Philips SAA7128H-00, SAA7128H-V1, SAA7129H-00, SAA7129H-V1 Datasheet

0 (0)

INTEGRATED CIRCUITS

DATA SHEET

SAA7128H; SAA7129H

Digital video encoder

Product specification

 

2000 Mar 08

File under Integrated Circuits, IC22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Philips Semiconductors

Product specification

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

 

 

CONTENTS

1FEATURES

2GENERAL DESCRIPTION

3ORDERING INFORMATION

4QUICK REFERENCE DATA

5BLOCK DIAGRAM

6PINNING

7FUNCTIONAL DESCRIPTION

7.1Versatile fader

7.2Data manager

7.3Encoder

7.4RGB processor

7.5SECAM processor

7.6Output interface/DACs

7.7Synchronization

7.8Clock

7.9I2C-bus interface

7.10Input levels and formats

7.11Bit allocation map

7.12I2C-bus format

7.13Slave receiver

7.14Slave transmitter

8 CHARACTERISTICS

8.1Explanation of RTCI data bits

8.2Teletext timing

9

APPLICATION INFORMATION

9.1 Analog output voltages

10PACKAGE OUTLINE

11SOLDERING

11.1Introduction to soldering surface mount packages

11.2Reflow soldering

11.3Wave soldering

11.4Manual soldering

11.5Suitability of surface mount IC packages for wave and reflow soldering methods

12DEFINITIONS

13LIFE SUPPORT APPLICATIONS

14PURCHASE OF PHILIPS I2C COMPONENTS

2000 Mar 08

2

Philips Semiconductors

Product specification

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

1 FEATURES

Monolithic CMOS 3.3 V device, 5 V I2C-bus optional

Digital PAL/NTSC/SECAM encoder

System pixel frequency 13.5 MHz

54 MHz double-speed multiplexed D1 interface capable of splitting data into two separate channels (encoded and baseband)

Three Digital-to-Analog Converters (DACs) for CVBS (CSYNC), VBS (CVBS) and C (CVBS) two times oversampled with 10-bit resolution (signals in brackets optional)

Three DACs for RED (CR), GREEN (Y) and BLUE (CB) two times oversampled with 9-bit resolution (signals in brackets optional)

Alternatively, an advanced composite sync is available on the CVBS output for RGB display centring

Real-time control of subcarrier

Cross-colour reduction filter

Closed captioning encoding and World Standard Teletext (WST) and North-American Broadcast Text System (NABTS) teletext encoding including sequencer and filter

Copy Generation Management System (CGMS) encoding (CGMS described by standard CPR-1204 of EIAJ); 20 bits in lines 20/283 (NTSC) can be loaded via I2C-bus

Fast I2C-bus control port (400 kHz)

Line 23 Wide Screen Signalling (WSS) encoding

Video Programming System (VPS) data encoding in line 16 (50/625 lines counting)

Encoder can be master or slave

Programmable horizontal and vertical input synchronization phase

Programmable horizontal sync output phase

3 ORDERING INFORMATION

Internal Colour Bar Generator (CBG)

Macrovision Pay-per-View copy protection system rev. 7.01 and rev. 6.1 as option; this applies to

SAA7128H only. The device is protected by USA patent numbers 4631603, 4577216 and 4819098 and other intellectual property rights. Use of the macrovision anti-copy process in the device is licensed for non-commercial home use only. Reverse engineering or disassembly is prohibited. Please contact your nearest Philips Semiconductors sales office for more information

Controlled rise/fall times of output syncs and blanking

On-chip crystal oscillator (3rd-harmonic or fundamental crystal)

Down mode (low output voltage) or power-save mode of DACs

QFP44 package.

2 GENERAL DESCRIPTION

The SAA7128H; SAA7129H encodes digital CB-Y-CR video data to an NTSC, PAL or SECAM CVBS or S-video signal. Simultaneously, RGB or bypassed but interpolated CB-Y-CR signals are available via three additional DACs. The circuit at a 54 MHz multiplexed digital D1 input port accepts two ITU-R BT.656 compatible CB-Y-CR data streams with 720 active pixels per line in

4 : 2 : 2 multiplexed formats, for example MPEG decoded data with overlay and MPEG decoded data without overlay, whereas one data stream is latched at the rising, the other one at the falling clock edge.

It includes a sync/clock generator and on-chip DACs.

TYPE NUMBER

 

PACKAGE

 

 

 

 

NAME

DESCRIPTION

VERSION

 

 

 

 

 

SAA7128H

QFP44

plastic quad flat package; 44 leads (lead length 1.3 mm); body

SOT307-2

 

 

10 × 10 × 1.75 mm

 

SAA7129H

 

 

 

 

 

 

 

 

 

2000 Mar 08

3

Philips Semiconductors

 

 

Product specification

 

 

 

 

 

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

 

 

 

 

 

4 QUICK REFERENCE DATA

 

 

 

 

 

 

 

 

 

 

 

 

SYMBOL

PARAMETER

 

MIN.

TYP.

MAX.

UNIT

 

 

 

 

 

 

 

VDDA

analog supply voltage

 

3.15

3.3

3.45

V

VDDD

digital supply voltage

 

3.0

3.3

3.6

V

IDDA

analog supply current

 

130

150

mA

IDDD

digital supply current

 

75

100

mA

Vi

input signal voltage levels

 

TTL compatible

 

Vo(p-p)

analog output signal voltages Y, C and CVBS without load

 

1.25

1.35

1.50

V

 

(peak-to-peak value)

 

 

 

 

 

 

 

 

 

 

 

 

RL

load resistance

 

75

300

Ω

LElf(i)

low frequency integral linearity error

 

±3

LSB

LElf(d)

low frequency differential linearity error

 

±1

LSB

Tamb

ambient temperature

 

0

70

°C

2000 Mar 08

4

Philips SAA7128H-00, SAA7128H-V1, SAA7129H-00, SAA7129H-V1 Datasheet

_

08 Mar 2000

5

 

 

 

pagewidth full

 

 

 

 

 

VDDA1 VDDA3

 

 

VDDA2 VDDA4

 

RESET

SDA SCL

XTALI XTALO RCV1 RCV2 TTXRQ XCLK LLC1

 

40

 

42

41

 

 

 

35

34

7

8

43

37

4

25

28

31

 

36

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD(I2C)

2

C-BUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

I

 

SAA7128H

 

 

SYNC/CLOCK

 

 

 

 

 

 

 

 

 

INTERFACE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SA

 

 

 

 

SAA7129H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I2C-bus control

 

 

 

clock and timing

 

I2C-bus control

 

 

 

 

 

 

 

 

 

 

 

 

 

I2C-bus control

 

 

 

 

I2C-bus control

 

 

 

 

 

 

9 to 16 MPpos

 

 

 

MPA

MP

 

Y

 

 

Y

 

 

 

D

 

 

 

30

CVBS

MP7 to MP0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CSYNC)

 

 

 

SWITCH

 

 

FADER

 

 

ENCODER

 

OUTPUT

 

 

 

 

 

27

VBS

 

MPneg

 

MPB

 

 

 

 

INTERFACE

 

 

 

 

 

 

(CVBS)

 

 

 

 

 

 

CbCr

 

C

 

 

 

 

 

 

 

 

 

 

 

VP

 

 

 

 

 

 

 

 

A

24

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CVBS)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

VSSA1

 

 

I2C-bus control

 

 

 

 

 

I2C-bus

 

 

 

 

 

 

 

32

 

 

 

 

 

 

 

 

I2C-bus control

 

 

 

 

VSSA2

44

 

 

 

 

 

 

 

 

 

 

control

 

 

 

 

 

33

TTX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSSA3

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

 

D

 

 

 

23

RED

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RGB

 

 

 

 

 

26

GREEN

 

 

 

 

 

 

 

 

 

 

 

 

PROCESSOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CbCr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

29

BLUE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

18

 

38

6

17

39

2

3

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MHB572

 

VSSD1

VSSD2

VSSD3

VDDD1

VDDD2

VDDD3

SP

AP

RTCI

 

 

 

 

 

 

 

 

 

Fig.1 Block diagram.

DIAGRAM BLOCK 5

encoder video Digital

SAA7129H SAA7128H;

Semiconductors Philips

specification Product

Philips Semiconductors

 

Product specification

 

 

 

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

 

 

 

 

6 PINNING

 

 

 

 

 

 

 

 

 

SYMBOL

 

PIN

TYPE

DESCRIPTION

 

 

 

 

 

 

RES

 

1

reserved pin; do not connect

 

 

 

 

 

 

SP

 

2

I

test pin; connected to digital ground for normal operation

 

 

 

 

 

AP

 

3

I

test pin; connected to digital ground for normal operation

 

 

 

 

 

LLC1

 

4

I

line-locked clock input; this is the 27 MHz master clock

 

 

 

 

 

 

VSSD1

 

5

supply

digital ground 1

 

VDDD1

 

6

supply

digital supply voltage 1

 

RCV1

 

7

I/O

raster control 1 for video port; this pin receives/provides a VS/FS/FSEQ signal

 

 

 

 

 

RCV2

 

8

I/O

raster control 2 for video port; this pin provides an HS pulse of programmable length or

 

 

 

 

receives an HS pulse

 

 

 

 

 

 

MP7

 

9

I

double-speed 54 MHz MPEG port; it is an input for “ITU-R BT.656” style multiplexed

 

 

 

 

CB-Y-CR data; data is sampled on the rising and falling clock edge; data sampled on the

MP6

 

10

I

 

 

 

 

rising edge is then sent to the encoding part of the device; data sampled on the falling

MP5

 

11

I

 

edge is sent to the RGB part of the device (or vice versa, depending on programming)

 

 

 

 

MP4

 

12

I

 

 

 

 

 

 

 

 

 

MP3

 

13

I

 

 

 

 

 

 

 

 

MP2

 

14

I

 

 

 

 

 

 

 

 

MP1

 

15

I

 

 

 

 

 

 

 

 

MP0

 

16

I

 

 

 

 

 

 

 

 

VDDD2

 

17

supply

digital supply voltage 2

 

VSSD2

 

18

supply

digital ground 2

 

RTCI

 

19

I

real-time control input; if the LLC1 clock is provided by an SAA7111 or SAA7151B, RTCI

 

 

 

 

should be connected to the RTCO pin of the respective decoder to improve the signal

 

 

 

 

quality

 

 

 

 

 

 

V

 

20

supply

sense input for I2C-bus voltage; connect to I2C-bus supply

DD(I2C)

 

 

 

 

 

SA

 

21

I

select I2C-bus address; LOW selects slave address 88H, HIGH selects slave address

 

 

 

 

8CH

 

 

 

 

 

 

VSSA1

 

22

supply

analog ground 1 for RED (CR), C (CVBS) and GREEN (Y) outputs

RED

 

23

O

analog output of RED (CR) signal

 

C

 

24

O

analog output of chrominance (CVBS) signal

 

 

 

 

 

 

VDDA1

 

25

supply

analog supply voltage 1 for RED (CR) and C (CVBS) outputs

GREEN

 

26

O

analog output of GREEN (Y) signal

 

 

 

 

 

 

 

VBS

 

27

O

analog output of VBS (CVBS) signal

 

 

 

 

 

 

VDDA2

 

28

supply

analog supply voltage 2 for VBS (CVBS) and GREEN (Y) outputs

BLUE

 

29

O

analog output of BLUE (CB) signal

 

CVBS

 

30

O

analog output of CVBS (CSYNC) signal

 

 

 

 

 

 

VDDA3

 

31

supply

analog supply voltage 3 for BLUE (CB) and CVBS (CSYNC) outputs

VSSA2

 

32

supply

analog ground 2 for VBS (CVBS), BLUE (CB) and CVBS (CSYNC) outputs

VSSA3

 

33

supply

analog ground 3 for the DAC reference ladder and the oscillator

XTALO

 

34

O

crystal oscillator output

 

 

 

 

 

 

XTALI

 

35

I

crystal oscillator input; if the oscillator is not used, this pin should be connected to ground

 

 

 

 

 

VDDA4

 

36

supply

analog supply voltage 4 for the DAC reference ladder and the oscillator

2000 Mar 08

6

Philips Semiconductors

 

Product specification

 

 

 

 

 

 

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYMBOL

PIN

TYPE

 

DESCRIPTION

 

 

 

 

 

 

 

XCLK

37

O

clock output of the crystal oscillator

 

 

 

 

 

 

 

 

VSSD3

38

supply

digital ground 3

 

 

VDDD3

39

supply

digital supply voltage 3

 

 

 

 

40

I

Reset input, active LOW. After reset is applied, all digital I/Os are in input mode; PAL

 

RESET

 

 

 

 

 

black burst on CVBS, VBS and C; RGB outputs set to lowest voltage. The I2C-bus

 

 

 

 

 

receiver waits for the START condition.

 

 

 

 

 

 

 

SCL

41

I

I2C-bus serial clock input

 

 

SDA

42

I/O

I2C-bus serial data input/output

 

 

TTXRQ

43

O

teletext request output, indicating when text bits are requested

 

 

 

 

 

 

 

TTX

44

I

teletext bit stream input

 

 

 

 

 

 

 

 

 

TTX

TTXRQ

SDA

SCL

 

RESET

DDD3

SSD3

XCLK

DDA4

XTALI

XTALO

 

 

V

V

V

 

 

 

44

43

42

41

40

39

38

37

36

35

34

RES

1

 

 

 

 

 

 

 

 

 

 

 

SP

2

 

 

 

 

 

 

 

 

 

 

 

AP

3

 

 

 

 

 

 

 

 

 

 

 

LLC1

4

 

 

 

 

 

 

 

 

 

 

 

VSSD1

5

 

 

 

 

 

 

 

 

 

 

 

VDDD1

6

 

 

 

SAA7128H

 

 

 

 

 

 

 

SAA7129H

 

 

 

 

RCV1

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RCV2

8

 

 

 

 

 

 

 

 

 

 

 

MP7

9

 

 

 

 

 

 

 

 

 

 

 

MP6 10

 

 

 

 

 

 

 

 

 

 

 

MP5 11

 

 

 

 

 

 

 

 

 

 

 

 

12

13

14

15

16

17

18

19

20

21

22

 

MP4

MP3

MP2

MP1

 

MP0

DDD2

SSD2

RTCI

DD(I2C)

SA

SSA1

 

 

V

V

V

 

 

 

 

 

 

 

 

 

 

V

 

 

33

VSSA3

32

VSSA2

31

VDDA3

30

CVBS

29

BLUE

28

VDDA2

27

VBS

26

GREEN

25

VDDA1

24

C

23

RED

MHB573

Fig.2 Pin configuration.

2000 Mar 08

7

Philips Semiconductors

Product specification

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

7 FUNCTIONAL DESCRIPTION

The digital video encoder encodes digital luminance and colour difference signals into analog CVBS, S-video and simultaneously RGB or CR-Y-CB signals. NTSC-M, PAL B/G, SECAM and sub-standards are supported.

Both interlaced and non-interlaced operation is possible for all standards.

The basic encoder function consists of subcarrier generation and colour modulation and insertion of synchronization signals. Luminance and chrominance signals are filtered in accordance with the standard requirements of “RS-170-A” and “ITU-R BT.470-3”.

For ease of analog post filtering the signals are twice oversampled with respect to the pixel clock before digital-to-analog conversion.

The total filter transfer characteristics are illustrated in Figs 8 to 13. The DACs for Y, C and CVBS are realized with full 10-bit resolution; 9-bit resolution for RGB output. The CR-Y-CB to RGB dematrix can be bypassed optionally in order to provide the upsampled CR-Y-CB input signals.

The 8-bit multiplexed CB-Y-CR formats are “ITU-R BT.656” (D1 format) compatible, but the SAV and EAV codes can be decoded optionally, when the device is operated in slave mode. Two independent data streams can be processed, one latched by the rising edge of LLC1, the other latched by the falling edge of LLC1. The purpose of that is e.g. to forward one of the data streams containing both video and On-Screen Display (OSD) information to the RGB outputs, and the other stream containing video only to the encoded outputs CVBS and S-video.

For optimum display of RGB signals through a euro-connector TV set, optionally on the CVBS output an early composite sync pulse (up to 31 LLC1 clock periods) can be provided.

As a further alternative, the VBS and C outputs may provide a second and third CVBS signal.

It is also possible to connect a Philips digital video decoder (SAA7111, SAA7711A, SAA7112 or SAA7151B) to the SAA7128H; SAA7129H. Via the RTCI pin, connected to RTCO of a decoder, information concerning actual subcarrier, PAL-ID and (with SAA7111 and newer types) definite subcarrier phase can be inserted.

The device synthesizes all necessary internal signals, colour subcarrier frequency, and synchronization signals, from that clock.

Wide screen signalling data can be loaded via the I2C-bus and is inserted into line 23 for standards using 50 Hz field rate.

VPS data for program dependent automatic start and stop of such featured VCR’s is loadable via I2C-bus.

The IC also contains closed caption and extended data services encoding (line 21), and supports anti-taping signal generation in accordance with macrovision. It is also possible to load data for copy generation management system into line 20 of every field (525/60 line counting).

A number of possibilities are provided for setting different video parameters such as:

Black and blanking level control

Colour subcarrier frequency

Variable burst amplitude etc.

During reset (RESET = LOW) and after reset is released, all digital I/O stages are set to input mode and the encoder is set to PAL mode and outputs a ‘black burst’ signal on CVBS and S-video outputs, while RGB outputs are set to their lowest output voltages. A reset forces the I2C-bus interface to abort any running bus transfer.

7.1Versatile fader

Important note: whenever the fader is activated with the SYMP bit set to a logic 1 (enabling the detection of embedded Start of Active Video (SAV) and End of Active Video (EAV)), codes 00H and FFH are not allowed within the actual video data (as prescribed by “ITU-R BT.656”, anyway). If SAV (00H) has been detected, the fader automatically passes 100% of the respective signal until SAV will be detected.

Within the digital video encoder, two data streams can be faded against each other; these data streams can be input to the double speed MPEG port, which is able to separate two independent 27 MHz data streams MPA and MPB via a cross switch controlled by EDGE1 and EDGE2.

handbook, halfpage

 

 

 

 

MPpos

EDGE1 = 0

 

 

MPA

 

1

 

 

 

 

=

 

 

 

 

EDGE1

 

 

 

MPneg

EDGE2

=

0

MPB

EDGE2 = 1

 

 

 

MHB574

 

Fig.3

Cross switch.

 

 

 

2000 Mar 08

8

Philips Semiconductors

Product specification

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

7.1.1CONFIGURATION EXAMPLES

Figs 4 to 7 show examples on how to configure the fader between the input ports and the outputs, separated into the composite (and S-video) encoder and the RGB encoder.

7.1.1.1Configuration 1

Input MPA can be faded into MPB. The resulting output of the fader is then encoded simultaneously to composite (and S-video) and RGB output (RGBIN = ENCIN = 1).

In this example, either MPA or MPB could be an overlay (menu) signal to be faded smoothly in and out.

 

 

 

 

 

 

 

 

 

e.g.

 

 

 

FADER

 

 

ENCODER

 

 

MPA

 

 

 

 

 

 

video

 

 

MP

 

 

PATH

 

 

recorder

MPB

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VP

 

 

RGB PATH

 

 

e.g. TV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MHB575

 

Fig.4 Configuration 1.

7.1.1.2Configuration 2

Input MPA can be faded into MPB. The resulting output of the fader is then encoded to RGB output, while the signal coming from MPB is fed directly to composite (and S-video) output (RGBIN = 1, ENCIN = 0). Also in this example, either MPA or MPB could be an overlay (menu) signal to be faded smoothly in and out, whereas the overlay appears only in the RGB output connected to the TV set.

 

 

 

 

 

 

 

 

 

 

 

e.g.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FADER

 

 

ENCODER

 

 

 

MPA

 

 

 

 

 

 

 

 

video

 

 

 

MP

 

 

PATH

 

 

 

 

 

 

 

 

 

 

 

recorder

MPB

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VP

 

 

RGB PATH

 

 

 

e.g. TV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1.1.3Configuration 3

Input MPB is passed directly to the RGB output, assuming e.g. it contains video including overlay. MPA is equivalently passed through the inactive fader to the composite (and S-video) output, assuming e.g. it contains video excluding overlay (RGBIN = 0, ENCIN = 1).

 

 

 

 

 

 

 

 

e.g.

MPA

 

 

FADER BYPASS

 

ENCODER

 

 

 

 

 

 

 

video

 

 

 

PATH

 

 

 

 

 

 

 

 

 

recorder

 

 

 

 

 

 

 

 

MPB

 

 

 

 

 

 

 

e.g. TV

 

 

 

 

RGB PATH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MHB577

 

 

 

 

Fig.6 Configuration 3.

 

7.1.1.4Configuration 4

Only MPB input is in use; its signal appears both composite (and S-video) and RGB encoded (RGBIN = ENCIN = 0).

handbook, halfpage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MPA

 

 

 

 

ENCODER

 

 

 

e.g. video recorder

 

 

 

 

PATH

 

 

 

 

 

 

 

 

 

 

 

 

MPB

 

 

 

 

 

 

 

 

e.g. TV

 

 

 

 

 

 

 

 

 

 

 

RGB PATH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MHB578

Fig.7 Configuration 4.

MHB576

Fig.5 Configuration 2.

2000 Mar 08

9

Philips Semiconductors

Product specification

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

7.1.2PARAMETERS OF THE FADER

Basically, there are three independent fade factors available, allowing for the equation:

Output = (FADEx × ln1) + [(1 FADEx) × ln2]

Where x = 1, 2 or 3

Factor FADE1 is effective, when a colour in the data stream fed to the MPEG port fader input is recognized as being between KEY1L and KEY1U. That means, the colour is not identified by a single numeric value, but an upper and lower threshold in a 24-bit YUV colour space can be defined. FADE1 = 00H results in 100% signal at the MPEG port fader input and 0% signal at the fader Video port input. Variation of 63 steps is possible up to

FADE1 = 3FH, resulting in 0% signal at the MPEG port fader input and 100% signal at the fader Video port input.

Factor FADE2 is effective, when a colour in the data stream fed to the MPEG port fader input is recognized as being between KEY2L and KEY2U. FADE2 is to be seen in conjunction with a colour that is defined by a 24-bit internal Colour Look-Up Table (CLUT). FADE2 = 00H results in 100% of the internally defined LUT colour and 0% signal at the fader Video port input. Variation of

63 steps is possible up to FADE2 = 3FH, resulting in 0% of the internally defined LUT colour and 100% signal at the fader Video port input.

Finally, factor FADE3 is effective, when a colour in the data stream fed to the MPEG port fader input is recognized as neither being between KEY1L and KEY1U nor being between KEY2L and KEY2H. FADE3 = 00H results in 100% signal at the MPEG port fader input and 0% signal at the fader Video port input. Variation of 63 steps is possible up to FADE3 = 3FH, resulting in 0% signal at the MPEG port fader input and 100% signal at the fader Video port input.

Optionally, all upper and lower thresholds can be ignored, enabling to fade signals only against the LUT colour.

If bit CFADM is set HIGH, all data at the MPEG port fader are faded against the LUT colour, if bit CFADV is set HIGH, all data at the Video port fader are faded against the LUT colour.

7.2Data manager

In the data manager, alternatively to the external video data, a pre-defined colour look-up table located in this block can be read out in a pre-defined sequence (8 steps per active video line), achieving a colour bar test pattern generator without the need for an external data source.

7.3Encoder

7.3.1VIDEO PATH

The encoder generates out of Y, U and V baseband signals luminance and colour subcarrier output signals, suitable for use as CVBS or separate Y and C signals.

Luminance is modified in gain and in offset (latter programmable in a certain range to enable different black level set-ups). After insertion of a fixed synchronization pulse tip level, in accordance with standard composite synchronization schemes, a blanking level can be set. Other manipulations used for the macrovision anti-taping process like additional insertion of AGC super-white pulses (programmable in height) are supported by SAA7128H only.

In order to enable easy analog post filtering, luminance is interpolated from 13.5 MHz data rate to 27 MHz data rate, providing luminance in 10-bit resolution. The transfer characteristics of the luminance interpolation filter are illustrated in Figs 10 and 11. Appropriate transients at start/end of active video and for synchronization pulses are ensured.

Chrominance is modified in gain (programmable separately for U and V), standard dependent burst is inserted, before baseband colour signals are interpolated from 6.75 MHz data rate to 27 MHz data rate. One of the interpolation stages can be bypassed, thus providing a higher colour bandwidth, which can be made use of for Y and C output. The transfer characteristics of the chrominance interpolation filter are illustrated in

Figs 8 and 9.

The amplitude, beginning and ending of the inserted burst, is programmable in a certain range that is suitable for standard signals and for special effects. Behind the succeeding quadrature modulator, colour in 10-bit resolution is provided on subcarrier.

The numeric ratio between Y and C outputs is in accordance with the respective standards.

2000 Mar 08

10

Philips Semiconductors

Product specification

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

7.3.2TELETEXT INSERTION AND ENCODING

Pin TTX receives a WST or NABTS teletext bitstream sampled at the LLC clock. Two protocols are provided:

·At each rising edge of output signal (TTXRQ) a single teletext bit has to be provided after a programmable delay at input pin TTX

·The signal TTXRQ performs only a single LOW-to-HIGH transition and remains at HIGH level for 360, 296 or 288 teletext bits, depending on the chosen standard.

Phase variant interpolation is achieved on this bitstream in the internal teletext encoder, providing sufficient small phase jitter on the output text lines.

TTXRQ provides a fully programmable request signal to the teletext source, indicating the insertion period of bitstream at lines which are selectable independently for both fields. The internal insertion window for text is set to 360 (PAL-WST), 296 (NTSC-WST) or 288 (NABTS) teletext bits including clock run-in bits. The protocol and timing are illustrated in Fig.23.

7.3.3VIDEO PROGRAMMING SYSTEM (VPS) ENCODING

Five bytes of VPS information can be loaded via the I2C-bus and will be encoded in the appropriate format into line 16.

7.3.4CLOSED CAPTION ENCODER

Using this circuit, data in accordance with the specification of closed caption or extended data service, delivered by the control interface, can be encoded (line 21). Two dedicated pairs of bytes (two bytes per field), each pair preceded by run-in clocks and framing code, are possible.

The actual line number where data is to be encoded in, can be modified in a certain range.

The data clock frequency is in accordance with the definition for NTSC-M standard 32 times horizontal line frequency.

Data LOW at the output of the DACs corresponds to 0 IRE, data HIGH at the output of the DACs corresponds to approximately 50 IRE.

It is also possible to encode closed caption data for 50 Hz field frequencies at 32 times horizontal line frequency.

7.3.5ANTI-TAPING (SAA7128H ONLY)

For more information contact your nearest Philips Semiconductors sales office.

7.4RGB processor

This block contains a dematrix in order to produce red, green and blue signals to be fed to a SCART plug.

Before Y, CB and CR signals are de-matrixed, individual gain adjustment for Y and colour difference signals and 2 times oversampling for luminance and 4 times oversampling for colour difference signals is performed. The transfer curves of luminance and colour difference components of RGB are illustrated in Figs 12 and 13.

7.5SECAM processor

SECAM specific pre-processing is achieved in this block by a pre-emphasis of colour difference signals (for gain and phase see Figs 14 and 15).

A baseband frequency modulator with a reference frequency shifted from 4.286 MHz to DC carries out SECAM modulation in accordance with appropriate standard or optionally wide clipping limits.

After the HF pre-emphasis, also applied on a DC reference carrier (anti-Cloche filter; see Figs 16 and 17), line-by-line sequential carriers with black reference of 4.25 MHz (Db) and 4.40625 MHz (Dr) are generated using specified values for FSC programming bytes.

Alternating phase reset in accordance with SECAM standard is carried out automatically. During vertical blanking the so-called bottle pulses are not provided.

7.6Output interface/DACs

In the output interface, encoded Y and C signals are converted from digital-to-analog in a 10-bit resolution. Y and C signals are also combined to a 10-bit CVBS signal.

The CVBS output occurs with the same processing delay (equal to 82 LLC clock periods, measured from MP input to the analog outputs) as the Y, C and RGB outputs.

Absolute amplitude at the input of the DAC for CVBS is reduced by 15¤16 with respect to Y and C DACs to make maximum use of conversion ranges.

Red, green and blue signals are also converted from digital-to-analog, each providing a 9-bit resolution.

Outputs of the DACs can be set together via software control to minimum output voltage (approximately 0.2 V DC) for either purpose. Alternatively, the buffers can be switched into 3-state output condition; this allows for ‘wired AND’ing with other 3-state outputs and can also be used as a power-save mode.

2000 Mar 08

11

Philips Semiconductors

Product specification

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

7.7Synchronization

The synchronization of the SAA7128H; SAA7129H is able to operate in two modes; slave mode and master mode.

In master mode (see Fig.19), the circuit generates all necessary timings in the video signal itself, and it can provide timing signals at the RCV1 and RCV2 ports.

In slave mode, it accepts timing information either from the RCV pins or from the embedded timing data of the ITU-R BT.656 data stream.

For the SAA7128H; SAA7129H, the only difference between master and slave mode is that it ignores the timing information at its inputs in master mode. Thus, if in slave mode, any timing information is missing, the IC will continue running free without a visible effect. But there must not be any additional pulses (with wrong phase) because the circuit will not ignore them.

In slave mode (see Fig.18), an interface circuit decides, which signal is expected at the RCV1 port and which information is taken from its active slope. The polarity can be chosen, if PRCV1 is logic 0 the rising slope will be active.

The signal can be:

A Vertical Sync (VS) pulse; the active slope sets the vertical phase

An odd/even signal; the active slope sets the vertical phase, the internal field flag to odd and optionally sets the horizontal phase

A Field Sequence (FSEQ) signal; it marks the first field of the 4 (NTSC), 8 (PAL) respectively 12 (SECAM) field sequence. In addition to the odd/even signal, it also sets the PAL phase and optionally defines the subcarrier phase.

On the RCV2 port, the IC can provide a horizontal pulse with programmable start and stop phase; this pulse can be inhibited in the vertical blanking period to build up, for example, a composite blanking signal.

The horizontal phase can be set via a separate input RCV2. In the event of VS pulses at RCV1, this is mandatory. It is also possible to set the signal path to blank via this input.

From the ITU-R BT.656 data stream, the SAA7128H; SAA7129H decodes only the start of the first line in the odd field. All other information is ignored and may miss. If this kind of slave mode is active, the RCV pins may be switched to output mode.

In slave mode, the horizontal trigger phase can be programmed to any point in the line, the vertical phase from line 0 to line 15 counted from the first serration pulse in half line steps.

Whenever synchronization information cannot be derived directly from the inputs, the SAA7128H; SAA7129H will calculate it from the internal horizontal, vertical and PAL phase. This gives good flexibility with respect to external synchronization but the circuit does not suppress illegal settings. In such an event, e.g the odd/even information may vanish as it does in the non-interlaced modes.

In master mode, the line lengths are fixed to 1728 clocks at 50 Hz and 1716 clocks at 60 Hz. To allow non-interlaced frames, the field lengths can be varied by

±0.5 lines. In the event of non-interlace, the SAA7128H; SAA7129H does not provide odd/even information and the output signal does not contain the PAL ‘Bruch sequence’.

At the RCV1 pin the IC can provide:

A Vertical Sync (VS) signal with 2.5 (50 Hz) or 3 (60 Hz) lines duration

An odd/even signal which is LOW in odd fields

A Field Sequence (FSEQ) signal which is HIGH in the first field of the 4, 8 respectively 12 field sequence.

At the RCV2 pin, there is a horizontal pulse of programmable phase and duration available. This pulse can be suppressed in the programmable inactive part of a field giving a composite blank signal.

The directions and polarities of the RCV ports can be chosen independently. Timing references can be found in Tables 52 and 60.

7.8Clock

The input to LLC1 can either be an external clock source or the buffered on-chip clock XCLK. The internal crystal oscillator can be run with either a 3rd-harmonic or a fundamental crystal.

7.9I2C-bus interface

The I2C-bus interface is a standard slave transceiver, supporting 7-bit slave addresses and 400 kbits/s guaranteed transfer rate. It uses 8-bit subaddressing with an auto-increment function. All registers are write and readable, except one read only status byte.

The I2C-bus slave address is defined as 88H with pin 21 (SA) tied LOW and as 8CH with pin 21 (SA) tied HIGH.

2000 Mar 08

12

Philips Semiconductors

Product specification

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

7.10Input levels and formats

The SAA7128H; SAA7129H expects digital Y, CB, CR data with levels (digital codes) in accordance with

“ITU-R BT.601”.

For C and CVBS outputs, deviating amplitudes of the colour difference signals can be compensated by independent gain control setting, while gain for luminance is set to predefined values, distinguishable for 7.5 IRE set-up or without set-up.

The RGB, respectively CR-Y-CB path features a gain setting individually for luminance (GY) and colour difference signals (GCD).

Reference levels are measured with a colour bar, 100% white, 100% amplitude and 100% saturation.

Table 1 “ITU-R BT.601” signal component levels

COLOUR

 

 

 

SIGNALS(1)

 

 

Y

CB

CR

 

R(2)

G(2)

B(2)

 

 

White

235

128

128

 

235

235

235

 

 

 

 

 

 

 

 

Yellow

210

16

146

 

235

235

16

 

 

 

 

 

 

 

 

Cyan

170

166

16

 

16

235

235

 

 

 

 

 

 

 

 

Green

145

54

34

 

16

235

16

 

 

 

 

 

 

 

 

Magenta

106

202

222

 

235

16

235

 

 

 

 

 

 

 

 

Red

81

90

240

 

235

16

16

 

 

 

 

 

 

 

 

Blue

41

240

110

 

16

16

235

 

 

 

 

 

 

 

 

Black

16

128

128

 

16

16

16

 

 

 

 

 

 

 

 

Notes

1.Transformation:

a)R = Y + 1.3707 × (CR 128)

b)G = Y 0.3365 × (CB 128) 0.6982 × (CR 128)

c)B = Y + 1.7324 × (CB 128).

2.Representation of R, G and B (or CR, Y and CB) at the output is 9 bits at 27 MHz.

Table 2 8-bit multiplexed format (similar to “ITU-R BT.601”)

TIME

 

 

 

 

 

 

 

BITS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample

CB0

 

Y0

 

CR0

 

Y1

 

CB2

 

Y2

 

CR2

 

Y3

Luminance pixel number

0

 

 

 

1

 

 

2

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Colour pixel number

 

 

 

0

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2000 Mar 08

13

08 Mar 2000

14

7.11Bit allocation map

Table 3 Slave receiver (slave address 88H)

REGISTER FUNCTION

SUBADDR

 

 

 

DATA BYTE (1)

 

 

 

 

 

D7

D6

D5

D4

D3

D2

D1

D0

 

 

 

 

 

 

 

 

 

 

Status byte (read only)

00H

VER2

VER1

VER0

CCRDO

CCRDE

0

FSEQ

O_E

 

 

 

 

 

 

 

 

 

 

Null

01H to 25H

0

0

0

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

Wide screen signal

26H

WSS7

WSS6

WSS5

WSS4

WSS3

WSS2

WSS1

WSS0

Wide screen signal

27H

WSSON

0

WSS13

WSS12

WSS11

WSS10

WSS9

WSS8

Real-time control, burst start

28H

DECCOL

DECFIS

BS5

BS4

BS3

BS2

BS1

BS0

 

 

 

 

 

 

 

 

 

 

Burst end

29H

0

0

BE5

BE4

BE3

BE2

BE1

BE0

 

 

 

 

 

 

 

 

 

 

Copy generation 0

2AH

CG07

CG06

CG05

CG04

CG03

CG02

CG01

CG00

 

 

 

 

 

 

 

 

 

 

Copy generation 1

2BH

CG15

CG14

CG13

CG12

CG11

CG10

CG09

CG08

 

 

 

 

 

 

 

 

 

 

CG enable, copy generation 2

2CH

CGEN

0

0

0

CG19

CG18

CG17

CG16

 

 

 

 

 

 

 

 

 

 

Output port control

2DH

CVBSEN1

CVBSEN0

CVBSTRI

YTRI

CTRI

RTRI

GTRI

BTRI

 

 

 

 

 

 

 

 

 

 

Null

2EH to 37H

0

0

0

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

Gain luminance for RGB

38H

0

0

0

GY4

GY3

GY2

GY1

GY0

 

 

 

 

 

 

 

 

 

 

Gain colour difference for RGB

39H

0

0

0

GCD4

GCD3

GCD2

GCD1

GCD0

Input port control 1

3AH

CBENB

0

0

SYMP

DEMOFF

CSYNC

MP2C

VP2C

Key colour 1 lower limit U

42H

KEY1LU7

KEY1LU6

KEY1LU5

KEY1LU4

KEY1LU3

KEY1LU2

KEY1LU1

KEY1LU0

 

 

 

 

 

 

 

 

 

 

Key colour 1 lower limit V

43H

KEY1LV7

KEY1LV6

KEY1LV5

KEY1LV4

KEY1LV3

KEY1LV2

KEY1LV1

KEY1LV0

 

 

 

 

 

 

 

 

 

 

Key colour 1 lower limit Y

44H

KEY1LY7

KEY1LY6

KEY1LY5

KEY1LY4

KEY1LY3

KEY1LY2

KEY1LY1

KEY1LY0

 

 

 

 

 

 

 

 

 

 

Key colour 2 lower limit U

45H

KEY2LU7

KEY2LU6

KEY2LU5

KEY2LU4

KEY2LU3

KEY2LU2

KEY2LU1

KEY2LU0

 

 

 

 

 

 

 

 

 

 

Key colour 2 lower limit V

46H

KEY2LV7

KEY2LV6

KEY2LV5

KEY2LV4

KEY2LV3

KEY2LV2

KEY2LV1

KEY2LV0

 

 

 

 

 

 

 

 

 

 

Key colour 2 lower limit Y

47H

KEY2LY7

KEY2LY6

KEY2LY5

KEY2LY4

KEY2LY3

KEY2LY2

KEY2LY1

KEY2LY0

 

 

 

 

 

 

 

 

 

 

Key colour 1 upper limit U

48H

KEY1UU7

KEY1UU6

KEY1UU5

KEY1UU4

KEY1UU3

KEY1UU2

KEY1UU1

KEY1UU0

 

 

 

 

 

 

 

 

 

 

Key colour 1 upper limit V

49H

KEY1UV7

KEY1UV6

KEY1UV5

KEY1UV4

KEY1UV3

KEY1UV2

KEY1UV1

KEY1UV0

 

 

 

 

 

 

 

 

 

 

Key colour 1 upper limit Y

4AH

KEY1UY7

KEY1UY6

KEY1UY5

KEY1UY4

KEY1UY3

KEY1UY2

KEY1UY1

KEY1UY0

Key colour 2 upper limit U

4BH

KEY2UU7

KEY2UU6

KEY2UU5

KEY2UU4

KEY2UU3

KEY2UU2

KEY2UU1

KEY2UU0

 

 

 

 

 

 

 

 

 

 

Key colour 2 upper limit V

4CH

KEY2UV7

KEY2UV6

KEY2UV5

KEY2UV4

KEY2UV3

KEY2UV2

KEY2UV1

KEY2UV0

 

 

 

 

 

 

 

 

 

 

Key colour 2 upper limit Y

4DH

KEY2UY7

KEY2UY6

KEY2UY5

KEY2UY4

KEY2UY3

KEY2UY2

KEY2UY1

KEY2UY0

 

 

 

 

 

 

 

 

 

 

Fade factor key colour 1

4EH

0

0

FADE15

FADE14

FADE13

FADE12

FADE11

FADE10

 

 

 

 

 

 

 

 

 

 

CFade, Fade factor key

4FH

CFADEM

CFADEV

FADE25

FADE24

FADE23

FADE22

FADE21

FADE20

colour 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

encoder video Digital

SAA7129H SAA7128H;

Semiconductors Philips

specification Product

2000

REGISTER FUNCTION

SUBADDR

 

 

 

DATA BYTE (1)

 

 

 

Mar

 

 

D7

D6

D5

D4

D3

D2

D1

D0

 

 

 

 

 

 

 

 

 

 

Fade factor other

50H

0

0

FADE35

FADE34

FADE33

FADE32

FADE31

FADE30

08

 

 

 

 

 

 

 

 

 

 

 

Look-up table key colour 2 U

51H

LUTU7

LUTU6

LUTU5

LUTU4

LUTU3

LUTU2

LUTU1

LUTU0

 

 

 

 

 

 

 

 

 

 

 

 

Look-up table key colour 2 V

52H

LUTV7

LUTV6

LUTV5

LUTV4

LUTV3

LUTV2

LUTV1

LUTV0

 

 

 

 

 

 

 

 

 

 

 

 

Look-up table key colour 2 Y

53H

LUTY7

LUTY6

LUTY5

LUTY4

LUTY3

LUTY2

LUTY1

LUTY0

 

VPS enable, input control 2

54H

VPSEN

0

ENCIN

RGBIN

DELIN

VPSEL

EDGE2

EDGE1

 

VPS byte 5

55H

VPS57

VPS56

VPS55

VPS54

VPS53

VPS52

VPS51

VPS50

 

VPS byte 11

56H

VPS117

VPS116

VPS115

VPS114

VPS113

VPS112

VPS111

VPS110

 

 

 

 

 

 

 

 

 

 

 

 

VPS byte 12

57H

VPS127

VPS126

VPS125

VPS124

VPS123

VPS122

VPS121

VPS120

 

 

 

 

 

 

 

 

 

 

 

 

VPS byte 13

58H

VPS137

VPS136

VPS135

VPS134

VPS133

VPS132

VPS131

VPS130

 

 

 

 

 

 

 

 

 

 

 

 

VPS byte 14

59H

VPS147

VPS146

VPS145

VPS144

VPS143

VPS142

VPS141

VPS140

 

 

 

 

 

 

 

 

 

 

 

 

Chrominance phase

5AH

CHPS7

CHPS6

CHPS5

CHPS4

CHPS3

CHPS2

CHPS1

CHPS0

 

 

 

 

 

 

 

 

 

 

 

 

Gain U

5BH

GAINU7

GAINU6

GAINU5

GAINU4

GAINU3

GAINU2

GAINU1

GAINU0

 

 

 

 

 

 

 

 

 

 

 

 

Gain V

5CH

GAINV7

GAINV6

GAINV5

GAINV4

GAINV3

GAINV2

GAINV1

GAINV0

 

 

 

 

 

 

 

 

 

 

 

 

Gain U MSB, real-time control,

5DH

GAINU8

DECOE

BLCKL5

BLCKL4

BLCKL3

BLCKL2

BLCKL1

BLCKL0

15

black level

 

 

 

 

 

 

 

 

 

 

Gain V MSB, real-time control,

5EH

GAINV8

DECPH

BLNNL5

BLNNL4

BLNNL3

BLNNL2

BLNNL1

BLNNL0

 

blanking level

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCR, blanking level VBI

5FH

CCRS1

CCRS0

BLNVB5

BLNVB4

BLNVB3

BLNVB2

BLNVB1

BLNVB0

 

 

 

 

 

 

 

 

 

 

 

 

Null

60H

0

0

0

0

0

0

0

0

 

Standard control

61H

DOWNB

DOWNA

INPI

YGS

SECAM

SCBW

PAL

FISE

 

RTC enable, burst amplitude

62H

RTCE

BSTA6

BSTA5

BSTA4

BSTA3

BSTA2

BSTA1

BSTA0

 

 

 

 

 

 

 

 

 

 

 

 

Subcarrier 0

63H

FSC07

FSC06

FSC05

FSC04

FSC03

FSC02

FSC01

FSC00

 

 

 

 

 

 

 

 

 

 

 

 

Subcarrier 1

64H

FSC15

FSC14

FSC13

FSC12

FSC11

FSC10

FSC09

FSC08

 

 

 

 

 

 

 

 

 

 

 

 

Subcarrier 2

65H

FSC23

FSC22

FSC21

FSC20

FSC19

FSC18

FSC17

FSC16

 

 

 

 

 

 

 

 

 

 

 

 

Subcarrier 3

66H

FSC31

FSC30

FSC29

FSC28

FSC27

FSC26

FSC25

FSC24

 

 

 

 

 

 

 

 

 

 

 

 

Line 21 odd 0

67H

L21O07

L21O06

L21O05

L21O04

L21O03

L21O02

L21O01

L21O00

 

 

 

 

 

 

 

 

 

 

 

 

Line 21 odd 1

68H

L21O17

L21O16

L21O15

L21O14

L21O13

L21O12

L21O11

L21O10

 

 

 

 

 

 

 

 

 

 

 

 

Line 21 even 0

69H

L21E07

L21E06

L21E05

L21E04

L21E03

L21E02

L21E01

L21E00

 

Line 21 even 1

6AH

L21E17

L21E16

L21E15

L21E14

L21E13

L21E12

L21E11

L21E10

 

RCV port control

6BH

SRCV11

SRCV10

TRCV2

ORCV1

PRCV1

CBLF

ORCV2

PRCV2

 

 

 

 

 

 

 

 

 

 

 

 

Trigger control

6CH

HTRIG7

HTRIG6

HTRIG5

HTRIG4

HTRIG3

HTRIG2

HTRIG1

HTRIG0

 

 

 

 

 

 

 

 

 

 

 

encoder video Digital

SAA7129H SAA7128H;

Semiconductors Philips

specification Product

2000

REGISTER FUNCTION

SUBADDR

 

 

 

DATA BYTE (1)

 

 

 

Mar

 

 

D7

D6

D5

D4

D3

D2

D1

D0

 

 

 

 

 

 

 

 

 

 

Trigger control

6DH

HTRIG10

HTRIG9

HTRIG8

VTRIG4

VTRIG3

VTRIG2

VTRIG1

VTRIG0

08

 

 

 

 

 

 

 

 

 

 

 

Multi control

6EH

SBLBN

BLCKON

PHRES1

PHRES0

LDEL1

LDEL0

FLC1

FLCO

 

 

 

 

 

 

 

 

 

 

 

 

Closed caption, teletext enable

6FH

CCEN1

CCEN0

TTXEN

SCCLN4

SCCLN3

SCCLN2

SCCLN1

SCCLN0

 

 

 

 

 

 

 

 

 

 

 

 

RCV2 output start

70H

RCV2S7

RCV2S6

RCV2S5

RCV2S4

RCV2S3

RCV2S2

RCV2S1

RCV2S0

 

RCV2 output end

71H

RCV2E7

RCV2E6

RCV2E5

RCV2E4

RCV2E3

RCV2E2

RCV2E1

RCV2E0

 

MSBs RCV2 output

72H

0

RCV2E10

RCV2E9

RCV2E8

0

RCV2S10

RCV2S9

RCV2S8

 

TTX request H start

73H

TTXHS7

TTXHS6

TTXHS5

TTXHS4

TTXHS3

TTXHS2

TTXHS1

TTXHS0

 

 

 

 

 

 

 

 

 

 

 

 

TTX request H delay

74H

TTXHD7

TTXHD6

TTXHD5

TTXHD4

TTXHD3

TTXHD2

TTXHD1

TTXHD0

 

 

 

 

 

 

 

 

 

 

 

 

CSYNC advance, Vsync shift

75H

CSYNCA4

CSYNCA3

CSYNCA2

CSYNCA1

CSYNCA0

VS_S2

VS_S1

VS_S0

 

 

 

 

 

 

 

 

 

 

 

 

TTX odd request vertical start

76H

TTXOVS7

TTXOVS6

TTXOVS5

TTXOVS4

TTXOVS3

TTXOVS2

TTXOVS1

TTXOVS0

 

 

 

 

 

 

 

 

 

 

 

 

TTX odd request vertical end

77H

TTXOVE7

TTXOVE6

TTXOVE5

TTXOVE4

TTXOVE3

TTXOVE2

TTXOVE1

TTXOVE0

 

 

 

 

 

 

 

 

 

 

 

 

TTX even request vertical start

78H

TTXEVS7

TTXEVS6

TTXEVS5

TTXEVS4

TTXEVS3

TTXEVS2

TTXEVS1

TTXEVS0

 

 

 

 

 

 

 

 

 

 

 

 

TTX even request vertical end

79H

TTXEVE7

TTXEVE6

TTXEVE5

TTXEVE4

TTXEVE3

TTXEVE2

TTXEVE1

TTXEVE0

 

 

 

 

 

 

 

 

 

 

 

 

First active line

7AH

FAL7

FAL6

FAL5

FAL4

FAL3

FAL2

FAL1

FAL0

16

Last active line

7BH

LAL7

LAL6

LAL5

LAL4

LAL3

LAL2

LAL1

LAL0

 

TTX mode, MSB vertical

7CH

TTX60

LAL8

TTXO

FAL8

TTXEVE8

TTXOVE8

TTXEVS8

TTXOVS8

 

Null

7DH

0

0

0

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

Disable TTX line

7EH

LINE12

LINE11

LINE10

LINE9

LINE8

LINE7

LINE6

LINE5

 

 

 

 

 

 

 

 

 

 

 

 

Disable TTX line

7FH

LINE20

LINE19

LINE18

LINE17

LINE16

LINE15

LINE14

LINE13

 

 

 

 

 

 

 

 

 

 

 

Note

1. All bits labelled ‘0’ are reserved. They must be programmed with logic 0.

encoder video Digital

SAA7129H SAA7128H;

Semiconductors Philips

specification Product

Philips Semiconductors

 

 

 

 

 

 

Product specification

 

 

 

 

 

 

 

 

 

 

 

Digital video encoder

SAA7128H; SAA7129H

 

 

 

 

 

 

 

 

 

 

 

7.12

I2C-bus format

 

 

 

 

 

 

 

 

 

Table 4 I2C-bus address; see Table 5

 

 

 

 

 

S

SLAVE ADDRESS

ACK

SUBADDRESS

ACK

DATA 0

ACK

--------

DATA n

ACK

P

 

 

 

 

 

 

 

 

 

 

 

Table 5 Explanation of Table 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART

 

 

 

DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

S

 

START condition

 

 

 

 

 

 

 

 

 

 

 

 

SLAVE ADDRESS

1000 100X or 1000 110X; note 1

 

 

 

 

 

 

 

 

 

 

 

 

 

ACK

 

acknowledge, generated by the slave

 

 

 

 

 

 

 

 

 

 

 

 

SUBADDRESS; note 2

subaddress byte

 

 

 

 

 

 

 

 

 

 

 

 

 

DATA

 

data byte

 

 

 

 

 

 

 

 

 

 

 

 

 

--------

 

continued data bytes and ACKs

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

STOP condition

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes

1.X is the read/write control bit; X = logic 0 is order to write; X = logic 1 is order to read.

2.If more than 1 byte DATA is transmitted, then auto-increment of the subaddress is performed.

7.13 Slave receiver

 

Table 6

Subaddress 26H

 

 

 

 

 

BIT

 

SYMBOL

DESCRIPTION

 

 

 

 

7

 

WSS7

Wide screen signalling bits: enhanced services field.

 

 

 

 

6

 

WSS6

 

 

 

 

 

5

 

WSS5

 

 

 

 

 

4

 

WSS4

 

 

 

 

 

3

 

WSS3

Wide screen signalling bits: aspect ratio field.

 

 

 

 

2

 

WSS2

 

 

 

 

 

1

 

WSS1

 

 

 

 

 

0

 

WSS0

 

 

 

 

 

Table 7

Subaddress 27H

 

 

 

 

 

BIT

 

SYMBOL

DESCRIPTION

 

 

 

 

7

 

WSSON

0 = wide screen signalling output is disabled; default state after reset

 

 

 

1 = wide screen signalling output is enabled

 

 

 

 

6

 

This bit is reserved and must be set to logic 0.

 

 

 

 

5

 

WSS13

Wide screen signalling bits: reserved field.

 

 

 

 

4

 

WSS12

 

 

 

 

 

3

 

WSS11

 

 

 

 

 

2

 

WSS10

Wide screen signalling bits: subtitles field.

 

 

 

 

1

 

WSS9

 

 

 

 

 

0

 

WSS8

 

 

 

 

 

2000 Mar 08

17

Loading...
+ 39 hidden pages