1.5 V V
IL
INVALID INVALIDDATA
V
IH
1.5 V V
IL
tc
tcrftcrf
tds tdh
tdrf tdrf
DE
CLK
Hsync
V
IH
1.5 V V
IL
1.5 V
V
IH
1.5 V V
IL
1.5 V
teh tes
thch thcs
thrf
teh tes
terf terf
V
IH
1.5 V V
IL
tvh tvs
tvrf
LC640.480.21-065 Operations Manual (OM610-00) 11
Figure 5. Timing Diagram.
LC640.480.21-065 Operations Manual (OM610-00)12
Figure 6. Timing Diagram.
Hsync
LC640.480.21-065 Operations Manual (OM610-00) 13
Video Characteristics
Colors are developed in combination with 6-bit signals (64 steps in grayscale) of each primary red, green, and blue color. This process can result in up to 262,144 (64x64x64) colors. The mapping of the eighteen video data inputs is shown in Table 9.
Table 9. Video Data Color and Grayscale Map.
Display colors
Basic colors
Red grayscale
Green grayscale
Black
Blue
Red
Magenta
Green
Cyan
Yellow
White Black
dark
↑ ↓
bright
Red
Black
dark
↑ ↓
bright
Green
Data signal (0: Low level, 1: High level)
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0
000000 000000 111111 111111 000000 000000 111111 111111
000000 000001 000010
↑ ↓
111101 111110 111111
000000 000000 000000
↑ ↓
000000 000000 000000
000000 000000 000000 000000 111111 111111 111111 111111
000000 000000 000000
↑ ↓
000000 000000 000000
000000 000001 000010
↑ ↓
111101 111110 111111
000000 111111 000000 111111 000000 111111 000000 111111
000000 000000 000000
↑ ↓
000000 000000 000000
000000 000000 000000
↑ ↓
000000 000000 000000
Black
dark Blue grayscale
LC640.480.21-065 Operations Manual (OM610-00)14
↑ ↓
bright
Blue
000000 000000 000000
↑ ↓
000000 000000 000000
000000 000000 000000
↑ ↓
000000 000000 000000
000000 000001 000010
↑ ↓
111101 111110 111111
Pixel Position
The position of pixel data, relative to t he color filter orientation and scan direction inputs is shown in Figure 7 below. Refer to Table 10 to see the relations between the scan direction and the viewing direction.
Table 10. Display Positions.
Normal scan: DPS = “L” or “OPEN”
D (0,0) D (1,0) D (X,0) D (638,0) D (639,0) D (0,1) D (1,1) D (X,1) D (638,1) D (639,1)
(D 0,Y) D (1,Y) D (X,Y) D (638,Y) D (639,Y)
D (0,478) D (1,478) D (X,478) D (638,478) D(639,478) D (0,479) D (1,479) D (X,479) D (638,479) D(639,479)
Reverse scan: DPS = “H”
D (639,479) D (638,479) D (X,479) D (1,479) D (0,479)
J3 J1
D (639,478) D (638,478) D (X,478) D (1,478) D (0,478)
D (639,Y) D (638,Y) D (X,Y) D (1,Y) (D 0,Y)
D (639,1) D (638,1) D (X,1) D (1,1) D (0,1) D (639,0) D (638,0) D (X,0) D (1,0) D (0,0)
Figure 7. Pixel Position of Input Data.
Normal Scan Reverse Scan
D (0,0) D (639,0)
D (0,479) D (639,479)
D (0,0) D (639,0)
D (0,479) D (639,479)
J1 J3
LC640.480.21-065 Operations Manual (OM610-00) 15
Warmup Characteristic
L
Some time after startup is required to allow the CCFL tubes to reach their normal operating temperature. The graph in Figure 8 shows the typical room temperature warmup curve for the LC640.480.21-065 when set to maximum luminance.
Figure 8. Warmup Curve.
uminance VS Time (warm-up curves)
100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
PERCENT OF MAX. LUMINANCE
30.00%
20.00%
10.00%
0.00% 0 10203040506070
TIME (min)
LC640.480.21-065 Operations Manual (OM610-00)16
Connectors
J
The LC640.480.21-065 display has four connectors on the back near one side of the display. J1 is the video input and backlight control connector, J2 is the backlight inverter and heater connector, and J3 and J8 are the connectors for tethering t he ambient light sensor.
Figure 9. Connector Locations.
Pin 1
J2
Pin 1
J1
J1
ON
J3
Pin 1
SW1
1
Video Input and Backlight Control Connector (J1)
The video input and backlight control signals are connected to the display through a 40-pin, dual-row, 1.27 mm pitch, square pin, locking connector (Samtec FTSH-120-01-L-DV-EJ-A). The mating connector is available through Samtec as a cable assembly (FFSD series). Consult your Samtec representative (1-800­SAMTEC) for cable and connector options. Table 11 on the following page lists the pin assignments for the J1 connector.
8
LC640.480.21-065 Operations Manual (OM610-00) 17
Table 11. Video Input and Backlight Connector (J1) Pinouts.
Pin Signal Description Pin Signal Description
1 GND Ground 2 CLK Video clock 3 HSync Horiz. sync 4 VSync Vert. sync 5 GND Ground 6 R0 Red data (LSB) 7 R1 Red data 8 R2 Red data
9 R3 Red data 10 R4 Red data 11 R5 Red d ata (MSB) 12 GND Ground 13 G0 Green data (LSB) 14 G1 Green data 15 G2 Green data 16 G3 Green data 17 G4 Green data 1 8 G5 Green data (MSB) 19 GND Ground 20 B0 Blue data (LSB) 21 B1 Blue data 22 B2 Blue data 23 B3 Blue data 24 B4 Blue data 25 B5 Blue data (MSB) 26 GND Ground 27 DE Data Enable 28 V 29 V
CC
AMLCD and fan power 30 GND Ground
CC
AMLCD power
31 DPS Display scan select 32 /CBM Controlled luminance 33 DIM Analog dimming control 34 DIMREF Dim reference 35 INV Inverter control 36 GND Ground 37 ALS Ambient light sensor 38 TS1 Temperature sensor 39 /HT Heater indicator 40 /OHT Overtemp indicator
Signal I/O Description
CLK I Video Clock HSync I Horizontal Sync Vsync I Vertical Sync R0-R5 I Red Data G0-G5 I Green Data B0-B5 I Blue Data GND I Ground – Signal return for logic and power supplies. Isolated from the
display metal bezel. DE I Data Enable DPS I Display Scan - Low or open = normal; High = image upside down V
CC
I AMLCD power supply: +5 Vdc INV I Inverter - High or open = enable; Low = disable (backlight off) /CBM I Controlled Luminance Mode - High or open = normal; Low = enabled DIM I AnalogDimmingControl-0to+5Vdc;+5Vdcismaximumluminance DIMREF O Dimming Reference - +5 Vdc reference for analog dimming ALS O Ambient Light Sensor - signal to microprocessor: 0 to +5 Vdc; +5 Vdc is
lowest ambient light level
TSI O Temperature Sensor (no. 1) - signal to microprocessor: 0 to +5 Vdc, with
0C = 0.5 Vdc, and 10 mv/
°C
/HT O Heating Indicator - Low = display is heating and backlight is turned off /OHT O Over-temp Indicator - Low = display temperature is at maximum and
luminance is reduced
LC640.480.21-065 Operations Manual (OM610-00)18
Backlight Inverter and Heater Connector (J2)
This connector supplies 12 Vdc nominal to the inverter to operate the backlight inverter and backlight heater. The connector is a M olex Micro-Fit 3.0 Wire-to-Board Header (# 43045-0600). The mating connector is a Molex Micro-Fit 3.0 Wire-to-Wire Receptacle (#43025-0600, crimp # 43030-0007).
Table 12. Backlight Inverter and Heater Connector (J2) Pinouts.
Pin Function
1 VDD, inverter 2 Inverter ground 3 VLH, backlight heater 4 Backlight heater ground 5 VCH, cell heater 6 Cell heater ground
Ambient Light Sensor (Tethered Option) (J3 and J8)
This connector is used when the ambient light sensor is tethered. The connector is a 3-pin Molex part number 22-03-5035. The mating connector is Molex part number 50-37-5033 with 5263 crimps (Molex # 08-70-1040).
Table 13. Ambient Light Sensor (J3 and J8) Pinouts.
Pin Symbol Function
1 PDANODE Photo diode anode 2 PDCATH Photo diode cathode 3 GND Po wer ground
Tethering the Light Sensor
The protruding circuit board area containing the light sensor is designed so it can be snapped off and removed from the main interface board. Once the ambient sensor is removed it will require the addition of a cable between J3 and J8 in order to function. With the cable installed the sensor can be remotely positioned. The sensor may be discarded if the ambient sensing capability is not required.
To remove the light sensor, place the thumb of your right and left hand on the corresponding front surfaces of the sensor circuit board. Place the index fingers of both hands on the display’s rear circuit board just above the sensor. With a f irm quick action, push the sensor circuit board back. This will cause the circuit board to snap along the perforation. Now rock the sensor circuit board back and forth several times until it is free from the main interface board.
Connect a cable from J8 on the rear of the sensor circuit board to J3 on the rear of the display. The ambient light sensor should now function normally.
LC640.480.21-065 Operations Manual (OM610-00) 19
Luminance Features
Backlight Dimming
Control for backlight dimming is performed by several methods depending on how the switches on switch block SW1 (see Figure 9) are set as shown in Table 14 below. These selections are available for both standard and controlled luminance mode.
Table 14. Backlight Dimming Control.
Luminance Control Switch1Switch2Switch
Manual control off off
3
ON
Automatic control with ambient light sensor on off
Automatic control with manual offset and ambient light sensor
Note: Because Switch 3 is not used, its position has no effect.
off on
ON
ON
Manual Dimming
This mode allows the user to adjust the luminance by varying the input from 0 to +5 Vdc on pin 33 (DIM) of the video input connector (J1). See Figures 10 and 11.
Table 15. Manual Dimming Specifications.
Description Specification
Dimming range Approximately300:1 Analog voltage input (DIM) Compatible with voltage and potentiometer (3 terminal)
No connection results in maximum luminance Voltage range: 0 to +5V (+5V equals maximum luminance)
Dimming method Pulse width modulation (period = 100 millisecond, 256
discrete steps, linear) Recommended pot value 10K ohm DIM REF High side pot reference output provided, short-circuit
protected SWI Setting Switch 1 = OFF, Switch 2 = OFF
Figure 10. Dimming Voltage Input on J1 (DIM).
DIM
(PIN 33)
DIMREF
(PIN 34)
LC640.480.21-065 Operations Manual (OM610-00)20
GND
(PIN 36)
Figure 11. Luminance vs. Dimming Voltage: Manual Dimming.
LUMINANCE VS DIMMING VOLTAGE
100.00
80.00
60.00
40.00
20.00
0.00
PERCENT OF MAX. LUMINANCE (%)
0123456
DIMMING VOLTAGE
LC640.480.21-065 Operations Manual (OM610-00) 21
Automatic Dimming (Ambient Light Sensor)
Lamp luminance varies depending on ambient light levels. An off-board light sensor is used to determine the level. See Figure 12 below.
Table 16. Automatic Dimming (Ambient Light Sensor) Specifications.
Description Specification
Sensor type Photodiode, visible light filtered Sensor sensitivity 10 nA/lux Dynamic range 3000 lux ambient = maximum display luminance
0 lux ambient = minimum display luminance Ambient to display luminance Approximately linear relationship
1 second averaging Field of view Response Visible light filtered, 420 to 675 nm @ 50% points SWI Setting Switch 1 = ON, Switch 2 = OFF
Figure 12. Luminance Levels: Automatic Dimming (Ambient Light Sensor).
MAX
± 50 degrees typical to half sensitivity
DISPLAY
LUMINANCE
MIN
0
AMBIENT LIGHT LEVEL
3000
(lux)
LC640.480.21-065 Operations Manual (OM610-00)22
Automatic Dimming (Manual Offset)
Lamp luminance varies depending on ambient light levels. An off-board light sensor is used to determine the level. The user can adjust the l uminance offset by varying the input from 0 to 5 Vdc on pin 33 (DIM) of the video input connector (J1). See Figure 13 below.
Table 17. Automatic Dimming (Manual Offset) Specifications.
Description Specification
DIM function 0 Vdc = max. negative offset (display always at min. luminance)
+2.5 Vdc = no offset
+5 Vdc = max. positive offset (display always at max. luminance) DIM voltage to offset % Linear relationship SWI Setting Switch 1 = OFF, Switch 2 = ON
Figure 13. Luminance Levels: Automatic Dimming (Manual Offset).
Max.
d
V
5
.
4
=
M
I
D
M
I
D
DISPLAY LUMINANCE
Min.
c
c
d
V
0
.
4
=
D
c
d
V
5
.
3
=
M
I
D
c
d
V
0
.
3
=
M
I
D
c
d
V
5
.
2
=
M
I
D
c
d
V
0
.
2
=
M
I
D
c
d
V
5
.
1
=
M
I
D
c
d
V
0
.
1
=
M
I
D
c
d
V
5
.
0
=
M
I
1200 1800 2400 3000 3600
42000 600
AMBIENT LIGHT LEVEL (lux)
Controlled Luminance Mode
This function compensates for the luminance degradation of the lamps over time and constrains the maximum display luminance to approximately 700 cd/m sensor that measures the lamp luminance inside the light box, the microcontroller adjusts the lamp current to maintain constant luminance at the desired luminance level. For example, if DIM = 2.5V (corresponding to a 50% luminance level) in analog dimming mode, then the display luminance will be maintained at approximately 350 cd/m controlled luminance mode is enabled when pin 32 (/CBM) on J1 is low.
LC640.480.21-065 Operations Manual (OM610-00) 23
2
. Using a light
2
.The
Backlight Enable
The INV input on pin 35 of the backlight control connector (J1) directly shuts down the inverter output.
Table 18. Backlight Enable Specifications.
Description Specification
Input characteristic CMOS logic-compatible; open circuit defaults to high state State definition INV low state turns backlight off
Temperature Considerations
The LC640.480.21-065 display is designed to operate over a wide temperature range. To accomplish this, the display must be heated at low t emperatures and the power level reduced at high temperatures. At l ow temperatures, the lamps are heated using nichrome wires. At high temperatures, the internal temperature is lowered by reducing the backlight luminance. Two sensors located on the lamp circuit board monitor the internal temperature. The 996-0406-01 product incorporates a cell heater to warm the AMLCD cell at cold temperatures.
Luminance Variation Due to Ambient Temperature
Although the inverter features regulated lamp current drive, luminance will vary across the temperature range due to the characteristics of the CCFL tubes. Lamp luminance decreases at low t emperatures as the mercury condenses out of the gas and it decreases again at high temperatures as the tube phosphors become less efficient. The LC640.480.21-065 has been designed to provide peak luminance at normal room temperatures without using a heater, and at low temperatures with a heater for the CCFL tubes.
Backlight power consumption decreases as temperatures climb and the working voltage of the CCFL tubes decreases. The graph in Figure 14 indicates typical performance across temperatures.
Figure 14. Backlight Power Consumption.
Luminance vs. Temperature
(steady state luminance, standard luminance mode, display enclosed)
100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
PERCENT OF MAX. LUMINANCE
20.00%
10.00%
0.00%
-60 -40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
LC640.480.21-065 Operations Manual (OM610-00)24
Temperature Sensors
The temperature sensors are located at opposite corners of the backlight module, just outside the active area of the display. T he output of the sensors are sent to the microprocessor on the inverter module through a board-to-board connector.
Heater Operation and Over Heat Status Lines
There are two situations when the inverter controller will override the external control of the backlight:
1. At cold temperatures, the backlight will not turn on until it is warmed up.
2. At high temperatures, the luminance will be reduced until the temperature drops to a safe level.
Two digital status signals notify the user computer of these conditions. These CMOS­level outputs sink up t o 20 mA to accommodate an LED load.
Table 19. Heater Operation and Over Heat Status Line Parameters.
Parameter Value Units
Heater status (/HT, pin 39, J1) 0 = heating, +5 = normal Vdc Over heat status (/OHT, pin 40, J1) 0 = over heat, +5 = normal Vdc
Backlight Heater
The backlight heater consists of nichrome wire wrapped around each lamp. The purpose of the heater is to vaporize the mercury at low temperatures providing proper lamp emission color and extending lamp life.
When the inverter is first powered up it checks the backlight cavity temperature. If the temperature is below +10° C, the lamp heaters are turned on at 100% duty cycle and the inverter is disabled for a specific time period as shown in Figure 15 on page 26. After the time delay, the inverter is enabled and the heater duty cycle is set t o the value shown in Figure 16 on page 27. The heater continues to operate until the sensor temperature reaches +10° C. See Figure 17 on page 27 for actual display warm-up performance.
LC640.480.21-065 Operations Manual (OM610-00) 25
Table 20. Backlight Heater Parameters.
Parameter Value
Type Resistive wire (nichrome: NiCrA – 80% Ni 20% Cr, 39 AWG,
53 ohms/foot)
Length/Lamp ~ 200 mm (7.87 inches)/lamp, 8 revolutions around each lamp,
resistance/wire = 36 ohms, total heater resistance = 6 ohms Active temperature sensor Monitor temperature sensor with the highest reading Control Duty cycle and maximum power time delay are stepped as shown
in Figures 15 and 16 Inverter enable Inverter is enabled as shown in Figure 15.
If the temperature is below +10°C, inverter is turned off until the
lamps are heated. Status indicator Set the status indicator when the inverter is disabled. See “Heater
Operation and Over Heat Status Lines.” On page 25. Hysteresis 3.0 °C Heater voltage 8-18 Vdc Power 10.6 W (@ 8 V), 54W (@18 V)
Figure 15. Sensor Temperature vs. Lamp Heater (Inverter Startup Time Delay)
SENSOR TEMPATURE VS
LAMP HEATER(@ FULL POWER) & INVERTER STARTUP TIME DELAY
35 30 25 20 15
(SEC)
10
5 0
-5
LAMP HTR/INVTR STARTUP DELAY
-10
-50 -40 -30 -20 -10 0 10 20 30 40 50
SENSOR TEMPERATURE (C)
LC640.480.21-065 Operations Manual (OM610-00)26
Figure 16. Sensor Temperature vs. Lamp Heater Duty Cycle
SENSOR TEMPERATURE VS LAMP HEATER DUTY CYCLE
110 100
90 80 70 60 50
(%)
40 30 20
LAMP HEATER DUTY CYCLE
10
0
-10
-50 -40 -30 -20 -10 0 10 20 30 40 50
SENSOR TEMPERATURE (C)
Figure 17. Display Warmup Performance.
Cold Start Up: Luminance VS Time
100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
Luminance (nits)
30.00%
20.00%
(12 VDC, w/o cell heater, full luminance, display enclosed)
-40C ambient
-20C ambient 0 C ambient
10.00%
0.00%
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00
Time (min)
LC640.480.21-065 Operations Manual (OM610-00) 27
Cell Heater (Optional version 996-0406-01)
The cell heater consists of a glass panel with an ITO coating on one side. There are bus bars along each side of the panel. The heater decreases the response time of the AMLCD cell at low temperatures by heating the liquid crystal material in the cell. Figure 18 shows the response time performance at different heater voltages.
If the temperature is below +10° C, the ITO heater is turned on at 100% duty cycle for the time shown in Figure 19 on page 29. The heater duty cycle is then set as shown in Figure 20 on page 29.
Table 21. Cell Heater Parameters.
Parameter Value Units
Type Resistive: ITO on glass (~ 7.5 ohms/square)
Total resistance ~ 12 ohms Active temperature sensor Monitor temperature sensor with the highest reading None Control Duty cycle is stepped as shown in Figure 21 % Trip point Not applicable C Hysteresis 3.0 C Heater voltage 8-18 Vdc Power 5.3 (@ 8 V), 27 (@18V) Watts
None
Figure 18. Cell Heater Response Time Performance.
(with cell heater, ambient temperature = -40C, Vdim=2.5)
1800 1700 1600 1500 1400 1300 1200 1100 1000
900 800 700 600
RESPONSE TIME (milliseconds)
500 400 300 200 100
0
0 2 4 6 8 10 12 14 16 18
DISPLAY RESPONSE TIME VS TIME
cell heater voltage = 0.0 cell heater voltage = 8.0 cell heater voltage = 12.0 cell heater voltage = 18.0
TIME (minutes)
LC640.480.21-065 Operations Manual (OM610-00)28
Figure 19. Cell Heater Maximum Power Time.
S
SENSOR TEMPERATURE VS MAXIMUM POWER TIME
(ITO CELL HEATER)
6
5
4
3
2
1
0
MAXIMUM POWER TIME (MIN)
-1
-50 -40 -30 -20 -10 0 10 20 30 40 50
SENSOR TEMPERATURE (C)
Figure 20. Cell Heater Duty Cycle.
ENSOR TEMPERATURE VS DUTY CYCLE
(ITO CELL HEATER)
110 100
90 80 70 60 50 40 30
DUTY CYCLE (%)
20 10
0
-10
-50 -40 -30 -20 -10 0 10 20 30 40 50
SENSOR TEMPERATURE (C)
LC640.480.21-065 Operations Manual (OM610-00) 29
High Temperature Control
At high temperatures, thermal control is performed by decreasing the maximum duty cycle of the backlight inverter. See Table 22 and Figure 21 below.
Table 22. High Temperature Control Parameters.
Parameter Value Units
Active temperature sensor Monitor temperature sensor with the highest reading None Control Maximum duty cycle is stepped as shown in Figure 21 % Hysteresis 3.0 C
Figure 21. Temperature Control: Maximum Pulse Width Modulation Duty Cycle.
SENSOR TEMPERATURE VS MAXIMUM PWM DUTY CYCLE
110 100
90 80 70 60 50 40 30 20 10
0
MAXIMUM PWM DUTY CYCLE (%)
-10 80 85 90 95 100 105 110 115 120
SENSOR TEMPERATURE (C)
LC640.480.21-065 Operations Manual (OM610-00)30
Defects
Emissive Defects
Table 23. Emissive Defects.
Item Specification Line Defect Luminous Dots
Color Red, Green, Blue
Brightness: F + H Brightness: F
Dark Dots
Color Red, Green, Blue
1
“F” means full-luminous dot(s), bright point independent from viewing angle.
“H” means half-luminous dot(s), bright point dependent on viewing angle.
2
Dark dots are counted while the screen is illuminated with Red, Green, or Blue dots only.
3
Adjacency is considered separately for each color; adjacency among Red, Green, and Blue is
not considered as adjacent.
4
When the distance b etween two pairs is 10 mm, this situation is not allowed. If distance is
10 mm, the quantity is 0 pair.
5
Adjacent two dark dots is counted as one point.
1
23
Not allowed
Distance between same color dot defects Quantity
1
R+G+B
6.5 mm 6 pairs, each color
Adjacent two dots Adjacent three or more dots
Distance between same color dot defects Quantity
– Adjacent three or more dots
6 pairs, each color0 pair, each color
8, each color0 pair, each color
15
4
5
LC640.480.21-065 Operations Manual (OM610-00) 31
Cosmetic Defects
Table 24. Cosmetic Defects.
Item Measurement Criteria Quantity
Polarizer scratch Remarkable scratches 0 points Polarizer bubbles, wrinkles,
or dent Other objects or dust
between polarizer and glass
* The distance between each defect is larger than 6.5 mm.
Figure 22. Diameter Calculation.
Average diameter
Width 0.05 mm
0.05 mm Width 0.1 mm
0.1 mm < Width 0 point Average diameter
D
0.5 mm 3 points
All allowed L<0.7mm
0.7 mm
1.0 mm < L
D
0.2 mm < D < 0.3 mm*
0.3 mm
0.5 mm < D
L 1.0 mm
0.2 mm
D 0.5 mm*
All allowed
5 points
0 point
All allowed
11 points4 points
0 points
LC640.480.21-065 Operations Manual (OM610-00)32
Display Dimensions
The recommended clearance shown in Figure 23 indicates the distance behind the display module that should be left to provide free-flow of air for convection cooling. In Figure 23, dimensions are in millimeters.
Figure 23. Display Dimensions.
Unless specified, tolerances are:
±0.50
.x = .xx =
±0.25
Note: The dimensions in this drawing are approximate. Please contact Planar
Applications Engineering to request the actual drawing prior to beginning your design.
LC640.480.21-065 Operations Manual (OM610-00) 33
Description of Warranty
This description is not the full warranty, and should not be construed as a substitute for the full warranty. A copy of the full warranty is available upon request.
Planar warrants that the goods it sells will be free of defects in materials and workmanship, and that these goods will substantially conform to the specifications furnished by Planar, and to any drawings or specifications furnished to t he Seller by the Buyer if approved by the Seller. This warranty is effective only if Planar receives notice of such defect or non-conformance during the period of warranty, which begins the day of delivery.
The goods Planar sells are warranted for a period of one year unless otherwise agreed to by Planar and the Buyer. The Buyer must return the defective or non-conforming goods, upon request, to Planar not later than 30 days after Planar’s receipt of notice of the alleged defect or non-compliance. Buyer shall prepay transportation charges, and Planar shall pay for return of the goods to the Buyer. No goods are to be returned to Planar without prior permission.
The warranty does not apply in cases of improper or inadequate maintenance by the Buyer, unauthorized modification of the goods, operation of the goods outside their environmental specifications, neglect or abuse of the goods, or modification or integration with other goods not covered by a Planar warranty when such modification or integration increases the likelihood of damage of the goods.
Ordering Information
Product Part Number Description
LC640.480.21-065 996-0406-00 Standard LC640.480.21-065 HTR 996-0406-01 Cell heater, conformal coating LC640.480.21-065 CC 996-0406-02 Conformal coating
Design and specifications are subject to change without notice. Planar Systems continues to provide optional, and in many cases custom, features to address the
specific customer requirements. Consult Planar Sales for pricing, lead time and minimum quantity requirements.
Support and Service
Planar is a U.S. company based in Beaverton, Oregon and Espoo, Finland, with a world-wide sales distribution network. Full application engineering support and service are available to make the integration of Planar displays as simple and quick as possible for our customers.
RMA Procedure: For a Returned Material Authorization number, please contact Planar Systems, Inc. with the model number(s) and serial number(s). When returning goods for repair, please include a brief description of the problem, and mark the outside of the shipping container with the RMA number.
North & South America OEM Sales Europe & Asia-Pacific OEM Sales
Planar Systems, Inc. 1400 NW Compton Drive Beaverton, OR 97006-1992
Tel. +1 (503) 690 1100 Fax +1 (503) 690 1493
sales@planar.com app_eng@planar.com
Planar Systems, Inc.
Olarinluoma 9, P.O. Box 46 FIN-02201 Espoo, Finland
Tel. +358 9 42 0010
Fax +358 9 420 0200
intlsales@planar.com
tech_support@planar.com
Visit the Planar web site: http://www.planar.com
OM610-00
Loading...