Philips phd3n20l DATASHEETS

Philips Semiconductors Product specification
PowerMOS transistor PHD3N20L Logic level FET

GENERAL DESCRIPTION QUICK REFERENCE DATA

N-channel enhancement mode logic SYMBOL PARAMETER MAX. UNIT level field-effectpowertransistorina plastic envelope suitable for surface V mounting featuring high avalanche I energy capability, stable blocking P voltage, fast switching and high R thermalcyclingperformancewithlow
DS
D
tot
DS(ON)
thermal resistance. Intended for use in Switched Mode Power Supplies (SMPS), motor control circuits and general purpose switching applications.

PINNING - SOT428 PIN CONFIGURATION SYMBOL

PIN DESCRIPTION
tab
d
1 gate 2 drain
g
3 source
tab drain
2
1
3
s

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
I
D
I
DM
P
D
PD/TmbLinear derating factor Tmb > 25 ˚C - 0.33 W/K V
GS
V
GSM
E
AS
I
AS
Tj, T
Continuous drain current Tmb = 25 ˚C; VGS = 10 V - 3.5 A
Tmb = 100 ˚C; VGS = 10 V - 2.5 A Pulsed drain current Tmb = 25 ˚C - 14 A Total dissipation Tmb = 25 ˚C - 50 W
Gate-source voltage - ± 15 V Non-repetitive gate-source tp 50 µs-± 20 V voltage Single pulse avalanche VDD 50 V; starting Tj = 25˚C; RGS = 50 ; - 25 mJ energy VGS = 5 V Peak avalanche current VDD 50 V; starting Tj = 25˚C; RGS = 50 ; - 3.5 A
VGS = 5 V Operating junction and - 55 175 ˚C
stg
storage temperature range

THERMAL RESISTANCES

SYMBOL PARAMETER CONDITIONS TYP. MAX. UNIT

R
th j-mb
R
th j-a
September 1997 1 Rev 1.000
Thermal resistance junction to - 3 K/W mounting base Thermal resistance junction to pcb mounted, minimum 50 - K/W ambient footprint
Philips Semiconductors Product specification
PowerMOS transistor PHD3N20L Logic level FET

ELECTRICAL CHARACTERISTICS

Tj = 25 ˚C unless otherwise specified
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
(BR)DSS
V
(BR)DSS
T
j
R
DS(ON)
V
GS(TO)
g
fs
I
DSS
I
GSS
Q
g(tot)
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
d
L
s
C
iss
C
oss
C
rss
Drain-source breakdown VGS = 0 V; ID = 0.25 mA 200 - - V voltage
/ Drain-source breakdown VDS = VGS; ID = 0.25 mA - 0.25 - V/K
voltage temperature coefficient Drain-source on resistance VGS = 5 V; ID = 2 A - 0.77 1.5 Gate threshold voltage VDS = VGS; ID = 0.25 mA 1.0 1.5 2.0 V Forward transconductance VDS = 50 V; ID = 2 A 0.8 3.0 - S Drain-source leakage current VDS = 200 V; VGS = 0 V - 0.1 25 µA
VDS = 160 V; VGS = 0 V; Tj = 150 ˚C - 1 250 µA
Gate-source leakage current VGS = ±15 V; VDS = 0 V - 10 100 nA Total gate charge ID = 3.3 A; V
Gate-source charge - 1 3 nC
= 160 V; VGS = 5 V - 7.5 9 nC
DD
Gate-drain (Miller) charge - 4 6 nC Turn-on delay time VDD = 100 V; ID = 3.3 A; - 8 - ns
Turn-on rise time RG = 24 ; RD = 30 -33-ns Turn-off delay time - 40 - ns Turn-off fall time - 36 - ns
Internal drain inductance Measured from tab to centre of die - 3.5 - nH Internal source inductance Measured from source lead solder - 7.5 - nH
point to source bond pad
Input capacitance VGS = 0 V; VDS = 25 V; f = 1 MHz - 270 - pF Output capacitance - 48 - pF Feedback capacitance - 17 - pF

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Tj = 25 ˚C unless otherwise specified
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
I
S
I
SM
V
SD
t
rr
Q
rr
Continuous source current Tmb = 25˚C - - 3.5 A (body diode) Pulsed source current (body Tmb = 25˚C - - 14 A diode) Diode forward voltage IS = 3.3 A; VGS = 0 V - - 1.5 V
Reverse recovery time IS = 3.3 A; VGS = 0 V; - 90 - ns
dI/dt = 100 A/µs
Reverse recovery charge - 0.5 - µC
September 1997 2 Rev 1.000
Philips Semiconductors Product specification
PowerMOS transistor PHD3N20L Logic level FET
PD%
120 110 100
90 80 70 60 50 40 30 20 10
0
0 20 40 60 80 100 120 140 160 180
Normalised Power Derating
Tmb / C
Fig.1. Normalised power dissipation.
PD% = 100⋅PD/P
ID%
120 110 100
90 80 70 60 50 40 30 20 10
0
0 20 40 60 80 100 120 140 160 180
Tmb / C
= f(Tmb)
D 25 ˚C
Normalised Current Derating
Fig.2. Normalised continuous drain current.
ID% = 100⋅ID/I
= f(Tmb); conditions: VGS ≥ 5 V
D 25 ˚C
Zth j-mb, Transient Thermal Impedance (K/W)
10
0.5
1
0.2
0.1
0.05
0.1
0.01
0.02
0
1us
10us 1ms
tp, pulse widtht (s)
t
P
p
D
T
0.1s
D =
t
p
T
t
1s10ms100us
Fig.4. Transient thermal impedance.
Z
= f(t); parameter D = tp/T
th j-mb
ID, Drain current (Amps)
8 7
Tj = 25 C
6 5 4 3 2 1 0
0 5 10 15 20 25 30
VDS, Drain-Source voltage (Volts)
5 V
10 V
Fig.5. Typical output characteristics
ID = f(VDS); parameter V
PHP2N20L
3.5 V
3 V
VGS = 2.5 V
.
GS
10s
4 V
ID, Drain current (Amps)
100
10
RDS(ON) = VDS/ID
1
0.1 1 10 100 1000
VDS, Drain-source voltage (Volts)
DC
Fig.3. Safe operating area. Tmb = 25 ˚C
ID & IDM = f(VDS); IDM single pulse; parameter t
PHP2N20E
tp = 10 us
100 us
1 ms 10 ms
100 ms
RDS(on), Drain-Source on resistance (Ohms)
4
3
2
1
0
012345678
2.5 V
Tj = 25 C
ID, Drain current (Amps)
3 V 3.5 V 4 V
Fig.6. Typical on-state resistance
R
p
= f(ID); parameter V
DS(ON)
PHP2N20L
5 V
VGS = 10 V
.
GS
September 1997 3 Rev 1.000
Loading...
+ 4 hidden pages