Pico Communications E-15 User Manual

Pico
Pico Computing
PicoPico
Computing
Computing Computing
Pico E-15
Hardware Technical
Reference
Release: 1.01
For Hardware Revision: D
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Contents:
Product Overview 3 Quick Reference Datasheet 4 Standard Part Numbers 5 System Architecture 6
Electrical Specification 7
Features
Field Programmable Gate Array 8 PowerPC™ Processor 9 CPLD TurboLoader 10 Flash Memory 11
DDR2 SDRAM Memory 12 Temperature Sensor 14
I/O Interfaces
Sleep Controller 15 Tri-Mode Ethernet Interface 16 Digital Peripheral Interface 17
High Speed Analog to Digital Converters 18 High Speed Digital to Analog Converters 21
Video Digitizer 23
CardBus / Digital Bus Interface 24 JTAG Debug Interface 25 PSoC Debug Interface 26
Appendices
A – Peripheral I/O Connector Information 27 B – CardBus Connector Information 28 C – FPGA Pinout 29 D – CPLD Pinout 33 E – PSoC Pinout 40 F – Standard Part Number Listing 41 G – Errata 43 H – FPGA Performance Enhancements 44
Revision History Legal Notices
45 46
2
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Product Overview:
The Pico family of products are revolutionary FPGA based embedded acceleration platforms. With performance that often exceeds modern microcomputers, a shockingly small form factor, and nominal power consumption that is less than one watt, the Pico family of products take computing to a whole new level.
The Pico E-15 is based on the high-performance Virtex-4 FPGA chip. This device has the performance and power consumption of a custom chip (ASIC), but is completely reconfigurable! The E-15 features four high speed converters and direct video capture.
Advanced users will enjoy the open source development kits which allow absolute control over the hardware. For those who desire a more high level approach to firmware, Viva provides a graphical development model. Impulse C™ support is also included for rapid firmware development in the C programming language. Board support packages are available for
operating systems such as Linux,
µC/OS, Green Hills Integrity OS™ and VX Works.
3
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Pico E-15 Quick Reference Datasheet
FEATURES
High-performance Virtex-4 FX-20, 40 or 60 256MB RAM 64MB Flash ROM Dual 12-Bit 125 MSPS A/D converters Dual 14-Bit 210 MSPS D/A converters Integrated composite video capture CardBus (PCI) Interface Open source Standalone operation Reconfigurable, high-speed digital bus
FPGA FEATURES
Embedded PowerPC™ P405 processor Integrated DSP logic Integrated RAM
APPLICATIONS
Software defined radio Video processing / compression Accelerated scientific computing Digital signal processing Impulse C™ development platform Viva development platform Embedded systems Encryption / decryption Supercomputing / cluster computing
IO Connectivity
10/100/1000 Ethernet RS-232 Asynchronous Serial JTAG SVIDEO/Composite In Dual High Speed Analog to Digital Dual High Speed Digital to Analog GPIO
4
MECHANICAL
Temperature Range: 0°C to +70°C
PC Card Type II Form-Factor
Stainless steel case
POWER
Sleep: 0.001W Nominal: 1.2W
Absolute Maximum: 7.0W
Supply Voltage: 3.3V
*Operation below -0°C requires throttled RAM timing
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Standard Part Numbers
Standard Part Number
FX-20 FX-40 FX-60
A Military version is available which includes:
BGA underfill Conformal coating Extended temperature range
The Military version is available by special order only, and is subject to minimum quantity requirements.
E15FX20-256/64/JEGSAADDV10C E15FX40-256/64/JEGSAADDV10C E15FX60-256/64/JEGSAADDV10C
5
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
System Architecture
At the core of the Pico E-15 is a Virtex-4 FPGA. The FPGA can be dynamically configured to perform any number of specialized tasks such as: protocol processing, encryption, or complex mathematical functions. Embedded systems benefit from the integrated PowerPC™ processor.
6
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Pico E-15 Electrical Specification
Minimum Nominal Maximum
DC Input Voltage 3.25V 3.3V 3.35V Power Consumption 0.001W 1.2W 7.0W DC Input Current 0.0003A 0.36A 2.1A
Recommended Temperature Range 0°C 10°C 70°C FPGA Over Temperature Shutdown 70-80°C Maximum Storage Temperature Range -50°C 27°C 90°C Relative Humidity (Non-Condensing) 0% 95%
Overpower Considerations:
The Pico E-15 FX60 is designed desktop computers, and is not recommended for use in laptops. Because of the large gate count of the FX60, it can easily exceed the PCCARD maximum current consumption specification of 1A. The FX-60 features built in over­temperature shutdown to protect both the card and the host system.
The Pico E-15 FX60 should be used with an external heat sink and an extender card.
7
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Field Programmable Gate Array
The core of the Pico E-15 is a high performance Virtex-4 FPGA. Included in the FPGA are the FPGA Fabric, an optional PowerPC ™ processor, ultra high-speed DSP slices and RAM.
FPGA Fabric:
The “Fabric” of an FPGA comprises an array of logic elements that can be connected in virtually unlimited patterns. These patterns of logic elements can be used to perform basic mathematical functions such as addition and subtraction, or can be grouped together to perform complex functions like Fast Fourier Transforms. Logic elements can even be connected to create a custom soft processor.
The advantage of the FPGA is that the internal logic can be optimized for a specific application. FPGAs are also able to execute operations in parallel, not being limited by sequential execution like a traditional processor. FPGA operations can be executed in a parallel, pipelined or even an asynchronous manner. The FPGA allows incredible application speed with very low power consumption. Your imagination is really the limit.
DSP Slice:
Embedded within the FPGA are special areas that are designed to facilitate high speed “digital signal processing.” These areas are called DSP slices. The DSP slice can be configured in a variety of different ways. For example, one DSP slice can be configured to be one tap of an FIR filter. DSP slices are fully pipelined and feature incredible speed. When configured for FIR filtering the DSP slice has a guaranteed performance of 500MHz with a latency of one cycle. An 18x18 multiply and accumulate also runs at 250MHz with a latency of two cycles. Smaller data widths allow higher clock speeds.
FPGA Resources:
Free FPGA Cores http://www.opencores.org
8
Encryption Cores http://www.openciphers.org Virtex-4 Website http://www.xilinx.com/virtex4
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
PowerPC™ Processor
PPC405x3 Processor Introduction:
FPGAs are renowned for their ability to process parallel logic, but they typically have a hard time emulating a high performance processor. To get the best of both worlds the Virtex-4™ features an embedded Power PC Processor. Since the processor shares the same die as the FPGA it seamlessly interfaces with the FPGA fabric.
A new feature of the Virtex-4 FPGA is the addition of an auxiliary processor interface. The APU is the highest speed interface between the PowerPC™ processor and the FPGA fabric. Up to four custom instructions may be implemented in the FPGA, which are accessible from the PowerPC™.
Board support packages are currently available for µC/OS and Linux. Board support source code is available open source under the GPL.
9
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
CPLD TurboLoader
A CPLD (Complex Programmable Logic Device) is a smaller version of an FPGA (described above) with permanent Flash storage built in. The Pico E-15 contains one CPLD that loads and reconfigures the FPGA. The Pico firmware guide describes how to access the CPLD TurboLoader.
The Flash ROM’s address bus can be controlled by either the TurboLoader or the FPGA (but not both). During power-up or reboot, the TurboLoader is in control of the Flash ROM Address bus. At all other times the FPGA is in control of the address bus.
10
CPLD Resources:
Xilinx CPLD Website http://www.xilinx.com/cpld
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
11
Flash Memory
The Pico E-15 comes equipped with at least 64MB of Flash ROM. The Flash ROM is divided into 512 sectors that can be erased independently. Most of the space on the ROM is reserved for the user.
The Flash ROM’s address bus can be controlled by either the TurboLoader or the FPGA (but not both). During power-up or reboot, the TurboLoader is in control of the Flash ROM Address bus. At all other times the FPGA is in control of the address bus.
The Flash ROM has a simple, open file system which allows the user to store FPGA images, ELF binary files, or other data. The primary image is used to boot the FPGA initially, and the backup image is only invoked if the primary image fails to load correctly. Executable files are in ELF format and are loaded by a loader within the secondary image. The primary image will either load the secondary image or pause for the PC to access and manage the file system.
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
12
DDR2 SDRAM Memory
The Pico E-15 comes equipped with 256MB of DDR2 SDRAM memory. There are two 1024Mb chips, each with a separate 16 bit data path to the host to form one 32 bit bank. From 0°C to +85°C, the ram can run at up to 333 MHz. For operation at temperatures below 0°C, special firmware with throttled ram timings is required. Please note that the RAM will not function below 125 MHz.
RAM
MSBs
Virtex-4 FPGA
RAM
LSBs
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
RAM Timing and Parameter Information
Parameter Value EDK Value
133 MHz
Registered No 0 0 Clock Pairs 1 1 1 Memory Banks 1 1 1 IDELAY Controllers 2 2 2 Differential DQs Yes 1 1 Open Row Management No 0 0 On Die Termination Disabled 0 0 ECC Support No 0 0 TMRD 2 Clocks 15000 6000 TWR 15 nS 15000 1500 TWTR 7.5 nS 1 3 TRAS 45 nS 45000 45000 TRC 60 nS 60000 60000 TRFC 127.5 nS 12750 12750 TRCD 15 nS 15000 15000 TRRD 10 nS 10000 10000 TRP 15 nS 15000 15000 TREFI 7.8 uS 7800000 7800000 TFAW 37.5 37500 37500 CAS Latency 5 Clocks 5 5 Data Width 32 Bits 32 32 Address Width 13 Bits 13 13 Column Width 10 Bits 10 10 Bank Address Width 3 3 3 Clock Period* 5 nS 7500 3000
*Minimum RAM Speed is 125MHz
EDK Value 333 MHz
13
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
14
Temperature Sensor
The Pico E-15 contains one temperature sensor that directly senses the die temperature of the Virex-4 FPGA. The digital interface of the remote temperature sensing chip is connected to the Cypress PSoC. If an overtemperature condition occurs, the PSoC will shutdown the FPGA until the temperature has dropped sufficiently below the shutdown threshold.
The setpoints of the temperature shutdown circuit can be reprogrammed via the PSoC debug cable.
Electrical Specifications Minimum Nominal Maximum
Temperature Sensing Range -55°C 125°C Resolution 0.0625°C Accuracy +/- 2.4°C +/- 1.0°C +/- 0.0°C
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Sleep Controller
The Pico E-15 contains one Cypress PSoC which is used to generate a clock for the bootloader and control the power state.
The E-15 can be placed in a state where it draws almost no power, then wakes up automatically after a set amount of time.
The sleep controller can be activated by the FPGA, or the external peripheral interface connector.
The protocol for entering sleep state is simple. Simply pulse FPGA_POWERCTL_C for as many seconds as your wish to sleep, then lower the FPGA_POWERCTL_D signal.
The Pico E-15 will awake from sleep if any of the following conditions are true:
-Power is first applied
-The sleep timer has run out
-POWERCTL_D is low and POWERCTL_C is high
The Pico E-15 will enter sleep mode if any of the following conditions are true:
-An overtemperature condition is detected
-The FPGA_POWERCTL_D pin is low
-The POWERCTL_C pin is low
15
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
16
Tri-Mode Ethernet Interface
The Pico E-15 features the Marvell Alaska series 88E1111 tri-mode Ethernet transceiver. Combined with the on-FPGA MAC (Middle access controller) a complete Ethernet solution is offered. Communication between the MAC and PHY takes place over an industry standard MII/GMII interface.
The Ethernet transceiver features 10/100/1000 full/half duplex operation. It will automatically configure the physical interface on the fly for crossover or straight through operation. The PHY can even automatically correct for common wiring mistakes. The PHY has a built in Time Domain Reflectometer which can diagnose cable problems and pinpoint their distance away from the transceiver.
The Ethernet interface on the Pico is magnetic-less allowing high speed, low power digital interconnect directly to Ethernet backplanes. DO NOT directly connect the Ethernet interface to a hub or switch without a magnetic isolation module.
The Marvell 88E1111 is the only user-accessible chip on the Pico E-15 that requires an NDA for access to the datasheets. If you are interested in some of the advanced features not supported by the native driver, contact Pico Computing for assistance in obtaining an NDA from Marvell. Users are advised not to contact Marvell directly.
Ethernet Resources:
Marvell 88E1111 Webpage http://www.marvell.com/products/transceivers/singleport/88e1111.jsp
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
17
Digital Peripheral Interface
The Pico E-15 features 2 GPIO lines which are used for external peripheral support. The GPIO lines are always enabled.
All GPIO signals have user selectable pull-up, pull-down, keeper or HI-Z termination. Drive strength is also user selectable between 2 and 24mA. All GPIOs can be configured for input, output and bi-directional mode.
GPIO 1 has a 50 ohm resistor in series with the output to allow connectivity with low voltage devices which may clamp a 3.3V signal.
Electrical Specifications Minimum Nominal Maximum
High Voltage 2.0V 3.3V 3.45V Low Voltage -0.2V 0V 0.8 Input Impedance (Pulldowns Disabled) HI-Z Drive Strength (Selectable) 2 mA 24 mA
ESD Withstand Voltage (Human Body Model) 2 KV
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
18
High Speed Analog to Digital Converters
The Pico E-15 features 2 high speed analog to digital converters. The converters are optimized for high-frequency, high-performance, low-power, low-noise operation. The converters have integrated DC blocking capacitors, and thus, cannot be used on very low frequency signals. The ADC should be driven by a source with an impedance of 50 ohms.
To ensure accuracy at high speeds, the low-jitter 125 MHz reference clock must be used. The converters may be tuned to different applications. For example: a lower termination impedance may be traded for more sensitivity. A wider high frequency input range may be traded for less high frequency noise rejection. Contact Pico Computing with your application requirements.
The data returning from the ADCs must be sampled on the rising edge of the appropriate clock return pin. Even when the ADCs are clocked from the same source, they will be running out of sync because of the duty cycle stabilizer (which provides greater resolution). The Pico E-15 can be special ordered with the duty cycle stabilizer perminately disabled.
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Electrical Specifications Minimum Nominal Maximum
Differential AC Input Voltage 0 Vpp 1 Vpp 1.8 Vpp Termination Resistance 45 (VHF) 50 (AC) 115(DC) Input Frequency Range 1 KHz* 1-50 MHz 125 MHz Bandwidth 125 MHz 225 MHz
Dielectric Surge Withstand Voltage -14 VDC 0 VDC 14 VDC Withstand Voltage -4 VDC 0 VDC 4 VDC
Clock Frequency 125 MHz 125 MHz Resolution 12 Bits Sensativity 0.087V 0.013V 0.007V
*Lower frequencies are possible with degraded performance.
ADC Front-End Equivalent Circuit
19
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
ADC Low Frequency Input Impedance
20
ADC High Frequency Input Impedance*
*Low pass filter range is customizable via special order
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
21
High Speed Digital to Analog Converters
The Pico E-15 features 2 high speed analog to digital converters. The converters are optimized for high-frequency, high-performance, low-power, low-noise operation. The converters have integrated DC blocking capacitors, and can not be used on low frequency signals. The DAC should be terminated into a 50 ohm load.
To ensure accuracy at high speeds, the low-jitter 125 MHz reference clock must be used. The DAC supports a clock frequency of up to 210 MHz.
Electrical Specifications Minimum Nominal Maximum
Differential AC Output Voltage (50 Ohm Load) 0 Vpp 0.225 Vpp 0.45 Vpp Differential AC Output Voltage (Hi-Z) 0 Vpp 1.8 Vpp 1.8 Vpp Internal Termination Impedance 50 Output Frequency Range (50 Ohm Load) 5 KHz 105 MHz Bandwidth Noise Floor
Dielectric Withstand Voltage (Output to GND) -15V 0V 15V Clock Frequency 125 MHz 210 MHz Resolution 14 Bits
DAC Front-End Equivalent Circuit
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
DAC Low Frequency Maximum Amplitude (50 Ohm Load)
22
DAC High Frequency Maximum Amplitude (50 Ohm Load)
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Video Digitizer
The Pico E-15 contains one ultra low-power video digitizer. The video digitizer accepts both SVIDEO and Composite video inputs and can decode NTSC, PAL and SECAM video standards. When using composite video, the video digitzer can switch from between two channels. The TVP5150 has an integrated I2C control interface.
Video Digitizer External Connections (SVIDEO Mode):
VIDEO_IN_Y Video Luminence VIDEO_IN_C Video Chrominence VIDEO_IN_GND Analog Video Ground
Video Digitizer External Connections (COMPOSITE Mode):
VIDEO_IN_Y Composite Video Channel #1* VIDEO_IN_C Composite Video Channel #2* VIDEO_IN_GND Analog Video Ground *Unused channels must be connected to Analog Video Ground
Electrical Specifications Minimum Nominal Maximum
Resolution 9 Bits Impedance 75 Ohms Maximum AC Amplitude 1.5 Vp Maximum DC Offset -75V 0 75V
Video Digitizer Resources:
TVP5150AM1 Homepage
http://focus.ti.com/docs/prod/folders/print/tvp5150am1.html
23
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
24
CardBus / Digital Bus Interface
The Pico E-15 can run as a standalone product or be connected to a host using the CardBus connector. By default, the Pico E-15 ships with firmware that is ready for use as a CardBus device.
The CardBus interface is a subset of PCI. The data path is 32 bits wide and is synchronous. The wiring of the CardBus interface supports both completion and mastering of the bus.
When the Pico E-15 is not connected to a CardBus host, the digital bus can be reconfigured to connect with a wide variety of high speed digital busses and peripherals. With proper external termination, speeds of over 100 MHz are possible. The external digital bus can only interface with 3.3V logic.
Those who are interested in alternate interfaces should contact Pico Computing. The CardBus interface source code and support is available.
Electrical Specifications (DC) Minimum Nominal Maximum
Positive Supply Input Voltage (Vcc) 3.25V 3.3V 3.35V Low Level Input Voltage -0.2V 0V 0.7V High Level Input Voltage 2.0V 3.3V 3.35V
Recommended Drive Strength 8mA Input Impedance HI-Z Internal Bus Voltage 3.3V
PCMCIA Interface Resources:
PCMCIA Website www.pcmcia.org PCI SIG Website www.pci.org
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
JTAG Debug Interface
The Pico E-15 is equipped with a JTAG diagnostic port which allows real-time debugging of hardware, firmware and software.
Some JTAG programs require the length of the instruction register (IR). The IR length is listed below for all devices in the JTAG chain. The FPGA IR length changes depending on how many PowerPCs are internally connected to the JTAG chain in the FPGA.
Device Instruction register bit length
FPGA 6,10 or 14 (Depends on PPC Configuration) TurboLoader 8 Ethernet PHY 8
25
FPGA
TDI TDO
EthernetTurbo Loader
PowerPC
IR= 10
The Primary Image in the Flash ROM contains an embedded JTAG diagnostic port. This allows a user in Windows or Linux to debug software without an external JTAG cable. The internal JTAG diagnostic loopback looks just like a Parallel Port JTAG diagnostic cable when used with the Pico E-15 driver.
The external JTAG interface uses 1.8V logic.
IR= 8
IR= 8
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
26
PSoC Debug Interface
The Pico E-15 has a low power PSoC microcontroller (also known as the sleep controller) which controls the power to the rest of the board. The PSoC also generates a 24 MHz clock for the TurboLoader. The PSoC features an in-circuit programming interface, although it is unlinkey that a user will ever need to debug or modify the PSoC firmware.
To program the PSoC the following parts are required:
Description Manufacturer Part Number Distributor
ISSP Programming Cable Pico Computing E15-PSoC Pico Computing PSoC ICE CUBE Cypress CY3215-DK Digikey
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Appendix A – Peripheral I/O Connector Information
Connector Information
Description Brand Part Number
Mating Connector Hirose NX-32TA-CV1(50)
*Connectors are always in stock at Pico Computing
Peripheral I/O Connector Pinout
1 VIDEO_GND Analog Video Ground 0V DC – Ground [VIDEO] 2 VIDEO_IN_C Analog Video Input (Chrominance) NTSC / CAM / PAL Video 3 VIDEO_IN_Y Analog Video Input (Luminance) NTSC / CAM / PAL Video 4 TMS JTAG Mode Select LVCMOS-1.8 5 TCK JTAG Clock LVCMOS-1.8 6 TDI JTAG Data In LVCMOS-1.8 7 TDO JTAG Data Out LVCMOS-1.8 8 ANALOG_IN_1+ Differential Analog In #1 + 1.8V Pk-Pk 50 Ohm Analog 9 ANALOG_IN_1- Differential Analog In #1 - 1.8V Pk-Pk 50 Ohm Analog 10 ETHER_OUT_DA- Ethernet DA- IEEE 802.3 11 ETHER_OUT_DA+ Ethernet DA+ IEEE 802.3 12 ETHER_OUT_DD- Ethernet DD- IEEE 802.3 13 ETHER_OUT_DD+ Ethernet DD+ IEEE 802.3 14 ETHER_OUT_DC- Ethernet DC- IEEE 802.3 15 ETHER_OUT_DC+ Ethernet DC+ IEEE 802.3 16 ETHER_OUT_DB- Ethernet DB- IEEE 802.3 17 ETHER_OUT_DB+ Ethernet DB+ IEEE 802.3 18 POWERCTL_R PSoC Debug Interface Reset LVTTL-3.3 19 ANALOG_IN_2- Differential Analog In #2 - 1.8V Pk-Pk 50 Ohm Analog 20 ANALOG_IN_2+ Differential Analog In #2 + 1.8V Pk-Pk 50 Ohm Analog 21 2.5V 2.5V 250mA Max 2.5V DC 22 DIAG_EN_n Diagnostic Enable LVCMOS-1.8 23 1.8V 1.8V 250mA Max 1.8V DC 24 POWERCTL_C PSoC Debug Clock LVTTL-3.3 25 POWERCTL_D PSoC Debug Data / WAKEUP LVTTL-3.3 26 GPIO_1 General Purpose IO #1 LVTTL-3.3 27 GPIO_2 General Putpose IO #2 LVTTL-3.3 28 GND Digital Ground 0V DC – Ground [DIGITAL] 29 ANALOG_OUT_2+ Differential Analog Out #2 + 1.8V Pk-Pk 50 Ohm Analog 30 ANALOG_OUT_2- Differential Analog Out #2 - 1.8V Pk-Pk 50 Ohm Analog 31 ANALOG_OUT_1+ Differential Analog Out #1 + 1.8V Pk-Pk 50 Ohm Analog 32 ANALOG_OUT_1- Differential Analog Out #1 - 1.8V Pk-Pk 50 Ohm Analog
27
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
28
Peripheral Connector Drawing
Figure 5
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Appendix B – CardBus Connector Information
Connector Information
Description Brand Part Number
CardBus Socket FCI 71299-050CALF
The CardBus Socket is typically in stock at Mouser Electronics. (http://www.mouser.com)
The function and direction of the pins on the CardBus interface can be easily changed to suit the needs of a custom interface. Series termination on the E-15 is zero ohms, but a larger value can be used if it is required for your application.
29
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
CardBus Interface Schematic
30
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
CardBus Connector Pinout
1 GND Digital Ground
2 PCI_CAD0 Data / Address 0
3 PCI_CAD1 Data / Address 1
4 PCI_CAD3 Data / Address 3
5 PCI_CAD5 Data / Address 5
6 PCI_CAD7 Data / Address 7
7 P\C\I\_\C\C\B\E\0\ Byte Enable 0
8 PCI_CAD9 Data / Address 9
9 PCI_CAD11 Data / Address 11
10 PCI_CAD12 Data / Address 12
11 PCI_CAD14 Data / Address 14
12 P\C\I\_\C\C\B\E\1\ Byte Enable 1
13 PCI_CPAR Parity Even
14 P\C\I\_\C\P\E\R\R\ Parity Error
15 P\C\I\_\C\G\N\T\ Access Grant
16 P\C\I\_\C\I\N\T\ Interrupt Request
17 3.3V 3.3V Digital Supply
18 VPP No Connection
19 PCI_CCLK 33 MHz
20 P\C\I\_\C\I\R\D\Y\ Initiator Ready
21 P\C\I\_\C\C\B\E\2\ Byte Enable 2
22 PCI_CAD18 Data / Address 18
23 PCI_CAD20 Data / Address 20
24 PCI_CAD21 Data / Address 21
25 PCI_CAD22 Data / Address 22
26 PCI_CAD23 Data / Address 23
27 PCI_CAD24 Data / Address 24
28 PCI_CAD25 Data / Address 25
29 PCI_CAD26 Data / Address 26
30 PCI_CAD27 Data / Address 27
31 PCI_CAD29 Data / Address 29
32 PCI_RFU2 Reserved
33 PCI_CLKRUN Clock Request
34 GND Digital Ground
35 GND Digital Ground
36 PCI_DETECT CardBus Detect Shorted to 46
37 PCI_CAD2 Data / Address 2
38 PCI_CAD4 Data / Address 4
39 PCI_CAD6 Data / Address 6
40 PCI_RFU0 Reserved
41 PCI_CAD8 Data / Address 8
42 PCI_CAD10 Data / Address 10
43 PCI_DETECT CardBus Detect Shorted to 36
44 PCI_CAD13 Data / Address 13
45 PCI_CAD15 Data / Address 15
46 PCI_CAD16 Data / Address 16
47 PCI_RFU1 Reserved
48 P\C\I\_\C\B\L\O\C\K\ Bus Lock
31
Pico E-15 Hardware Reference
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Seattle, WA 98109
49 P\C\I\_\C\S\T\O\P\ Transfer Halt
50 P\C\I\_C\D\E\V\S\E\L\ Device Select
51 3.3V 3.3V Digital Supply
52 VPP No Connection
53 P\C\I\_\C\T\R\D\Y\ Target Ready
54 P\C\I\_\C\F\R\A\M\E\ Frame
55 PCI_CAD17 Data / Address 17
56 PCI_CAD19 Data / Address 19
58 P\C\I\_\C\R\S\T\ Reset
59 P\C\I\_\C\S\E\R\R\ System Error
60 P\C\I\_\C\R\E\Q\ Access Request
61 P\C\I\_\C\C\B\E\3\ Byte Enable 3
62 PCI_CAUDIO Audio
63 PCI_CSTSCHG Status Change Interrupt
64 PCI_CAD28 Data / Address 28
65 PCI_CAD30 Data / Address 30
66 PCI_CAD31 Data / Address 31
67 GND Digital Ground
68 GND Digital Ground
32
Pico E-15 Hardware Reference
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Seattle, WA 98109
Appendix C – FPGA Pinout
FPGA Pinout
Net Pin Description Dir I/O Standard Term Drive
ADC_1_CLK_IN+ K8 Differential Clock In+ O DIFF HSTL II Float
ADC_1_CLK_IN- K7 Differential Clock In- O DIFF HSTL II Float
ADC_1_CLK_RTURN D6 Clock Return I LVTTL Float
ADC_1_D0 G7 Data In #0 I LVTTL Float
ADC_1_D1 E5 Data In #1 I LVTTL Float
ADC_1_D2 E7 Data In #2 I LVTTL Float
ADC_1_D3 F7 Data In #3 I LVTTL Float
ADC_1_D4 F8 Data In #4 I LVTTL Float
ADC_1_D5 C9 Data In #5 I LVTTL Float
ADC_1_D6 D9 Data In #6 I LVTTL Float
ADC_1_D7 C12 Data In #7 I LVTTL Float
ADC_1_D8 G9 Data In #8 I LVTTL Float
ADC_1_D9 A14 Data In #9 I LVTTL Float
ADC_1_D10 G10 Data In #10 I LVTTL Float
ADC_1_D11 H7 Data In #11 I LVTTL Float
ADC_1_OVERLOAD H8 Over-Voltage Detect I LVTTL Float
ADC_1_POWER L9 Power Control I LVTTL Float
ADC_2_CLK_IN+ J9 Differential Clock In+ O DIFF HSTL II Float
ADC_2_CLK_IN- K10 Differential Clock In- O DIFF HSTL II Float
ADC_2_CLK_RTURN H4 Clock Return I LVTTL Float
ADC_2_D0 B14 Data In #0 I LVTTL Float
ADC_2_D1 F10 Data In #1 I LVTTL Float
ADC_2_D2 K6 Data In #2 I LVTTL Float
ADC_2_D3 L7 Data In #3 I LVTTL Float
ADC_2_D4 D15 Data In #4 I LVTTL Float
ADC_2_D5 E15 Data In #5 I LVTTL Float
ADC_2_D6 F15 Data In #6 I LVTTL Float
ADC_2_D7 F14 Data In #7 I LVTTL Float
ADC_2_D8 H9 Data In #8 I LVTTL Float
ADC_2_D9 L10 Data In #9 I LVTTL Float
ADC_2_D10 C6 Data In #10 I LVTTL Float
ADC_2_D11 G11 Data In #11 I LVTTL Float
ADC_2_OVERLOAD D14 Over-Voltage Detect I LVTTL Float
ADC_2_POWER L5 Power Control I LVTTL Float
C\B\L\O\C\K\ H6 Bus Lock I/O PCI33_3 Float 2mA
C\C\B\E\0\ AF13 Byte Enable 0 I/O PCI33_3 Float 2mA
C\C\B\E\1\ J5 Byte Enable 1 I/O PCI33_3 Float 2mA
C\C\B\E\2\ D5 Byte Enable 2 I/O PCI33_3 Float 2mA
C\C\B\E\3\ C11 Byte Enable 3 I/O PCI33_3 Float 2mA
C\D\E\V\S\E\L\ E3 Device Select I PCI33_3 Float
C\F\R\A\M\E\ C3 Frame I/O PCI33_3 Float 2mA
C\G\N\T\ G5 Access Grant I PCI33_3 Float
33
Pico E-15 Hardware Reference
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Seattle, WA 98109
C\I\N\T\ F4 Interrupt Request O PCI33_3 Float 2mA
C\I\R\D\Y\ D4 Initiator Ready I/O PCI33_3 Float 2mA
C\P\E\R\R\ H3 Parity Error I/O PCI33_3 Float 2mA
C\R\E\Q\ A10 Access Request O PCI33_3 Float 2mA
C\R\S\T\ A8 Reset I PCI33_3 Float
C\S\E\R\R\ A9 System Error I/O PCI33_3 Float 2mA
C\S\T\O\P\ F3 Stop Request I/O PCI33_3 Float 2mA
C\T\R\D\Y\ D3 Target Ready I/O PCI33_3 Float 2mA
CAD0 AD15 Data / Address #0 I/O PCI33_3 Float 2mA
CAD1 AE15 Data / Address #1 I/O PCI33_3 Float 2mA
CAD2 AF15 Data / Address #2 I/O PCI33_3 Float 2mA
CAD3 AF14 Data / Address #3 I/O PCI33_3 Float 2mA
CAD4 AD14 Data / Address #4 I/O PCI33_3 Float 2mA
CAD5 AC14 Data / Address #5 I/O PCI33_3 Float 2mA
CAD6 AA13 Data / Address #6 I/O PCI33_3 Float 2mA
CAD7 AB12 Data / Address #7 I/O PCI33_3 Float 2mA
CAD8 AC13 Data / Address #8 I/O PCI33_3 Float 2mA
CAD9 AD13 Data / Address #9 I/O PCI33_3 Float 2mA
CAD10 AC12 Data / Address #10 I/O PCI33_3 Float 2mA
CAD11 AA12 Data / Address #11 I/O PCI33_3 Float 2mA
CAD12 AB14 Data / Address #12 I/O PCI33_3 Float 2mA
CAD13 AA14 Data / Address #13 I/O PCI33_3 Float 2mA
CAD14 M6 Data / Address #14 I/O PCI33_3 Float 2mA
CAD15 M5 Data / Address #15 I/O PCI33_3 Float 2mA
CAD16 K3 Data / Address #16 I/O PCI33_3 Float 2mA
CAD17 C4 Data / Address #17 I/O PCI33_3 Float 2mA
CAD18 C7 Data / Address #18 I/O PCI33_3 Float 2mA
CAD19 B6 Data / Address #19 I/O PCI33_3 Float 2mA
CAD20 A7 Data / Address #20 I/O PCI33_3 Float 2mA
CAD21 B7 Data / Address #21 I/O PCI33_3 Float 2mA
CAD22 B9 Data / Address #22 I/O PCI33_3 Float 2mA
CAD23 B10 Data / Address #23 I/O PCI33_3 Float 2mA
CAD24 B11 Data / Address #24 I/O PCI33_3 Float 2mA
CAD25 A12 Data / Address #25 I/O PCI33_3 Float 2mA
CAD26 B12 Data / Address #26 I/O PCI33_3 Float 2mA
CAD27 A13 Data / Address #27 I/O PCI33_3 Float 2mA
CAD28 C8 Data / Address #28 I/O PCI33_3 Float 2mA
CAD29 C13 Data / Address #29 I/O PCI33_3 Float 2mA
CAD30 E10 Data / Address #30 I/O PCI33_3 Float 2mA
CAD31 D10 Data / Address #31 I/O PCI33_3 Float 2mA
CAUDIO E8 Audio O PCI33_3 Float 2mA
CCLK E11 CardBus 33 MHz Clock I PCI33_3 Float
CCLKRUN E13 Clock Request O PCI33_3 Float 2mA
CPAR J4 Parity Even I/O PCI33_3 Float 2mA
CSTSCHG D8 Status Change Interrupt O PCI33_3 Float 2mA
DAC_1_CLK_IN+ AC4 Differential Clock In + O DIFF HSTL II Float
DAC_1_CLK_IN- AC3 Differential Clock In - O DIFF HSTL II Float
DAC_1_D0 W5 Data Out #0 O LVTTL Float 4mA
DAC_1_D1 W4 Data Out #1 O LVTTL Float 4mA
DAC_1_D2 Y3 Data Out #2 O LVTTL Float 4mA
Pico E-15 Hardware Reference
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Seattle, WA 98109
34
DAC_1_D3 AA4 Data Out #3 O LVTTL Float 4mA
DAC_1_D4 AA3 Data Out #4 O LVTTL Float 4mA
DAC_1_D5 AD4 Data Out #5 O LVTTL Float 4mA
DAC_1_D6 AB4 Data Out #6 O LVTTL Float 4mA
DAC_1_D7 AD3 Data Out #7 O LVTTL Float 4mA
DAC_1_D8 AB7 Data Out #8 O LVTTL Float 4mA
DAC_1_D9 AD8 Data Out #9 O LVTTL Float 4mA
DAC_1_D10 AB6 Data Out #10 O LVTTL Float 4mA
DAC_1_D11 AD6 Data Out #11 O LVTTL Float 4mA
DAC_1_D12 AB5 Data Out #12 O LVTTL Float 4mA
DAC_1_D13 AD5 Data Out #13 O LVTTL Float 4mA
DAC_1_POWER AC8 Power Control (Inverted) O LVTTL Float 4mA
DAC_2_CLK_IN+ AC7 Differential Clock In + O DIFF HSTL II Float
DAC_2_CLK_IN- AC6 Differential Clock In - O DIFF HSTL II Float
DAC_2_D0 AD9 Data Out #0 O LVTTL Float 4mA
DAC_2_D1 AD10 Data Out #1 O LVTTL Float 4mA
DAC_2_D2 AC9 Data Out #2 O LVTTL Float 4mA
DAC_2_D3 AD11 Data Out #3 O LVTTL Float 4mA
DAC_2_D4 AC11 Data Out #4 O LVTTL Float 4mA
DAC_2_D5 AB10 Data Out #5 O LVTTL Float 4mA
DAC_2_D6 AA10 Data Out #6 O LVTTL Float 4mA
DAC_2_D7 AA9 Data Out #7 O LVTTL Float 4mA
DAC_2_D8 Y8 Data Out #8 O LVTTL Float 4mA
DAC_2_D9 AA8 Data Out #9 O LVTTL Float 4mA
DAC_2_D10 AB11 Data Out #10 O LVTTL Float 4mA
DAC_2_D11 W9 Data Out #11 O LVTTL Float 4mA
DAC_2_D12 AB9 Data Out #12 O LVTTL Float 4mA
DAC_2_D13 AA7 Data Out #13 O LVTTL Float 4mA
DAC_2_POWER Y5 Power Control (Inverted) O LVTTL Float 4mA
ETHER_CLK_TERM H14 125 MHz Clock I LVCMOS18 Float
ETHER_CLK_TERM K13 125 MHz Clock I LVCMOS18 Float
ETHER_COL F19 Colision Detect I LVCMOS18 Float
ETHER_CRS G17 Carrier Sense I LVCMOS18 Float
ETHER_GTX_TERM A17 Gigabit TX Clock O LVCMOS18 Float 4mA
ETHER_IRQ E22 Interrupt Request OD LVCMOS18 Pullup 4mA
ETHER_MDC F22 Management Clock O LVCMOS18 Float 4mA
ETHER_MDIO G22 Management Data I/O LVCMOS18 Float 4mA
ETHER_RESET F23 Reset O LVCMOS18 Float
ETHER_RX0 D18 RX Data #0 I LVCMOS18 Float
ETHER_RX1 B16 RX Data #1 I LVCMOS18 Float
ETHER_RX2 A15 RX Data #2 I LVCMOS18 Float
ETHER_RX3 B15 RX Data #3 I LVCMOS18 Float
ETHER_RX4 F24 RX Data #4 I LVCMOS18 Float
ETHER_RX5 D16 RX Data #5 I LVCMOS18 Float
ETHER_RX6 C16 RX Data #6 I LVCMOS18 Float
ETHER_RX7 F18 RX Data #7 I LVCMOS18 Float
ETHER_RX_CLK K22 RX Clock I LVCMOS18 Float
ETHER_RX_DV C17 RX Data Valid I LVCMOS18 Float
ETHER_RX_ER C18 RX Error I LVCMOS18 Float
ETHER_TX0 B17 TX Data #0 O LVCMOS18 Float 4mA
Pico E-15 Hardware Reference
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Seattle, WA 98109
35
ETHER_TX1 F20 TX Data #1 O LVCMOS18 Float 4mA
ETHER_TX2 E21 TX Data #2 O LVCMOS18 Float 4mA
ETHER_TX3 C23 TX Data #3 O LVCMOS18 Float 4mA
ETHER_TX4 C21 TX Data #4 O LVCMOS18 Float 4mA
ETHER_TX5 D21 TX Data #5 O LVCMOS18 Float 4mA
ETHER_TX6 D23 TX Data #6 O LVCMOS18 Float 4mA
ETHER_TX7 E23 TX Data #7 O LVCMOS18 Float 4mA
ETHER_TX_CLK D19 TX Clock O LVCMOS18 Float 4mA
ETHER_TX_CTL C19 TX Control (Enable) O LVCMOS18 Float 4mA
ETHER_TX_ER E17 TX Error O LVCMOS18 Float 4mA
F\L\A\S\H\_\B\Y\T\E\ AC17 16 / 8 Bit Mode Select O LVCMOS18 Float 4mA
F\L\A\S\H\_\C\E\ J16 Chip Enable O LVCMOS18 Float 4mA
F\L\A\S\H\_\O\E\ H13 Output Enable O LVCMOS18 Float 4mA
F\L\A\S\H\_\W\E\ AD19 Write Enable O LVCMOS18 Float 4mA
FLASH_A0 U17 Address # 0 I/O LVCMOS18 Float 4mA
FLASH_A1 U15 Address # 1 I/O LVCMOS18 Float 4mA
FLASH_A2 V11 Address # 2 I/O LVCMOS18 Float 4mA
FLASH_A3 AC18 Address # 3 I/O LVCMOS18 Float
FLASH_A4 Y11 Address # 4 I/O LVCMOS18 Float
FLASH_A5 V16 Address # 5 I/O LVCMOS18 Float
FLASH_A6 W11 Address # 6 I/O LVCMOS18 Float
FLASH_A7 AD18 Address # 7 I/O LVCMOS18 Float
FLASH_A8 AB19 Address # 8 I/O LVCMOS18 Float
FLASH_A9 AD20 Address # 9 I/O LVCMOS18 Float
FLASH_A10 AB20 Address # 10 I/O LVCMOS18 Float
FLASH_A11 Y15 Address # 11 I/O LVCMOS18 Float 4mA
FLASH_A12 AC22 Address # 12 I/O LVCMOS18 Float 4mA
FLASH_A13 AB21 Address # 13 I/O LVCMOS18 Float 4mA
FLASH_A14 AA15 Address # 14 I/O LVCMOS18 Float 4mA
FLASH_A15 AA17 Address # 15 I/O LVCMOS18 Float 4mA
FLASH_A16 AD16 Address # 16 I/O LVCMOS18 Float 4mA
FLASH_A17 Y12 Address # 17 I/O LVCMOS18 Float 4mA
FLASH_A18 AA20 Address # 18 I/O LVCMOS18 Float 4mA
FLASH_A19 Y16 Address # 19 I/O LVCMOS18 Float 4mA
FLASH_A20 U16 Address # 20 I/O LVCMOS18 Float 4mA
FLASH_A21 W16 Address # 21 I/O LVCMOS18 Float 4mA
FLASH_A22 AD23 Address # 22 I/O LVCMOS18 Float 4mA
FLASH_A23 AB15 Address # 23 I/O LVCMOS18 Float 4mA
FLASH_A24 AB16 Address # 24 I/O LVCMOS18 Float 4mA
FLASH_D0 V12 Data #0 I/O LVCMOS18 Float 4mA
FLASH_D1 V13 Data #1 I/O LVCMOS18 Float 4mA
FLASH_D2 V14 Data #2 I/O LVCMOS18 Float 4mA
FLASH_D3 U14 Data #3 I/O LVCMOS18 Float 4mA
FLASH_D4 W13 Data #4 I/O LVCMOS18 Float 4mA
FLASH_D5 Y13 Data #5 I/O LVCMOS18 Float 4mA
FLASH_D6 W14 Data #6 I/O LVCMOS18 Float 4mA
FLASH_D7 W15 Data #7 I/O LVCMOS18 Float 4mA
FLASH_D8 T17 Data #8 I/O LVCMOS18 Float 4mA
FLASH_D9 J14 Data #9 I/O LVCMOS18 Float 4mA
FLASH_D10 K12 Data #10 I/O LVCMOS18 Float 4mA
4mA
4mA
4mA
4mA
4mA
4mA
4mA
4mA
Pico E-15 Hardware Reference
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Seattle, WA 98109
36
FLASH_D11 H12 Data #11 I/O LVCMOS18 Float 4mA
FLASH_D12 K11 Data #12 I/O LVCMOS18 Float 4mA
FLASH_D13 J11 Data #13 I/O LVCMOS18 Float 4mA
FLASH_D14 H11 Data #14 I/O LVCMOS18 Float 4mA
FLASH_D15 AA19 Data #15 / Address -1 I/O LVCMOS18 Float 4mA
FLASH_READY AC19 Ready I LVCMOS18 Float 4mA
GPIO_1 T4 General Purpose I/O #1 I/O LVTTL Float 12mA
GPIO_2 T3 General Purpose I/O #2 I/O LVTTL Float 12mA
JTAG_LOOP_TCK H16 Internal JTAG Loopback Clock O LVCMOS18 Float 4mA
JTAG_LOOP_TDI J15 Internal JTAG Loopback Data In O LVCMOS18 Float 4mA
JTAG_LOOP_TDO G16 Internal JTAG Loopback Data Out I LVCMOS18 Float
JTAG_LOOP_TMS G15 Internal JTAG Loopback Mode Select O LVCMOS18 Float 4mA
LOAD AB17 TurboLoader Reload Request O LVCMOS18 Pulldown 2mA
LOOP_1 U4 Timing Loopback #1 I LVTTL Float
LOOP_1 V4 Timing Loopback #1 O LVTTL Float 4mA
LOOP_2 V3 Timing Loopback #2 I LVTTL Float
LOOP_2 W3 Timing Loopback #2 O LVTTL Float 4mA
PEEKABOO AA18 TurboLoader Peekaboo Request O LVCMOS18 Pulldown 2mA
POWERCTL_FPGA_C G12 PSoC Serial Interface Clock O LVTTL Float 4mA
POWERCTL_FPGA_D F13 PSoC Serial Interface Data I/O LVTTL Float 4mA
RAM_A0 V23 Address #0 O SSTL18 II Float 12mA
RAM_A1 N22 Address #1 O SSTL18 II Float 12mA
RAM_A2 L18 Address #2 O SSTL18 II Float 12mA
RAM_A3 K23 Address #3 O SSTL18 II Float 12mA
RAM_A4 T24 Address #4 O SSTL18 II Float 12mA
RAM_A5 K21 Address #5 O SSTL18 II Float 12mA
RAM_A6 L19 Address #6 O SSTL18 II Float 12mA
RAM_A7 J19 Address #7 O SSTL18 II Float 12mA
RAM_A8 K18 Address #8 O SSTL18 II Float 12mA
RAM_A9 P24 Address #9 O SSTL18 II Float 12mA
RAM_A10 K20 Address #10 O SSTL18 II Float 12mA
RAM_A11 R23 Address #11 O SSTL18 II Float 12mA
RAM_A12 T23 Address #12 O SSTL18 II Float 12mA
RAM_BA0 T22 Bank Address #0 O SSTL18 II Float 12mA
RAM_BA1 T20 Bank Address #1 O SSTL18 II Float 12mA
RAM_BA2 J23 Bank Address #2 O SSTL18 II Float 12mA
RAM_C\A\S\ V24 Column Address Select O SSTL18 II Float 12mA
RAM_C\S\ U20 Chip Select O SSTL18 II Float 12mA
RAM_CK_N R20 Clock - O DIFF SSTL18 II Float
RAM_CK_P R21 Clock + O DIFF SSTL18 II Float
RAM_CKE U21 Clock Enable O SSTL18 II Float 12mA
RAM_DM0_7 AA23 Data Mask 0 O SSTL18 II Float 12mA
RAM_DM8_15 W18 Data Mask 1 O SSTL18 II Float 12mA
RAM_DM16-23 H22 Data Mask 2 O SSTL18 II Float 12mA
RAM_DM24-31 G24 Data Mask 3 O SSTL18 II Float 12mA
RAM_DQ0 Y23 Bidirectional Data #0 I/O SSTL18 II Float 12mA
RAM_DQ1 W21 Bidirectional Data #1 I/O SSTL18 II Float 12mA
RAM_DQ2 V21 Bidirectional Data #2 I/O SSTL18 II Float 12mA
RAM_DQ3 W23 Bidirectional Data #3 I/O SSTL18 II Float 12mA
RAM_DQ4 V22 Bidirectional Data #4 I/O SSTL18 II Float 12mA
Pico E-15 Hardware Reference
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Seattle, WA 98109
37
RAM_DQ5 W24 Bidirectional Data #5 I/O SSTL18 II Float 12mA
RAM_DQ6 Y22 Bidirectional Data #6 I/O SSTL18 II Float 12mA
RAM_DQ7 AA24 Bidirectional Data #7 I/O SSTL18 II Float 12mA
RAM_DQ8 AC23 Bidirectional Data #8 I/O SSTL18 II Float 12mA
RAM_DQ9 Y20 Bidirectional Data #9 I/O SSTL18 II Float 12mA
RAM_DQ10 W20 Bidirectional Data #10 I/O SSTL18 II Float 12mA
RAM_DQ11 W19 Bidirectional Data #11 I/O SSTL18 II Float 12mA
RAM_DQ12 AA22 Bidirectional Data #12 I/O SSTL18 II Float 12mA
RAM_DQ13 AB22 Bidirectional Data #13 I/O SSTL18 II Float 12mA
RAM_DQ14 Y17 Bidirectional Data #14 I/O SSTL18 II Float 12mA
RAM_DQ15 AD24 Bidirectional Data #15 I/O SSTL18 II Float 12mA
RAM_DQ16 L23 Bidirectional Data #16 I/O SSTL18 II Float 12mA
RAM_DQ17 H17 Bidirectional Data #17 I/O SSTL18 II Float 12mA
RAM_DQ18 M22 Bidirectional Data #18 I/O SSTL18 II Float 12mA
RAM_DQ19 M24 Bidirectional Data #19 I/O SSTL18 II Float 12mA
RAM_DQ20 G20 Bidirectional Data #20 I/O SSTL18 II Float 12mA
RAM_DQ21 N24 Bidirectional Data #21 I/O SSTL18 II Float 12mA
RAM_DQ22 G21 Bidirectional Data #22 I/O SSTL18 II Float 12mA
RAM_DQ23 N23 Bidirectional Data #23 I/O SSTL18 II Float 12mA
RAM_DQ24 J21 Bidirectional Data #24 I/O SSTL18 II Float 12mA
RAM_DQ25 G19 Bidirectional Data #25 I/O SSTL18 II Float 12mA
RAM_DQ26 H23 Bidirectional Data #26 I/O SSTL18 II Float 12mA
RAM_DQ27 F17 Bidirectional Data #27 I/O SSTL18 II Float 12mA
RAM_DQ28 H19 Bidirectional Data #28 I/O SSTL18 II Float 12mA
RAM_DQ29 L24 Bidirectional Data #29 I/O SSTL18 II Float 12mA
RAM_DQ30 H24 Bidirectional Data #30 I/O SSTL18 II Float 12mA
RAM_DQ31 J24 Bidirectional Data #31 I/O SSTL18 II Float 12mA
RAM_DQS0_N AD21 Bidirectional Data Strobe 0 - I/O DIFF SSTL18 II Float
RAM_DQS0_P AC21 Bidirectional Data Strobe 0 + I/O DIFF SSTL18 II Float
RAM_DQS1_N AC24 Bidirectional Data Strobe 1 - I/O DIFF SSTL18 II Float
RAM_DQS1_P AB24 Bidirectional Data Strobe 1 + I/O DIFF SSTL18 II Float
RAM_DQS2_N C24 Bidirectional Data Strobe 2 - I/O DIFF SSTL18 II Float
RAM_DQS2_P D24 Bidirectional Data Strobe 2 + I/O DIFF SSTL18 II Float
RAM_DQS3_N D20 Bidirectional Data Strobe 3 - I/O DIFF SSTL18 II Float
RAM_DQS3_P E20 Bidirectional Data Strobe 3 + I/O DIFF SSTL18 II Float
RAM_R\A\S\ U19 Row Address Select O SSTL18 II Float 12mA
RAM_W\E\ U24 Write Enable O SSTL18 II Float 12mA
RFU0 AE13 CardBus RFU 0 / RESERVED O PCI33_3 Float 2mA
RFU1 J3 CardBus RFU 1 / RESERVED O PCI33_3 Float 2mA
RFU2 D13 CardBus RFU 2 / RESERVED O PCI33_3 Float 2mA
VDC_AVID L4 Active Video Indicator I LVTTL Float
VDC_CLOCK W10 Clock I LVTTL Float
VDC_D0 R3 YCbCr 4:4:2 #0 I/O LVTTL Float 4mA
VDC_D1 P5 YCbCr 4:4:2 #1 I/O LVTTL Float 4mA
VDC_D2 V8 YCbCr 4:4:2 #2 I/O LVTTL Float 4mA
VDC_D3 R5 YCbCr 4:4:2 #3 I/O LVTTL Float 4mA
VDC_D4 Y7 YCbCr 4:4:2 #4 I/O LVTTL Float 4mA
VDC_D5 U6 YCbCr 4:4:2 #5 I/O LVTTL Float 4mA
VDC_D6 U5 YCbCr 4:4:2 #6 I/O LVTTL Float 4mA
VDC_D7 P4 YCbCr 4:4:2 #7 I/O LVTTL Float 4mA
Pico E-15 Hardware Reference
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Seattle, WA 98109
38
VDC_FID P3 Odd / Even Field Indicator I LVTTL Float
VDC_HSYNC L3 Horizontal Sync I LVTTL Float
VDC_INTREQ M4 Interrupt Request I/O LVTTL Float 4mA
VDC_POWER N4 Power Control O LVTTL Float 2mA
VDC_RESET W8 Reset O LVTTL Float 2mA
VDC_SCA T9 I2C Serial Data I/O LVTTL Float 4mA
VDC_SCL T8 I2C Serial Clock O LVTTL Float 4mA
VDC_VSYNC N3 Vertical Sync I LVTTL Float
39
Pico E-15 Hardware Reference
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Seattle, WA 98109
40
Appendix D – CPLD Pinout
CPLD Pinout
Net Pin Description Dir Standard Term Drive
CLOCK_24 13 Free Running 24 MHz Clock from PSoC I LVTTL Float F\L\A\S\H\_\B\Y\T\E\ 35 8 Bit Mode Select O LVTTL Slow F\L\A\S\H\_\C\E\ 28 Chip Enable O LVTTL Slow F\L\A\S\H\_\O\E\ 17 Output Enable O LVTTL Slow F\L\A\S\H\_\W\E\ 1 Write Enable O LVTTL Slow F\P\G\A\_\P\R\O\G\ 30 FPGA Asynchronous Erase O LVTTL Slow FLASH_A0 15 Address 0 I/O LVTTL Float Slow FLASH_A1 12 Address 1 I/O LVTTL Float Slow FLASH_A2 10 Address 2 I/O LVTTL Float Slow FLASH_A3 7 Address 3 I/O LVTTL Float Slow FLASH_A4 8 Address 4 I/O LVTTL Float Slow FLASH_A5 11 Address 5 I/O LVTTL Float Slow FLASH_A6 9 Address 6 I/O LVTTL Float Slow FLASH_A7 5 Address 7 I/O LVTTL Float Slow FLASH_A8 47 Address 8 I/O LVTTL Float Slow FLASH_A9 48 Address 9 I/O LVTTL Float Slow FLASH_A10 32 Address 10 I/O LVTTL Float Slow FLASH_A11 33 Address 11 I/O LVTTL Float Slow FLASH_A12 45 Address 12 I/O LVTTL Float Slow FLASH_A13 46 Address 13 I/O LVTTL Float Slow FLASH_A14 44 Address 14 I/O LVTTL Float Slow FLASH_A15 37 Address 15 I/O LVTTL Float Slow FLASH_A16 39 Address 16 I/O LVTTL Float Slow FLASH_A17 6 Address 17 I/O LVTTL Float Slow FLASH_A18 4 Address 18 I/O LVTTL Float Slow FLASH_A19 24 Address 19 I/O LVTTL Float Slow FLASH_A20 14 Address 20 I/O LVTTL Float Slow FLASH_A21 2 Address 21 I/O LVTTL Float Slow FLASH_A22 43 Address 22 I/O LVTTL Float Slow FLASH_A23 34 Address 23 I/O LVTTL Float Slow FLASH_A24 38 Address 24 I/O LVTTL Float Slow FLASH_D15 36 Address -1* I/O LVTTL Float Slow FPGA_CCLK 25 FPGA Configuration Clock O LVTTL Slow FPGA_DONE 27 FPGA Configuration Done I LVTTL Float FPGA_INIT 26 FPGA Ready to Configure I LVTTL Float LOAD 20 FPGA Reload Request I LVTTL Float PEEKABOO 18 FPGA Image Address Request I LVTTL Float
*Pin D15 turns into Address -1 when the Flash ROM is in 8 bit mode.
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Appendix E – PSoC Pinout
PSoC Pinout
3\.\3\V\_\E\N\ 23 3.3V Master Power Enable O CLOCK_24_HV 17 24 MHz TurboLoader Clock Out O POWERCTL_C 7 PSoC External Debug Clock I/O POWERCTL_D 10 PSoC External Debug Data I/O POWERCTL_FPGA_C 19 PSoC -> FPGA Clock I/O POWERCTL_FPGA_D 22 PSoC -> FPGA Data I/O POWERCTL_R 14 PSoC External Debug Reset I TEMP_SENSE_C\S\ 24 Temperature Sensor Chip Select O TEMP_SENSE_SCK 4 Temperature Sensor Clock O TEMP_SENSE_SD 5 Temperature Sensor Data I/O
41
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Appendix F – Standard Part Number Listing
Standard Part Number Listing
Device Part Number Website
FPGA XC4VFX20-10FG672C
XC4VFX40-10FG672C
XC4VFX60-10FG672C CPLD XC2C64A-7QFG48I http://www.xilinx.com/cpld RAM EDE116ABSE-6E-E http://www.elpida.com ROM S29GL512N11FAIV010 http://www.amd.com/us-en/FlashMemory Ethernet 88E1111-BAB-I1000 http://www.marvell.com ADC AD9233BCPZ-125 http://www.analog.com DAC AD9744ACPZRL7 http://www.analog.com VDC TVP5150AM1PBS http://www.ti.com Temp Sensor MAX6627MTA+ http://www.maxim-ic.com Sleep Controller CY8C21323-24LFXI http://www.cypress.com
http://www.xilinx.com/virtex4
42
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Appendix G – Errata
The following section lists all known errata:
All versions:
Permanent damage will result if the Pico E-15 is left un-configured and powered on for more
than 10 minutes. This should not be a problem since the Pico E-15 automatically loads an FPGA image upon power-on.
43
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
44
Appendix H – FPGA Performance Enhancements
Overview:
Like most silicon devices, the FPGA on the Pico E-15 can be overclocked if proper cooling techniques are employed. Care must be taken to avoid thermal runaway.
Thermal Runaway:
As the die temperature of the FPGA increases, it draws more power. This extra power gets turned into heat. If thermal equilibrium is not reached with proper cooling, the FPGA will overheat. The E-15 is protected against catestropic overtemperature conditions via the integrated temperature sensor, although the limits should not routinely be pushed. The maximum FPGA core temperature is 150°C. Note that chips surrounding the FPGA can be damaged by temperatures above 70°C.
Heat Sink Placement:
The heat sink of the FPGA is internally connected via thermal grease to the case of the CardBus card on the bottom side (no markings). Placing a large heat sink on the outside of the case can allow higher performance.
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Revision History
1.00.01
Initial public release
45
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
46
Legal Notices
FCC Class A This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user is required to correct the interference at their own expense.
CE Class A This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.
Pico Computing products are not authorized for use in life-critical applications, or where device failure could cause injury or disruption of service.
“Xilinx System Generator for DSP” is a registered trademark of Xilinx, INC. “Xilinx” and associated artwork are registered trademarks of Xilinx, INC. “Virtex” and associated artwork are registered trademarks of Xilinx, INC. “Virtex-4” and associated artwork are registered trademarks of Xilinx, INC. “CoolRunner-II” and associated artwork are registered trademarks of Xilinx, INC. “MATLAB” is a registered trademark of The MathWorks, INC. “Simulink” is a registered trademark of The MathWorks, INC. “PowerPC” and associated artwork are registered trademarks of International Business Machines Corporation. “MirrorBit” and associated artwork are registered trademarks of Advanced Microdevices, INC. “AMD” and associated artwork are registered trademarks of Advanced Micro Devices, INC. “Spansion” and associated artwork are registered trademarks of Spansion, LLC. “SAMSUNG” and associated artwork are registered trademarks of SAMSUNG Electronics Co. LTD. “Texas Instruments” and the Texas Instruments logo are registered trademarks of Texas Instruments, INC. “Linear Technology” and the Linear Technology logo are registered trademarks of Linear Technology Corporation. “Impulse C” is a registered trademark of Impulse Accelerated Technologies, INC. “Impulse Accelerated Technologies” and associated artwork are registered trademarks of Impulse Accelerated Technologies, INC. “µC/OS” is a product of Micrimm. The “PCMCIA” and “CardBus” standards are governed by the Personal Computer Memory Card International Association. The “Compact Flash” standard is governed by the Compact Flash Association. “Viva” is a registered trademark of Star Bridge Systems, Inc.
“Cypress” and associated artwork are registered trademarks of Cypress Semiconductor Corporation “Maxim” and associated artwork are registered trademarks of Texas Instruments, INC.
This manual is © 2007 Pico Computing, Inc.
Pico E-15 Hardware Reference
Seattle, WA 98109
www.picocomputing.com
(206) 283-2178
150 Nickerson Street. Suite 311
Pico Computing
Loading...