December 1992 6
Philips Semiconductors Product specification
PAL/NTSC/SECAM decoder/sync
processor
TDA9141
FUNCTIONAL DESCRIPTION
General
The TDA9141 is an I
2
C-bus
controlled, alignment-free
PAL/NTSC/SECAM colour
decoder/sync processor which has
been designed for use with baseband
chrominance delay lines.
In the standard operating mode the
I2C-bus address is 8A. If the address
input is connected to the positive rail
the address will change to 8E.
Input switch
WARNING: T
HE VOLTAGE ON THE
CHROMINANCE PIN MUST NEVER
EXCEED
5.5 V. IF IT DOES THE IC
ENTERS A TEST MODE.
The TDA9141 has a two pin input for
CVBS or YC signals which can be
selected via the I2C-bus. The input
selector also has a position in which it
automatically detects whether a
CVBS or YC signal is on the input. In
this input selector position, standard
identification first takes place on an
added Y/CVBS and C input signal.
After that, both chrominance signal
input amplitudes are checked once
and the input with the strongest
chrominance burst signal is selected.
The input switch status is read out by
the I2C-bus via output bit YC.
CVBS output
In the standard operating mode with
the I
2
C-bus address 8A, a CVBS
output signal is available on the
address pin, which represents either
the CVBS input signal or the Y/C input
signal, added into a CVBS signal
RGB colour matrix
WARNING: THE VOLTAGE ON THE UIN
PIN MUST NEVER EXCEED
5.5 V. IFIT
DOES THE
IC ENTERS A TEST MODE.
The TDA9141 has a colour matrix to
convert RGB input signals into YUV
signals. A fast switch, controlled by
the signal on pin F and enabled by the
I
2
C-bus via EFS (enable fast switch),
can select between these YUV
signals and the YUV signals of the
decoder. The Y signal is internally
connected to the switch. The −(R−Y)
and −(B−Y) output signals of the
decoder have to first be delayed in
external baseband chrominance
delay lines. The outputs of the delay
lines must be connected to the UV
input pins. If the RGB signals are not
synchronous with the selected
decoder input signal, clamping of the
RGB input signals is possible by
I
2
C-bus selection of STM (search
tuning mode), EFS and by feeding an
external clamping signal to the CLP
pin.
Also in search tuning mode the VA
output will be in a high impedance
OFF-state.
Standard identification
The standards which the TDA9141
can decode are dependent on the
choice of external crystals. If a
4.4 MHz and a 3.6 MHz crystal are
used then SECAM, PAL 4.4/3.6 and
NTSC 4.4/3.6 can be decoded. If two
3.6 MHz crystals are used then only
PAL 3.6 and NTSC 3.6 can be
decoded. Which 3.6 MHz standards
can be decoded is dependent on the
exact frequencies of the 3.6 MHz
crystals. In an application where not
all standards are required only one
crystal is sufficient (in this instance
the crystal must be connected to the
reference crystal input (pin 30)). If a
4.4 MHz crystal is used it must always
be connected to pin 30. Both crystals
are used to provide a reference for
the filters and the horizontal PLL,
however, only the reference crystal is
used to provide a reference for the
SECAM demodulator.
To enable the calibrating circuits to be
adjusted exactly two bits from I
2
C-bus
subaddress 00 are used to indicate
which crystals are connected to the
IC.
The standard identification circuit is a
digital circuit without external
components; the search loop is
illustrated in Fig.3.
The decoder (via the I
2
C-bus) can be
forced to decode either SECAM or
PAL/NTSC (but not PAL or NTSC).
Crystal selection can also be forced.
Information concerning which
standard and which crystal have been
selected and whether the colour killer
is ON or OFF is provided by the read
out. Using the forced-mode does not
affect the search loop, it does,
however, prevent the decoder from
reaching or staying in an unwanted
state. The identification circuit skips
impossible standards (e.g. SECAM
when no 4.4 MHz crystal is fitted) and
illegal standards (e.g. is forced
mode). To reduce the risk of wrong
identification PAL has priority over
SECAM (only line identification is
used for SECAM).
Integrated filters
All filters, including the luminance
delay line, are an integral part of the
IC. The filters are gyrator-capacitor
type filters. The resonant frequency of
the filters is controlled by a circuit that
uses the active crystal to tune the
SECAM Cloche filter during the
vertical flyback time. The remaining
filters and the luminance delay line
are matched to this filter. The filters
can be switched to either 4.43 MHz,
4.28 MHz or 3.58 MHz irrespective of
the frequency of the active crystal.
The switching is controlled by the
identification circuit.
In YC mode the chrominance notch
filter is bypassed, to preserve full
signal bandwidth.
For a CVBS signal the chrominance
notch filter can be bypassed by
I
2
C-bus selection of TB (trap bypass).
The luminance delay line delivers the
Y signal to the output 60 ns after the
−(R−Y) and −(B−Y) signals have
arrived at their outputs.