Philips TZA3041U, TZA3041BHL, TZA3041AHL Datasheet

0 (0)

INTEGRATED CIRCUITS

DATA SHEET

TZA3041AHL; TZA3041BHL; TZA3041U

Gigabit Ethernet/Fibre Channel laser drivers

Preliminary specification

1999 Aug 24

Supersedes data of 1998 Aug 24

File under Integrated Circuits, IC19

Philips Semiconductors

Preliminary specification

 

 

Gigabit Ethernet/Fibre Channel

TZA3041AHL; TZA3041BHL;

laser drivers

TZA3041U

 

 

 

 

FEATURES

1.2 Gbits/s data input, both Current-Mode Logic (CML) and Positive Emitter Coupled Logic (PECL) compatible; maximum 800 mV (p-p)

Adaptive laser output control with dual loop, stabilizing optical ONE and ZERO levels

Optional external control of laser modulation and biasing currents (non-adaptive)

Automatic laser shutdown

Few external components required

Rise and fall times of 120 ps (typical value)

Jitter <50 mUI (p-p)

RF output current sinking capability of 60 mA

Bias current sinking capability of 90 mA

Power dissipation of 430 mW (typical value)

Low cost LQFP32 plastic package

Single 5 V power supply.

TZA3041AHL

Laser alarm output for signalling extremely low and high bias current conditions.

TZA3041BHL

Extra 1.2 Gbits/s loop mode input; both CML and PECL compatible.

TZA3041U

Bare die version with combined bias alarm and loop mode functionality.

ORDERING INFORMATION

APPLICATIONS

Gigabit Ethernet/Fibre Channel optical transmission systems

Gigabit Ethernet/Fibre Channel optical laser modules.

GENERAL DESCRIPTION

The TZA3041AHL, TZA3041BHL and TZA3041U are fully integrated laser drivers for Gigabit Ethernet/Fibre Channel (1.2 Gbits/s) systems, incorporating the RF path between the data multiplexer and the laser diode. Since the dual loop bias and modulation control circuits are integrated on the IC, the external component count is low. Only decoupling capacitors and adjustment resistors are required.

The TZA3041AHL features an alarm function for signalling extreme bias current conditions. The alarm low and high threshold levels can be adjusted to suit the application using only a resistor or a current Digital-to-Analog Converter (DAC).

The TZA3041BHL is provided with an additional RF data input to facilitate remote (loop mode) system testing.

The TZA3041U is a bare die version for use in compact laser module designs. The die contains 40 pads and features the combined functionality of the TZA3041AHL and the TZA3041BHL.

TYPE

 

PACKAGE

 

 

 

 

NUMBER

NAME

DESCRIPTION

VERSION

 

 

 

 

 

TZA3041AHL

LQFP32

plastic low profile quad flat package; 32 leads; body 5 × 5 × 1.4 mm

SOT401-1

 

 

 

 

TZA3041BHL

 

 

 

 

 

 

 

TZA3041U

bare die; 2000 × 2000 × 380 μm

 

 

 

 

1999 Aug 24

2

Philips TZA3041U, TZA3041BHL, TZA3041AHL Datasheet

Philips Semiconductors Preliminary specification

Gigabit Ethernet/Fibre Channel

TZA3041AHL; TZA3041BHL;

laser drivers

TZA3041U

 

 

BLOCK DIAGRAMS

 

handbook, full pagewidth

ALARM TONE TZERO ALARMLO ALARMHI

 

 

26

4

5

21

18

 

 

 

 

 

 

 

2

MONIN

 

 

 

 

 

LASER

22

 

 

 

 

 

 

 

 

 

 

 

CONTROL

ONE

 

 

 

 

 

23

 

 

 

 

 

BLOCK

ZERO

 

 

 

 

 

 

 

 

data input

 

 

 

13

LA

 

 

 

 

 

28

(differential)

 

 

CURRENT

12

LAQ

DIN

 

 

 

 

SWITCH

 

29

 

 

 

 

15

 

 

 

 

 

 

BIAS

DINQ

 

 

 

 

 

 

 

TZA3041AHL

 

BAND GAP

6

BGAP

 

 

REFERENCE

 

 

 

 

 

 

 

 

 

 

 

1, 3, 8, 9,

 

 

19, 20

 

 

 

11, 14, 16, 17

 

 

27, 30

7

10

31

24, 25, 32

 

 

4

 

 

 

11

MBK874

 

VCC(R) VCC(G) VCC(B)

ALS

GND

 

 

Fig.1 Block diagram of TZA3041AHL.

handbook, full pagewidth

ENL

TONE

TZERO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

 

4

 

5

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MONIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LASER

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTROL

 

 

ONE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLOCK

 

 

ZERO

DIN

 

28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DINQ

 

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LA

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

 

 

MUX

 

 

 

 

 

 

 

 

LAQ

DLOOP

 

 

 

 

 

 

 

 

 

SWITCH

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIAS

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DLOOPQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BAND GAP

6

 

 

BGAP

 

 

 

TZA3041BHL

 

 

 

REFERENCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1, 3, 8, 9,

 

 

 

 

 

18, 21

 

 

 

 

 

 

 

 

 

 

11, 14, 16, 17

 

 

 

 

 

 

27, 30

 

7

 

 

10

 

31

 

 

24, 25, 32

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

11

MBK873

 

 

VCC(R) VCC(G) VCC(B)

ALS

GND

 

 

 

 

Fig.2 Block diagram of TZA3041BHL.

1999 Aug 24

3

Philips Semiconductors Preliminary specification

Gigabit Ethernet/Fibre Channel

 

TZA3041AHL; TZA3041BHL;

laser drivers

 

 

 

TZA3041U

 

 

 

 

 

 

PINNING

 

 

 

 

 

 

 

 

 

 

 

SYMBOL

PIN

 

PAD

DESCRIPTION

 

 

 

 

TZA3041AHL

TZA3041BHL

TZA3041U

 

 

 

 

 

 

 

 

GND

1

1

 

1

ground

 

 

 

 

 

 

MONIN

2

2

 

2

monitor photodiode current input

 

 

 

 

 

 

GND

3

3

 

3

ground

 

 

 

 

 

 

IGM

 

4

not used; leave unbonded

 

 

 

 

 

 

TONE

4

4

 

5

connection for external capacitor used to set optical

 

 

 

 

 

ONE control loop time constant (optional)

 

 

 

 

 

 

TZERO

5

5

 

6

connection for external capacitor used to set optical

 

 

 

 

 

ZERO control loop time constant (optional)

 

 

 

 

 

 

BGAP

6

6

 

7

connection for external band gap decoupling capacitor

 

 

 

 

 

 

VCC(G)

7

7

 

8

supply voltage (green domain)

VCC(G)

 

9

supply voltage (green domain)

GND

8

8

 

10

ground

 

 

 

 

 

 

GND

9

9

 

11

ground

 

 

 

 

 

 

VCC(B)

10

10

 

12

supply voltage (blue domain)

VCC(B)

 

13

supply voltage (blue domain)

GND

11

11

 

14

ground

 

 

 

 

 

 

LAQ

12

12

 

15

laser modulation output inverted

 

 

 

 

 

 

LA

13

13

 

16

laser modulation output

 

 

 

 

 

 

GND

14

14

 

17

ground

 

 

 

 

 

 

BIAS

15

15

 

18

laser bias current output

 

 

 

 

 

 

GND

16

16

 

19

ground

 

 

 

 

 

 

GND

17

17

 

20

ground

 

 

 

 

 

 

GND

 

21

ground

 

 

 

 

 

 

ALARMHI

18

 

22

maximum bias current alarm reference level input

 

 

 

 

 

 

VCC(R)

18

 

23

supply voltage (red domain)

VCC(R)

19

 

supply voltage (red domain)

DLOOP

19

 

24

loop mode data input

 

 

 

 

 

 

VCC(R)

20

 

supply voltage (red domain)

DLOOPQ

20

 

25

loop mode data input inverted

 

 

 

 

 

 

VCC(R)

 

26

supply voltage (red domain)

ALARMLO

21

 

27

minimum bias current alarm reference level input

 

 

 

 

 

 

VCC(R)

21

 

supply voltage (red domain)

ONE

22

22

 

28

optical ONE reference level input

 

 

 

 

 

 

ZERO

23

23

 

29

optical ZERO reference level input

 

 

 

 

 

 

GND

24

24

 

30

ground

 

 

 

 

 

 

GND

25

25

 

31

ground

 

 

 

 

 

 

ALARM

26

 

32

alarm output

 

 

 

 

 

 

ENL

26

 

33

loop mode enable input

 

 

 

 

 

 

VCC(R)

27

27

 

34

supply voltage (red domain)

1999 Aug 24

4

Philips Semiconductors Preliminary specification

Gigabit Ethernet/Fibre Channel

 

TZA3041AHL; TZA3041BHL;

laser drivers

 

 

 

TZA3041U

 

 

 

 

 

 

 

 

 

 

 

 

SYMBOL

PIN

 

PAD

DESCRIPTION

 

 

 

 

TZA3041AHL

TZA3041BHL

TZA3041U

 

 

 

 

 

 

 

 

DIN

28

28

 

35

data input

 

 

 

 

 

 

DINQ

29

29

 

36

data input inverted

 

 

 

 

 

 

VCC(R)

30

30

 

37

supply voltage (red domain)

ALS

31

31

 

38

automatic laser shutdown input

 

 

 

 

 

 

GND

32

32

 

39

ground

 

 

 

 

 

 

GND

 

40

ground

 

 

 

 

 

 

handbook, full pagewidth

GND

 

ALS

 

CC(R)

 

DINQ

 

DIN

 

CC(R)

 

ALARM

 

GND

 

 

V

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

 

31

 

30

 

29

 

28

 

27

 

26

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND 1

MONIN 2

GND 3

TONE 4

TZA3041AHL

TZERO 5

BGAP 6

VCC(G) 7

GND 8

9

 

10

 

11

 

12

 

13

 

14

 

15

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

 

CC(B)

 

GND

 

LAQ

 

LA

 

GND

 

BIAS

 

GND

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

24 GND

23 ZERO

22 ONE

21 ALARMLO

20 VCC(R)

19 VCC(R)

18 ALARMHI

17 GND

MBK870

Fig.3 Pin configuration of TZA3041AHL.

1999 Aug 24

5

Philips Semiconductors

Preliminary specification

 

 

Gigabit Ethernet/Fibre Channel

TZA3041AHL; TZA3041BHL;

laser drivers

TZA3041U

 

 

handbook, full pagewidth

GND

 

ALS

 

CC(R)

 

DINQ

 

DIN

 

CC(R)

 

ENL

 

GND

 

 

V

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

 

31

 

30

 

29

 

28

 

27

 

26

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND 1

MONIN 2

GND 3

TONE 4

TZA3041BHL

TZERO 5

BGAP 6

VCC(G) 7

GND 8

9

 

10

 

11

 

12

 

13

 

14

 

15

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

 

CC(B)

 

GND

 

LAQ

 

LA

 

GND

 

BIAS

 

GND

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

24 GND

23 ZERO

22 ONE

21 VCC(R)

20 DLOOPQ

19 DLOOP

18 VCC(R)

17 GND

MBK875

Fig.4 Pin configuration of TZA3041BHL.

FUNCTIONAL DESCRIPTION

The TZA3041AHL, TZA3041BHL and TZA3041U laser drivers accept a 1.2 Gbits/s Non-Return to Zero (NRZ) input data stream and generate an output signal with sufficient current to drive a solid state Fabry Perot (FP) or Distributed FeedBack (DFB) laser. They also contain dual loop control circuitry for stabilizing the true laser optical power levels representing logic 1 and logic 0.

The input buffers present a high impedance to the data stream on the differential inputs (pins DIN and DINQ). The input signal can be at CML level of approximately 200 mV (p-p) below the supply voltage, or at PECL level up to 800 mV (p-p). The inputs can be configured to accept CML signals by connecting external 50 Ω pull-up resistors

between pins DIN and DINQ to VCC(R). If PECL compatibility is required, the usual Thevenin termination

can be applied.

For ECL signals (negative and referenced to ground) the inputs should be AC-coupled to the signal source.

If AC-coupling is applied, a constant input signal (either low of high) will bring the device in an undefined state. To avoid this, it is recommended to apply a slight offset to the input stage. The applied offset must be higher than the specified value in Chapter “Characteristics”, but much lower than the applied input voltage swing.

The RF path is fully differential and contains a differential preamplifier and a main amplifier. The main amplifier is designed to handle large peak currents required at the output laser driving stage and is insensitive to supply voltage variations. The output signal from the main amplifier drives a current switch which supplies a guaranteed maximum modulation current of 60 mA at pins LA and LAQ. Pin BIAS delivers a guaranteed maximum DC bias current of up to 90 mA for adjusting the optical laser output to a level above its light emitting threshold.

Automatic laser control

A laser with a Monitor PhotoDiode (MPD) is required for the laser control circuit (see Figs 6 and 7).

The MPD current is proportional to the laser emission and is applied to pin MONIN. The MPD current range is from 100 to 1000 μA (p-p). The input buffer is optimized to cope with MPD capacitances up to 50 pF. To prevent the input buffer breaking into oscillation with a low MPD capacitance, it is required to increase the capacitance to the minimum value specified in Chapter “Characteristics” by connecting an extra capacitor between pin MONIN and

VCC(G).

1999 Aug 24

6

The optical ONE loop time constant and bandwidth can be
(1) estimated using the following formulae:

Philips Semiconductors

Preliminary specification

 

 

Gigabit Ethernet/Fibre Channel

TZA3041AHL; TZA3041BHL;

laser drivers

TZA3041U

 

 

DC reference currents are applied to pins ZERO and ONE to set the MPD reference levels for laser LOW and laser

HIGH. A resistor connected between pin ZERO and VCC(R) and a resistor connected between pin ONE and VCC(R) is sufficient, but current DACs can also be used.

The voltages on pins ZERO and ONE are held constant at

a level of 1.5 V below VCC(R). The reference current applied to pin ZERO is multiplied by 4 and the reference

current flowing into pin ONE is multiplied internally by 16.

The reference current and the resistor for the optical ONE regulation loop (modulation current control) can be calculated using the following formulae:

It should be noted that the MPD current is stabilized, rather than the actual laser optical output power. Deviations between optical output power and MPD current, known as ‘tracking errors’, cannot be corrected.

Designing the modulation and bias loop

The optical ONE and ZERO regulation loop time constants are determined by on-chip capacitances. If the resulting time constants are found to be too small in a specific application, they can be increased by connecting external capacitors to pins TZERO and TONE, respectively.

 

1

 

 

 

IONE =

16------ × IMPD (ONE)

[A]

 

RONE =

-----------1.5 =

-------------------------24

[Ω]

(2)

 

IONE

IMPD (ONE)

 

 

The reference current and resistor for the optical ZERO regulation loop (bias current control) can be calculated using the following formulae:

I

 

1

× I

 

[A]

(3)

ZERO

= --

MPD (ZERO)

 

4

 

 

 

τONE =

(40 × 10

12

+ CTONE) ×

80 × 103

(5)

 

---------------------

[s]

 

 

 

 

 

ηLASER

 

BONE =

1

 

[Hz]

 

 

 

(6)

2-------------------------π × τONE

 

 

 

 

 

 

 

 

 

BONE =

 

 

ηLASER

 

 

 

2-------------------------------------------------------------------------------------------------π × (40 × 1012 + C

 

 

) × 80 × 103

 

 

TONE

 

 

 

 

 

 

 

RZERO

=

1.5

=

6

[Ω]

(4)

The optical ZERO loop time constant and bandwidth can

I-------------ZERO

I----------------------------MPD (ZERO)

be estimated using the following formulae:

 

 

 

 

 

In these formulae, IMPD(ONE) and IMPD(ZERO) represent the monitor photodiode current during an optical ONE and an

optical ZERO, respectively.

Example: A laser is operating at optical output power levels of 0.3 mW for laser HIGH and 0.03 mW for laser LOW (extinction ratio of 10 dB). Suppose the corresponding MPD currents for this type of laser are 260 and 30 μA, respectively.

In this example the reference current is

I

 

1

× 260 =

16.25 μA

and flows into pin ONE.

ONE

= ------

 

16

 

 

 

This current can be set using a current source or simply by a resistor of the appropriate value connected between pin ONE and VCC(R). In this example the resistor would be

RONE =

1.5

= 92.3 kΩ

16.25----------------

 

 

The reference current at pin ZERO in this example is

τZERO =

(40 × 10

12

+ CTZERO) ×

50 × 103

 

---------------------

[s] (7)

 

 

 

 

 

ηLASER

BZERO =

1

 

[Hz]

 

(8)

2----------------------------π × τZERO

 

 

 

 

 

 

BZERO =

 

 

ηLASER

 

 

2----------------------------------------------------------------------------------------------------π × (40 × 1012 + C

 

 

) × 50 × 103

 

TZERO

 

 

 

 

 

The term ηLASER (dimensionless) in the above formulae is the product of the two terms:

ηEO is the electro-optical efficiency which accounts for the steepness of the laser slope. It is the amount of the extra optical output power in W/A of modulation current optical output power.

R is the monitor photodiode responsivity. It is the amount of the extra monitor photodiode current in A/W optical output power.

I

 

 

1

 

and can be set using a resistor

ZERO

= -- × 30 = 7.˙5 μA

 

 

4

 

 

RZERO

=

1.5

= 200 kΩ

 

---------

 

 

 

 

7.5

 

 

1999 Aug 24

7

Loading...
+ 15 hidden pages