Philips SC26C92C1B, SC26C92C1N, SC26C92A1A, SC26C92A1B, SC26C92C1A Datasheet

...
0 (0)

INTEGRATED CIRCUITS

SC26C92

Dual universal asynchronous receiver/transmitter (DUART)

Product specification

2000 Jan 31

Supersedes data of 1998 Nov 09

IC19 Data Handbook

P s

on o s

Philips Semiconductors

Product specification

 

 

 

 

 

Dual universal asynchronous receiver/transmitter (DUART)

SC26C92

 

 

 

 

 

 

DESCRIPTION

The SC26C92 is a pin and function replacement for the SCC2692 and SCN2681 with added features and deeper FIFOs. Its configuration on power up is that of the 2692. Its differences from the 2692 are: 8 character receiver, 8 character transmit FIFOs, watch dog timer for each receiver, mode register 0 is added, extended baud rate and overall faster speeds, programmable receiver and transmitter interrupts. (The SCC2692 is not being discontinued.)

The Philips Semiconductors SC26C92 Dual Universal Asynchronous Receiver/Transmitter (DUART) is a single-chip CMOS-LSI communications device that provides two full-duplex asynchronous receiver/transmitter channels in a single package. It interfaces directly with microprocessors and may be used in a polled or interrupt driven system and provides modem and DMA interface.

The operating mode and data format of each channel can be programmed independently. Additionally, each receiver and transmitter can select its operating speed as one of 27 fixed baud rates, a 16X clock derived from a programmable counter/timer, or an external 1X or 16X clock. The baud rate generator and counter/timer can operate directly from a crystal or from external clock inputs. The ability to independently program the operating speed of the receiver and transmitter make the DUART particularly attractive for dual-speed channel applications such as clustered terminal systems.

Each receiver and transmitter is buffered by eight character FIFOs to minimize the potential of receiver overrun, transmitter underrun and to reduce interrupt overhead in interrupt driven systems. In addition, a flow control capability is provided via RTS/CTS signaling to disable a remote transmitter when the receiver buffer is full.

Also provided on the SC26C92 are a multipurpose 7-bit input port and a multipurpose 8-bit output port. These can be used as general purpose I/O ports or can be assigned specific functions (such as clock inputs or status/interrupt outputs) under program control.

The SC26C92 is available in three package versions: 40-pin 0.6º wide DIP, a 44-pin PLCC and 44±pin plastic quad flat pack (PQFP).

FEATURES

Dual full-duplex independent asynchronous receiver/transmitters

8 character FIFOs for each receiver and transmitter

Programmable data format

±5 to 8 data bits plus parity

±Odd, even, no parity or force parity

±1, 1.5 or 2 stop bits programmable in 1/16-bit increments

16-bit programmable Counter/Timer

Programmable baud rate for each receiver and transmitter selectable from:

±27 fixed rates: 50 to 230.4k baud

±Other baud rates to 230.4k baud at 16X

±Programmable user-defined rates derived from a programmable counter/timer

±External 1X or 16X clock

Parity, framing, and overrun error detection

False start bit detection

Line break detection and generation

Programmable channel mode

±Normal (full-duplex)

±Automatic echo

±Local loopback

±Remote loopback

±Multidrop mode (also called `wake-up' or `9-bit')

Multi-function 7-bit input port

±Can serve as clock, modem, or control inputs

±Change of state detection on four inputs

±Inputs have typically >100k pull-up resistors

Multi-function 8-bit output port

±Individual bit set/reset capability

±Outputs can be programmed to be status/interrupt signals

±FIFO states for DMA and modem interface

Versatile interrupt system

±Single interrupt output with eight maskable interrupting conditions

±Output port can be configured to provide a total of up to six separate wire-ORable interrupt outputs

±Each FIFO can be programmed for four different interrupt levels

±Watch dog timer for each receiver

Maximum data transfer rates:

1X ± 1Mb/sec, 16X ± 1Mb/sec

Automatic wake-up mode for multidrop applications

Start-end break interrupt/status

Detects break which originates in the middle of a character

On-chip crystal oscillator

Power down mode

Receiver timeout mode

Single +5V power supply

Powers up to emulate SCC2692

ORDERING INFORMATION

DESCRIPTION

COMMERCIAL1

INDUSTRIAL

DWG #

VCC = +5V ±10%, TA = 0 to +70°C

VCC = +5V ±10%, TA = -40 to +85°C

 

 

40-Pin Plastic Dual In-Line Package (DIP)

SC26C92C1N

SC26C92A1N

SOT129-1

 

 

 

 

44-Pin Plastic Leaded Chip Carrier (PLCC)

SC26C92C1A

SC26C92A1A

SOT187-2

 

 

 

 

44±Pin Plastic Quad Flat Pack (PQFP)

SC26C92C1B

SC26C92A1B

SOT307±2

2000 Jan 31

2

853±1585 23061

Philips Semiconductors

Product specification

 

 

 

Dual universal asynchronous receiver/transmitter (DUART)

SC26C92

 

 

 

NOTE:

1. Commercial devices are tested for the ±40 to +85_C.

PIN CONFIGURATIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INDEX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A0

1

 

 

 

40

VCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CORNER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP3

2

 

 

 

39

IP4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

1

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

 

 

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1

3

 

 

 

38

IP5

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

39

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP1

 

 

 

 

 

IP6

 

1

 

 

 

 

 

 

 

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2

 

 

 

 

 

IP2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

36

 

 

 

 

 

PQFP

 

 

 

 

 

 

 

 

 

 

PLCC

 

 

 

 

 

A3

 

 

 

 

 

CEN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP0

 

 

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

34

 

11

 

 

 

 

 

 

 

23

 

 

17

 

 

 

 

 

 

 

 

 

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WRN

8

 

 

 

33

X2

 

 

 

 

12

 

 

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

 

 

28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TOP VIEW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RDN

9

 

 

 

32

X1/CLK

 

 

 

 

 

 

 

 

 

 

 

TOP VIEW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RxDB

 

 

 

 

 

RxDA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DIP

 

 

PIN/FUNCTION

PIN/FUNCTION

PIN/FUNCTION

 

 

PIN/FUNCTION

TxDB

11

 

 

 

30

TxDA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

A3

23

N/C

1

 

NC

23

NC

OP1

 

12

 

 

 

29

OP0

 

 

2

 

A0

24

INTRN

 

 

 

 

 

 

 

 

2

 

 

IP0

24

OP6

 

 

 

 

 

 

 

 

 

 

 

3

 

IP3

25

D6

 

 

 

 

 

 

 

 

3

 

 

WRN

25

OP4

 

OP3

13

 

 

 

28

OP2

 

 

4

 

A1

26

D4

 

 

 

4

 

 

RDN

26

OP2

 

 

 

 

 

 

 

 

 

 

 

5

 

IP1

27

D2

 

 

 

 

 

 

 

 

5

 

 

RxDB

27

OP0

 

OP5

 

14

 

 

 

27

OP4

 

 

6

 

A2

28

D0

 

 

 

 

6

 

 

TxDB

28

TxDA

 

 

 

 

 

 

 

 

 

 

 

7

 

A3

29

OP6

 

 

 

 

 

 

 

 

7

 

 

OP1

29

RxDA

 

OP7

15

 

 

 

26

OP6

 

 

8

 

IP0

30

OP4

 

 

 

8

 

 

OP3

30

X1/CLK

 

 

 

 

 

 

 

 

 

 

 

9

 

WRN

31

OP2

 

 

 

 

 

 

 

 

9

 

 

OP5

31

X2

 

D1

16

 

 

 

25

D0

 

 

10

RDN

32

OP0

 

 

 

10

 

OP7

32

RESET

 

 

 

 

 

 

 

 

 

11

RXDB

33

TXDA

 

 

 

 

 

 

 

 

11

 

N/C

33

CEN

D3

17

 

 

 

24

D2

12

 

D1

34

IP2

12

NC

34

NC

 

 

 

 

 

 

 

 

 

13

TXDB

35

RXDA

 

 

 

 

 

 

 

 

13

 

D3

35

IP6

D5

 

18

 

 

 

23

D4

14

 

D5

36

IP5

14

OP1

36

X1/CLK

 

 

 

 

 

 

 

 

 

15

OP3

37

X2

 

 

 

 

 

 

 

 

15

 

D7

37

IP4

D7

19

 

 

 

22

D6

16

 

GND

38

VCC

16

OP5

38

RESET

 

 

 

 

 

 

 

 

 

17

OP7

39

CEN

 

 

 

 

 

 

 

 

17

 

GND

39

VCC

 

 

 

 

 

 

 

 

 

18

D1

40

IP2

VSS

 

20

 

 

 

21

INTRN

18

 

INTRN

40

A0

 

 

 

 

 

19

D3

41

IP6

 

 

 

 

 

 

 

19

 

D6

41

IP3

 

 

 

 

 

 

 

 

 

20

D5

42

IP5

 

 

 

 

 

 

 

 

20

 

D4

42

A1

 

 

 

 

 

 

 

 

 

21

D7

43

IP4

 

 

 

 

 

 

 

 

21

 

D2

43

IP1

 

 

 

 

 

 

 

 

 

22

VSS

44

VCC

 

 

 

 

 

 

 

 

22

 

D0

44

A2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SD00667

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Pin Configurations

2000 Jan 31

3

Philips SC26C92C1B, SC26C92C1N, SC26C92A1A, SC26C92A1B, SC26C92C1A Datasheet

Philips Semiconductors

Product specification

 

 

 

Dual universal asynchronous receiver/transmitter (DUART)

SC26C92

 

 

 

BLOCK DIAGRAM

 

8

 

 

 

CHANNEL A

 

 

D0±D7

BUS BUFFER

 

 

 

8 BYTE TRANSMIT

 

 

 

 

 

 

 

 

TxDA

 

 

 

 

 

FIFO

 

 

 

 

 

 

 

 

 

 

 

 

 

TRANSMIT

 

 

 

 

 

 

 

SHIFT REGISTER

 

 

RDN

OPERATION CONTROL

 

 

 

8 BYTE RECEIVE

 

 

 

 

 

 

 

 

 

WRN

ADDRESS

 

 

 

FIFO

 

 

 

 

 

 

 

 

CEN

DECODE

 

 

 

WATCH DOG TIMER

 

RxDA

4

 

 

 

 

 

A0±A3

 

 

 

RECEIVE SHIFT

 

 

R/W CONTROL

 

 

 

 

 

RESET

 

 

 

REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRA0, 1, 2

 

 

 

 

 

 

 

CRA

 

 

 

 

 

 

 

SRA

 

 

 

INTERRUPT CONTROL

 

 

 

 

 

 

INTRN

IMR

 

 

 

CHANNEL B

 

TxDB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISR

 

 

 

(AS ABOVE)

 

RxDB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DATABUS

INPUT PORT

 

 

 

TIMING

CONTROL

TIMING

INTERNAL

CHANGE OF

 

 

 

STATE

7

 

 

 

DETECTORS (4)

IP0-IP6

 

BAUD RATE

 

 

 

 

 

 

GENERATOR

 

 

 

IPCR

 

 

 

 

 

 

 

ACR

 

 

 

CLOCK

 

 

 

 

 

 

 

SELECTORS

 

 

 

 

 

 

 

COUNTER/

 

 

 

OUTPUT PORT

 

 

 

TIMER

 

 

 

 

 

 

 

 

 

 

 

FUNCTION

8

OP0-OP7

X1/CLK

 

 

 

 

SELECT LOGIC

 

XTAL OSC

 

 

 

 

 

 

X2

 

 

 

OPCR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OPR

 

 

 

CSRA

 

 

 

 

 

 

 

CSRB

 

 

 

 

 

 

 

ACR

 

 

 

 

 

 

 

CTPLU

 

 

 

 

 

 

 

CTPL

 

 

 

 

 

VCC

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

SD00153

Figure 2. Block Diagram

2000 Jan 31

4

Philips Semiconductors

Product specification

 

 

 

Dual universal asynchronous receiver/transmitter (DUART)

SC26C92

 

 

 

PIN DESCRIPTION

SYMBOL

PKG

PIN

NAME AND FUNCTION

40,44

TYPE

 

 

 

 

 

 

D0-D7

X

I/O

Data Bus: Bidirectional 3-State data bus used to transfer commands, data and status between the DUART

 

 

 

and the CPU. D0 is the least significant bit.

CEN

X

I

Chip Enable: Active-Low input signal. When Low, data transfers between the CPU and the DUART are

 

 

 

enabled on D0-D7 as controlled by the WRN, RDN and A0-A3 inputs. When High, places the D0-D7 lines

 

 

 

in the 3-State condition.

WRN

X

I

Write Strobe: When Low and CEN is also Low, the contents of the data bus is loaded into the addressed

 

 

 

register. The transfer occurs on the rising edge of the signal.

RDN

X

I

Read Strobe: When Low and CEN is also Low, causes the contents of the addressed register to be

 

 

 

presented on the data bus. The read cycle begins on the falling edge of RDN.

A0-A3

X

I

Address Inputs: Select the DUART internal registers and ports for read/write operations.

RESET

X

I

Reset: A High level clears internal registers (SRA, SRB, IMR, ISR, OPR, OPCR), puts OP0-OP7 in the

 

 

 

High state, stops the counter/timer, and puts Channels A and B in the inactive state, with the TxDA and

 

 

 

TxDB outputs in the mark (High) state. Sets MR pointer to MR1 and resets MR0.

INTRN

X

O

Interrupt Request: Active-Low, open-drain, output which signals the CPU that one or more of the eight

 

 

 

maskable interrupting conditions are true. Requires a pullup resistor.

X1/CLK

X

I

Crystal 1: Crystal connection or an external clock input. A crystal of a clock the appropriate frequency

 

 

 

(nominally 3.6864 MHz) must be supplied at all times. For crystal connections see Figure 7, Clock Timing.

X2

X

I

Crystal 2: Crystal connection. See Figure 7. If a crystal is not used this pin must be left open or not driving

 

 

 

more than one TTL equivalent load.

RxDA

X

I

Channel A Receiver Serial Data Input: The least significant bit is received first. ªMarkº is High, ªspaceº is Low.

RxDB

X

I

Channel B Receiver Serial Data Input: The least significant bit is received first. ªMarkº is High, ªspaceº is Low.

TxDA

X

O

Channel A Transmitter Serial Data Output: The least significant bit is transmitted first. This output is held

 

 

 

in the ªmarkº condition when the transmitter is disabled, idle or when operating in local loopback mode.

 

 

 

ªMarkº is High, ªspaceº is Low.

TxDB

X

O

Channel B Transmitter Serial Data Output: The least significant bit is transmitted first. This output is

 

 

 

held in the `mark' condition when the transmitter is disabled, idle, or when operating in local loopback mode.

 

 

 

`Mark' is High, `space' is Low.

OP0

X

O

Output 0: General purpose output or Channel A request to send (RTSAN, active-Low). Can be

 

 

 

deactivated automatically on receive or transmit.

OP1

X

O

Output 1: General purpose output or Channel B request to send (RTSBN, active-Low). Can be

 

 

 

deactivated automatically on receive or transmit.

OP2

X

O

Output 2: General purpose output, or Channel A transmitter 1X or 16X clock output, or Channel A receiver

 

 

 

1X clock output.

OP3

X

O

Output 3: General purpose output or open-drain, active-Low counter/timer output or Channel B transmitter

 

 

 

1X clock output, or Channel B receiver 1X clock output.

OP4

X

O

Output 4: General purpose output or Channel A open-drain, active-Low, RxA interrupt ISR[1] output.

OP5

X

O

Output 5: General purpose output or Channel B open-drain, active-Low, RxB interrupt ISR[5] output.

OP6

X

O

Output 6: General purpose output or Channel A open-drain, active-Low, TxA interrupt ISR[0] output.

OP7

X

O

Output 7: General purpose output, or Channel B open-drain, active-Low, TxB interrupt ISR[4] output.

IP0

X

I

Input 0: General purpose input or Channel A clear to send active-Low input (CTSAN). Pin has an internal

 

 

 

VCC pull-up device supplying 1 to 4 mA of current.

IP1

X

I

Input 1: General purpose input or Channel B clear to send active-Low input (CTSBN). Pin has an internal

 

 

 

VCC pull-up device supplying 1 to 4 mA of current.

IP2

X

I

Input 2: General purpose input or counter/timer external clock input. Pin has an internal VCC pull-up device

 

 

 

supplying 1 to 4 mA of current.

IP3

X

I

Input 3: General purpose input or Channel A transmitter external clock input (TxCA). When the external

 

 

 

clock is used by the transmitter, the transmitted data is clocked on the falling edge of the clock. Pin has an

 

 

 

internal VCC pull-up device supplying 1 to 4 mA of current.

IP4

X

I

Input 4: General purpose input or Channel A receiver external clock input (RxCA). When the external

 

 

 

clock is used by the receiver, the received data is sampled on the rising edge of the clock. Pin has an

 

 

 

internal VCC pull-up device supplying 1 to 4 mA of current.

IP5

X

I

Input 5: General purpose input or Channel B transmitter external clock input (TxCB). When the external

 

 

 

clock is used by the transmitter, the transmitted data is clocked on the falling edge of the clock. Pin has an

 

 

 

internal VCC pull-up device supplying 1 to 4 mA of current.

IP6

X

I

Input 6: General purpose input or Channel B receiver external clock input (RxCB). When the external

 

 

 

clock is used by the receiver, the received data is sampled on the rising edge of the clock. Pin has an

 

 

 

internal VCC pull-up device supplying 1 to 4 mA of current.

VCC

X

I

Power Supply: +5V supply input.

GND

X

I

Ground

2000 Jan 31

5

Philips Semiconductors

Product specification

 

 

 

Dual universal asynchronous receiver/transmitter (DUART)

SC26C92

 

 

 

ABSOLUTE MAXIMUM RATINGS1

SYMBOL

 

 

PARAMETER

RATING

UNIT

 

 

 

 

T

Operating ambient temperature range2

Note 4

°C

A

 

 

 

 

 

TSTG

Storage temperature range

-65 to +150

°C

V

Voltage from V

CC

to GND3

-0.5 to +7.0

V

CC

 

 

 

 

V

Voltage from any pin to GND3

-0.5 to V +0.5

V

S

 

 

 

CC

 

PD

Package power dissipation (DIP40)

2.8

W

PD

Package power dissipation (PLCC44)

2.4

W

PD

Package power dissipation (PQFP44)

1.78

W

 

Derating factor above 25_C (PDIP40)

22

mW/_C

 

Derating factor above 25_C (PLCC44)

19

mW/_C

 

Derating factor above 25_C (PQFP44)

14

mW/_C

NOTES:

1.Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operation section of this specification is not implied.

2.For operating at elevated temperatures, the device must be derated based on +150°C maximum junction temperature.

3.This product includes circuitry specifically designed for the protection of its internal devices from damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.

4.Parameters are valid over specified temperature range.

DC ELECTRICAL CHARACTERISTICS1, 2

VCC = 5V ± 10%, TA = ±40_C to 85_C, unless otherwise specified.

 

 

 

 

 

 

 

 

LIMITS

 

 

 

 

 

 

 

 

 

SYMBOL

PARAMETER

TEST CONDITIONS

Min

Typ

Max

UNIT

 

 

 

 

 

 

 

 

 

 

 

VIL

Input low voltage

 

 

 

 

 

 

 

0.8

V

VIH

Input high voltage (except X1/CLK)

±40 to +85°C

2.5

 

 

V

VIH

Input high voltage (X1/CLK)

 

 

 

 

 

0.8 VCC

 

 

V

VOL

Output low voltage

IOL = 2.4mA

VCC -0.5

 

0.4

V

VOH

Output high voltage (except OD outputs)3

I

 

= -400μA

 

 

V

 

 

OH

 

 

 

 

 

 

 

IIX1PD

X1/CLK input current - power down

VIN = 0 to VCC

-0.5

 

+0.5

μA

IILX1

X1/CLK input low current - operating

VIN = 0

-130

 

 

μA

IIHX1

X1/CLK input high current - operating

V

IN

= V

CC

 

 

130

μA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II

Input leakage current:

 

 

 

 

 

 

 

 

μA

All except input port pins

VIN = 0 to VCC

-0.5

 

+0.5

 

 

 

Input port pins

VIN = 0 to VCC

-8

 

+0.5

μA

IOZH

Output off current high, 3-State data bus

VIN = VCC

 

 

0.5

μA

IOZL

Output off current low, 3-State data bus

VIN = 0V

±0.5

 

 

μA

IODL

Open-drain output low current in off-state

VIN = 0

±0.5

 

 

μA

IODH

Open-drain output high current in off-state

VIN = VCC

 

 

0.5

μA

 

Power supply current4

 

 

 

 

 

 

 

 

 

ICC

Operating mode

CMOS input levels

 

5

10

mA

 

Power down mode5

CMOS input levels

 

2

15

mA

NOTES:

1.Parameters are valid over specified temperature range.

2.Typical values are at +25°C, typical supply voltages, and typical processing parameters.

3.Test conditions for outputs: CL = 150pF, except interrupt outputs. Test conditions for interrupt outputs: CL = 50pF, RL = 2.7KΩ to VCC.

4.All outputs are disconnected. Inputs are switching between CMOS levels of VCC -0.2V and VSS + 0.2V.

5.See UART application note for power down currents of 5μA or less.

2000 Jan 31

6

Philips Semiconductors

Product specification

 

 

 

Dual universal asynchronous receiver/transmitter (DUART)

SC26C92

 

 

 

AC CHARACTERISTICS1, 2, 4

VCC = 5V ± 10%, TA = ±40_C to 85_C, unless otherwise specified.

 

 

 

 

LIMITS

 

 

SYMBOL

 

PARAMETER

Min

Typ3

Max

UNIT

Reset Timing (See Figure 3)

 

 

 

 

 

 

 

 

 

 

 

tRES

RESET pulse width

200

 

 

ns

Bus Timing

5 (See Figure 4)

 

 

 

 

 

tAS

A0-A3 setup time to RDN, WRN Low

10

 

 

ns

tAH

A0-A3 hold time from RDN, WRN Low

25

 

 

ns

tCS

CEN setup time to RDN, WRN Low

0

 

 

ns

tCH

CEN hold time from RDN, WRN High

0

 

 

ns

tRW

WRN, RDN pulse width

70

 

 

ns

tDD

Data valid after RDN Low

 

 

55

ns

tDF

Data bus floating after RDN High

 

 

25

ns

tDS

Data setup time before WRN or CEN High

25

 

 

ns

tDH

Data hold time after WRN or CEN High

0

 

 

ns

t

High time between reads and/or writes5, 6

30

 

 

ns

RWD

 

 

 

 

 

 

Port Timing

5 (See Figure 5)

 

 

 

 

tPS

Port input setup time before RDN Low

0

 

 

ns

tPH

Port input hold time after RDN High

0

 

 

ns

tPD

OPn output valid from WRN High

 

 

100

ns

Interrupt

Timing (See Figure 6)

 

 

 

 

 

 

 

 

 

 

 

INTRN (or OP3-OP7 when used as interrupts) negated from:

 

 

 

 

 

Read RxFIFO (RxRDY/FFULL interrupt)

 

 

100

ns

 

Write TxFIFO (TxRDY interrupt)

 

 

100

ns

tIR

Reset command (break change interrupt)

 

 

100

ns

 

Stop C/T command (counter interrupt)

 

 

100

ns

 

Read IPCR (input port change interrupt)

 

 

100

ns

 

Write IMR (clear of interrupt mask bit)

 

 

100

ns

 

 

 

 

 

 

 

Clock Timing (See Figure 7)

 

 

 

 

 

 

 

 

 

 

 

tCLK

X1/CLK High or Low time

50

 

 

ns

fCLK

X1/CLK frequency

0.1

3.6864

8

MHz

tCTC

CTCLK (IP2) High or Low time

55

 

 

ns

fCTC

CTCLK (IP2) frequency

0

 

8

MHz

tRX

RxC High or Low time (16X)

30

 

 

ns

fRX

RxC frequency

(16X)

0

 

16

MHz

 

 

(1X)8

0

 

1

MHz

tTX

TxC High or Low time (16X)

30

 

 

ns

fTX

TxC frequency

(16X)

0

 

16

MHz

 

 

(1X)8

0

 

1

MHz

Transmitter

Timing (See Figure 8)

 

 

 

 

 

 

 

 

 

 

tTXD

TxD output delay from TxC external clock input on IP pin

 

 

60

ns

tTCS

Output delay from TxC low at OP pin to TxD data output

 

5

30

ns

Receiver

Timing (See Figure 9)

 

 

 

 

 

 

 

 

 

 

tRXS

RxD data setup time before RxC high at external clock input on IP pin

50

 

 

ns

tRXH

RxD data hold time after RxC high at external clock input on IP pin

50

 

 

ns

NOTES:

1.Parameters are valid over specified temperature range.

2.All voltage measurements are referenced to ground (GND). For testing, all inputs swing between 0.4V and 3.0V with a transition time of 5ns maximum. For X1/CLK this swing is between 0.4V and 4.4V. All time measurements are referenced at input voltages of 0.8V and 2.0V and output voltages of 0.8V and 2.0V, as appropriate.

3.Typical values are at +25°C, typical supply voltages, and typical processing parameters.

4.Test conditions for outputs: CL = 150pF, except interrupt outputs. Test conditions for interrupt outputs: CL = 50pF, RL = 2.7KΩ to VCC.

5.Timing is illustrated and referenced to the WRN and RDN inputs. Also, CEN may be the `strobing' input. CEN and RDN (also CEN and

WRN) are ORed internally. The signal asserted last initiates the cycle and the signal negated first terminates the cycle.

6.If CEN is used as the `strobing' input, the parameter defines the minimum High times between one CEN and the next. The RDN signal must be negated for tRWD to guarantee that any status register changes are valid.

7.Minimum frequencies are not tested but are guaranteed by design. Crystal frequencies 2 to 4 MHz.

8.Clocks for 1X mode should be symmetrical.

2000 Jan 31

7

Philips Semiconductors

Product specification

 

 

 

Dual universal asynchronous receiver/transmitter (DUART)

SC26C92

 

 

 

Block Diagram

The SC26C92 DUART consists of the following eight major sections: data bus buffer, operation control, interrupt control, timing, communications Channels A and B, input port and output port. Refer to the Block Diagram.

Data Bus Buffer

The data bus buffer provides the interface between the external and internal data buses. It is controlled by the operation control block to allow read and write operations to take place between the controlling

CPU and the DUART.

Operation Control

The operation control logic receives operation commands from the CPU and generates appropriate signals to internal sections to control device operation. It contains address decoding and read and write circuits to permit communications with the microprocessor via the data bus.

Interrupt Control

A single active-Low interrupt output (INTRN) is provided which is activated upon the occurrence of any of eight internal events.

Associated with the interrupt system are the Interrupt Mask Register

(IMR) and the Interrupt Status Register (ISR). The IMR can be programmed to select only certain conditions to cause INTRN to be asserted. The ISR can be read by the CPU to determine all currently active interrupting conditions.

Outputs OP3-OP7 can be programmed to provide discrete interrupt outputs for the transmitter, receivers, and counter/timer.

When OP3 to OP7 are programmed as interrupts, their output buffers are changed to the open drain active low configuration. These pins may be used for DMA and modem control.

TIMING CIRCUITS

Crystal Clock

The timing block consists of a crystal oscillator, a baud rate generator, a programmable 16-bit counter/timer, and four clock selectors. The crystal oscillator operates directly from a crystal connected across the X1/CLK and X2 inputs. If an external clock of the appropriate frequency is available, it may be connected to

X1/CLK. The clock serves as the basic timing reference for the

Baud Rate Generator (BRG), the counter/timer, and other internal circuits. A clock signal within the limits specified in the specifications section of this data sheet must always be supplied to the DUART.

If an external is used instead of a crystal, X1 should be driven using a configuration similar to the one in Figure 7.

BRG

The baud rate generator operates from the oscillator or external clock input and is capable of generating 27 commonly used data communications baud rates ranging from 50 to 38.4K baud.

Programming bit 0 of MR0 to a ª1º gives additional baud rates to 230.4kB. These will be in the 16X mode. A 3.6864MHz crystal or external clock must be used to get the standard baud rates. The clock outputs from the BRG are at 16X the actual baud rate. The counter/timer can be used as a timer to produce a 16X clock for any other baud rate by counting down the crystal clock or an external clock. The four clock selectors allow the independent selection, for each receiver and transmitter, of any of these baud rates or external timing signal.

Counter±Timer

The Counter/Timer is a programmable 16±bit divider that is used for generating miscellaneous clocks or generating timeout periods.

These clocks may be used by any or all of the receivers and transmitters in the DUART or may be directed to an I/O pin for miscellaneous use.

Counter/Timer programming

The counter timer is a 16±bit programmable divider that operates in one of three modes: counter, timer, and time out.

Timer mode generates a square wave.

Counter mode generates a time delay.

Time out mode counts time between received characters.

The C/T uses the numbers loaded into the Counter/Timer Lower

Register (CTPL) and the Counter/Timer Upper Register (CTPU) as its divisor. The counter timer is controlled with six commands: Start/ Stop C/T, Read/Write Counter/Timer lower register and Read/Write Counter/Timer upper register. These commands have slight differences depending on the mode of operation. Please see the detail of the commands under the CTPL/CTPU register descriptions.

Baud Rate Generation with the C/T

When the timer is selected as baud rates for receiver or transmitter via the Clock Select register their output will be configured as a 16x clock. Therefore one needs to program the timer to generate a clock 16 times faster than the data rate. The formula for calculating 'n', the number loaded to the CTPU and CTPL registers, based on a particular input clock frequency is shown below.

For the timer mode the formula is as follows:

Clockinputfrequency n= 2 16 Baudratedesired

NOTE: `n' may not assume values of 0 and 1.

The frequency generated from the above formula will be at a rate 16 times faster than the desired baud rate. The transmitter and receiver state machines include divide by 16 circuits, which provide the final frequency and provide various timing edges used in the qualifying the serial data bit stream. Often this division will result in a non± integer value: 26.3 for example. One may only program integer numbers to a digital divider. There for 26 would be chosen. If 26.7 were the result of the division then 27 would be chosen. This gives a baud rate error of 0.3/26.3 or 0.3/26.7 that yields a percentage error of 1.14% or 1.12% respectively, well within the ability of the asynchronous mode of operation. Higher input frequency to the counter reduces the error effect of the fractional division

One should be cautious about the assumed benign effects of small errors since the other receiver or transmitter with which one is communicating may also have a small error in the precise baud rate. In a ºcleanº communications environment using one start bit, eight data bits and one stop bit the total difference allowed between the transmitter and receiver frequency is approximately 4.6%. Less than eight data bits will increase this percentage.

Communications Channels A and B

Each communications channel of the SC26C92 comprises a full-duplex asynchronous receiver/transmitter (UART). The

2000 Jan 31

8

Philips Semiconductors

Product specification

 

 

 

Dual universal asynchronous receiver/transmitter (DUART)

SC26C92

 

 

 

operating frequency for each receiver and transmitter can be selected independently from the baud rate generator, the counter/timer, or from an external input.

The transmitter accepts parallel data from the CPU, converts it to a serial bit stream, inserts the appropriate start, stop, and optional parity bits and outputs a composite serial stream of data on the TxD output pin.

The receiver accepts serial data on the RxD pin, converts this serial input to parallel format, checks for start bit, stop bit, parity bit (if any), or break condition and sends an assembled character to the CPU via the receive FIFO. Three status bits (Break Received, Framing and Parity Errors) are also FIFOed with each data character.

Input Port

The inputs to this unlatched 7-bit port can be read by the CPU by performing a read operation at address H'D'. A High input results in a logic 1 while a Low input results in a logic 0. D7 will always read as a logic 1. The pins of this port can also serve as auxiliary inputs to certain portions of the DUART logic or modem and DMA control.

Four change-of-state detectors are provided which are associated with inputs IP3, IP2, IP1 and IP0. A High-to-Low or Low-to-High transition of these inputs, lasting longer than 25 - 50μs, will set the corresponding bit in the input port change register. The bits are cleared when the register is read by the CPU. Any change-of-state can also be programmed to generate an interrupt to the CPU.

The input port pulse detection circuitry uses a 38.4KHz sampling clock derived from one of the baud rate generator taps. This results in a sampling period of slightly more than 25μs (this assumes that the clock input is 3.6864MHz). The detection circuitry, in order to guarantee that a true change in level has occurred, requires two successive samples at the new logic level be observed. As a consequence, the minimum duration of the signal change is 25μs if the transition occurs ªcoincident with the first sample pulseº. The 50μs time refers to the situation in which the change-of-state is ªjust missedº and the first change-of-state is not detected until 25μs later. All the IP pins have a small pull-up device that will source 1 to 4 mA of current from VCC. These pins do not require pull-up devices or VCC connections if they are not used.

Output Port

The output ports are controlled from five places: the OPCR register, SOPR, ROPR, the MR registers and the command register (CR). The OPCR register controls the source of the data for the output ports OP2 through OP7. The data source for output ports OP0 and OP1 is controlled by the MR and CR registers. Normally the data source for the OP pins is from the OPR register. The OP pin drive the inverted level (complement) of the OPR register. Example: when the SOPR is used to set the OPR bit to a logical 1 then the associated OP pin will drive a logical 0.

The content of the OPR register is controlled by the ªSet Output Port

Bits Commandº and the ªReset Output Bits Commandº. These commands are at E and F, respectively. When these commands are used, action takes place only at the bit locations where ones exist.

For example, a one in bit location 5 of the data word used with the ªSet Output Port Bitsº command will result in OPR(5) being set to one. The OP5 would then be set to zero (VSS ). Similarly, a one in bit position 5 of the data word associated with the ªReset Output Ports Bitsº command would set OPR(5) to zero and, hence, the pin OP5 to a one (Vdd).

Please note that these pins drive both high and low. However when they are programmed to represent interrupt type functions (such as

RxRDY) they will be switched to an open drain configuration. In this configuration an external pull±up device will be required

OPERATION

Transmitter

The SC26C92 is conditioned to transmit data when the transmitter is enabled through the command register. The SC26C92 indicates to the CPU that it is ready to accept a character by setting the TxRDY bit in the status register. This condition can be programmed to generate an interrupt request at OP0, OP1 and INTRN. When the transmitter is initially enabled the TxRDY and TxEMT bits will be set in the status register. When a character is loaded to the transmit

FIFO the TxEMT bit will be reset. The TxEMT will not set until: 1) the transmit FIFO is empty and the transmit shift register has finished transmitting the stop bit of the last character written to the transmit FIFO, or 2) the transmitter is disabled and then re±enabled.

The TxRDY bit is set whenever the transmitter is enabled and the TxFIFO is not full. Data is transferred from the holding register to transmit shift register when it is idle or has completed transmission of the previous character. Characters cannot be loaded into the

TxFIFO while the transmitter is disabled.

The transmitter converts the parallel data from the CPU to a serial bit stream on the TxD output pin. It automatically sends a start bit followed by the programmed number of data bits, an optional parity bit, and the programmed number of stop bits. The least significant bit is sent first. Following the transmission of the stop bits, if a new character is not available in the TxFIFO, the TxD output remains High and the TxEMT bit in the Status Register (SR) will be set to 1. Transmission resumes and the TxEMT bit is cleared when the CPU loads a new character into the TxFIFO.

If the transmitter is disabled, it continues operating until the character currently being transmitted and any characters in the TxFIFO including parity and stop bit(s) have been completed.

Note the differences between the transmitter disable and the transmitter reset: reset stops all transmission immediately, effectively clears the TxFIFO and resets all status and Tx interrupt conditions.

Transmitter disable clears all Tx status and interrupts BUT allows the Tx to complete the transmission of all data in the TxFIFO and in the shift register. While the Tx is disabled the TxFIFO can not be loaded with data.

The transmitter can be forced to send a continuous Low condition by issuing a send break command from the command register. The transmitter output is returned to the normal high with a stop break command.

The transmitter can be reset through a software command. If it is reset, operation ceases immediately and the transmitter must be enabled through the command register before resuming operation.

If the CTS option is enabled (MR2[4] = 1), the CTSN input at IP0 or IP1 must be low in order for the character to be transmitted. The transmitter will check the state of the CTS input at the beginning of each character transmitted. If it is found to be High, the transmitter will delay the transmission of any following characters until the CTS has returned to the low state. CTS going high during the serialization of a character will not affect that character.

Transmitter ªRS485 turnaroundº

The transmitter can also control the RTSN outputs, OP0 or OP1 via

MR2[5]. When this mode of operation is set, the meaning of the OP0 and OP1 signal will usually be `end of message'. See description of the MR2[5] bit for more detail.

2000 Jan 31

9

Philips Semiconductors

Product specification

 

 

 

Dual universal asynchronous receiver/transmitter (DUART)

SC26C92

 

 

 

This feature may be used automatically ªturnaroundº a transceiver when operating in a simplex system.

Transmitter Disable Note (W.R.T. Turnaround)

When the TxEMT bit is set the sequence of instructions: enable transmitter Ð load transmit holding register Ð disable transmitter

will often result in nothing being sent. In the condition of the TxEMT being set do not issue the disable until the TxRDY bit goes active again after the character is loaded to the TxFIFO. The data is not sent if the time between the end of loading the transmit holding register and the disable command is less that 3/16 bit time in the 16x mode. One bit time in the 1x mode.

This is sometimes the condition when the RS485 automatic ªturnaroundº is enabled . It will also occur when only one character is to be sent and it is desired to disable the transmitter immediately after the character is loaded.

In general, when it is desired to disable the transmitter before the last character is sent AND the TxEMT bit is set in the status register be sure the TxRDY bit is active immediately before issuing the transmitter disable instruction. (TxEMT is always set if the transmitter has underrun or has just been enabled), TxRDY sets at the end of the ªstart bitº time. It is during the start bit that the data in the transmit holding register is transferred to the transmit shift register.

Transmitter Flow control

The transmitter may be controlled by the CTSN input when enabled by MR2(4). The CTSN input would be connected to RTSN output of the receiver to which it is communicating. See further description in the MR 1 and MR2 register descriptions.

Receiver

The SC26C92 is conditioned to receive data when enabled through the command register. The receiver looks for a High-to-Low

(mark-to-space) transition of the start bit on the RxD input pin. If a transition is detected, the state of the RxD pin is sampled each 16X clock for 7-1/2 clocks (16X clock mode) or at the next rising edge of the bit time clock (1X clock mode). If RxD is sampled High, the start bit is invalid and the search for a valid start bit begins again. If RxD is still Low, a valid start bit is assumed and the receiver continues to sample the input at one bit time intervals at the theoretical center of the bit, until the proper number of data bits and parity bit (if any) have been assembled, and one stop bit has been detected. The least significant bit is received first. The data is then transferred to the Receive FIFO and the RxRDY bit in the SR is set to a 1. This condition can be programmed to generate an interrupt at OP4 or

OP5 and INTRN. If the character length is less than 8 bits, the most significant unused bits in the RxFIFO are set to zero.

After the stop bit is detected, the receiver will immediately look for the next start bit. However, if a non-zero character was received without a stop bit (framing error) and RxD remains Low for one half of the bit period after the stop bit was sampled, then the receiver operates as if a new start bit transition had been detected at that point (one-half bit time after the stop bit was sampled).

The parity error, framing error, and overrun error (if any) are strobed into the SR at the received character boundary, before the RxRDY status bit is set. If a break condition is detected (RxD is Low for the entire character including the stop bit), a character consisting of all zeros will be loaded into the RxFIFO and the received break bit in the SR is set to 1. The RxD input must return to high for two (2) clock edges of the X1 crystal clock for the receiver to recognize the end of the break condition and begin the search for a start bit. This will usually require a high time of one X1 clock period or 3 X1

edges since the clock of the controller is not synchronous to the X1 clock.

Receiver FIFO

The RxFIFO consists of a First-In-First-Out (FIFO) stack with a capacity of eight characters. Data is loaded from the receive shift register into the topmost empty position of the FIFO. The RxRDY bit in the status register is set whenever one or more characters are available to be read, and a FFULL status bit is set if all eight stack positions are filled with data. Either of these bits can be selected to cause an interrupt. A read of the RxFIFO outputs the data at the top of the FIFO. After the read cycle, the data FIFO and its associated status bits (see below) are `popped' thus emptying a FIFO position for new data.

Receiver Status Bits

There are five (5) status bits that are evaluated with each byte (or character) received: received break, framing error, parity error, overrun error, and change of break. The first three are appended to each byte and stored in the RxFIFO. The last two are not necessarily related to the byte being received or a byte that is in the RxFIFO. They are however developed by the receiver state machine.

The received break, framing error, parity error and overrun error (if any) are strobed into the RxFIFO at the received character boundary, before the RxRDY status bit is set. For character mode (see below) status reporting the SR (Status Register) indicates the condition of these bits for the character that is the next to be read from the FIFO

The ºreceived breakº will always be associated with a zero byte in the RxFIFO. It means that zero character was a break character and not a zero data byte. The reception of a break condition will always set the ºchange of breakº (see below) status bit in the Interrupt Status Register (ISR). The Change of break condition is reset by a reset error status command in the command register

Break Detection

If a break condition is detected (RxD is Low for the entire character including the stop bit), a character consisting of all zeros will be loaded into the RxFIFO and the received break bit in the SR is set to 1. The change of break bit also sets in the ISR The RxD input must return to high for two (2) clock edges of the X1 crystal clock for the receiver to recognize the end of the break condition and begin the search for a start bit.

This will usually require a high time of one X1 clock period or 3 X1 edges since the clock of the controller is not synchronous to the X1 clock.

Framing Error

A framing error occurs when a non±zero character whose parity bit

(if used) and stop; bit are zero. If RxD remains low for one half of the bit period after the stop bit was sampled, then the receiver operates as if the start bit of the next character had been detected.

The parity error indicates that the receiver±generated parity was not the same as that sent by the transmitter.

The framing, parity and received break status bits are reset when

the associated data byte is read from the RxFIFO since these ªerrorº conditions are attached to the byte that has the error

Overrun Error

The overrun error occurs when the RxFIFO is full, the receiver shift register is full, and another start bit is detected. At this moment the receiver has 9 valid characters and the start bit of the 10th has been

2000 Jan 31

10

Loading...
+ 21 hidden pages