Philips Semiconductors Preliminary specification
TrenchMOS transistor PHD24N03LT
Logic level FET
FEATURES SYMBOL QUICK REFERENCE DATA
• ’Trench’ technology V
d
= 30 V
DSS
• Very low on-state resistance
• Fast switching I
= 24 A
D
• Stable off-state characteristics
• High thermal cycling performance R
g
≤ 56 mΩ (VGS = 5 V)
DS(ON)
• Low thermal resistance
s
R
≤ 50 mΩ (VGS = 10 V)
DS(ON)
GENERAL DESCRIPTION PINNING SOT428 (DPAK)
N-channel enhancement mode, PIN DESCRIPTION
logic level, field-effect power
transistor in a plastic envelope 1 gate
using ’trench’ technology. The
device has very low on-state 2 drain
1
resistance. It is intended for use in
dc to dc converters and general 3 source
purpose switching applications.
tab drain
ThePHD24N03LTissuppliedinthe
SOT428 (DPAK) surface mounting
package.
tab
2
1
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
3
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DSS
V
DGR
V
GS
I
D
Drain-source voltage Tj = 25 ˚C to 175˚C - 30 V
Drain-gate voltage Tj = 25 ˚C to 175˚C; RGS = 20 kΩ -30V
Gate-source voltage - ± 13 V
Continuous drain current Tmb = 25 ˚C - 24 A
Tmb = 100 ˚C - 20 A
I
DM
P
D
Tj, T
Pulsed drain current Tmb = 25 ˚C - 96 A
Total power dissipation Tmb = 25 ˚C - 60 W
Operating junction and - 55 175 ˚C
stg
storage temperature
THERMAL RESISTANCES
SYMBOL PARAMETER CONDITIONS TYP. MAX. UNIT
R
th j-mb
R
th j-a
1 it is not possible to make connection to pin 2 of the SOT428 package.
Thermal resistance junction - 2.5 K/W
to mounting base
Thermal resistance junction pcb mounted, minimum footprint 50 - K/W
to ambient
December 1999 1 Rev 1.100
Philips Semiconductors Preliminary specification
TrenchMOS transistor PHD24N03LT
Logic level FET
ELECTRICAL CHARACTERISTICS
Tj= 25˚C unless otherwise specified
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
(BR)DSS
V
GS(TO)
R
DS(ON)
I
GSS
I
DSS
Q
g(tot)
Q
gs
Q
gd
t
d on
t
r
t
d off
t
f
L
d
L
s
C
iss
C
oss
C
rss
Drain-source breakdown VGS = 0 V; ID = 0.25 mA; 30 - - V
voltage Tj = -55˚C 27 - - V
Gate threshold voltage VDS = VGS; ID = 1 mA 1.0 1.5 2.0 V
Tj = 175˚C 0.5 - - V
Tj = -55˚C - - 2.3 V
Drain-source on-state VGS = 10 V; ID = 12 A - 50 56 mΩ
resistance VGS = 5 V; ID = 12 A - 45 50 mΩ
Tj = 175˚C - - 104 mΩ
Gate source leakage current VGS = ±5 V; VDS = 0 V - 10 100 nA
Zero gate voltage drain VDS = 30 V; VGS = 0 V; - 0.05 10 µA
current Tj = 175˚C - - 500 µA
Total gate charge ID = 24 A; V
= 15 V; VGS = 5 V - 7 - nC
DD
Gate-source charge - 2.3 - nC
Gate-drain (Miller) charge - 5 - nC
Turn-on delay time VDD = 15 V; RD = 0.6 Ω; - 12 - ns
Turn-on rise time VGS = 5 V; RG = 10 Ω -50-ns
Turn-off delay time Resistive load - 30 - ns
Turn-off fall time - 36 - ns
Internal drain inductance Measured from tab to centre of die - 3.5 - nH
Internal source inductance Measured from source lead to source - 7.5 - nH
bond pad
Input capacitance VGS = 0 V; VDS = 25 V; f = 1 MHz - 460 - pF
Output capacitance - 144 - pF
Feedback capacitance - 78 - pF
REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS
Tj = 25˚C unless otherwise specified
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
I
S
Continuous source current - - 24 A
(body diode)
I
SM
Pulsed source current (body - - 96 A
diode)
V
SD
t
rr
Q
rr
Diode forward voltage IF = 24 A; VGS = 0 V - 1.05 1.5 V
Reverse recovery time IF = 12 A; -dIF/dt = 100 A/µs; - 50 - ns
Reverse recovery charge VGS = 0 V; VR = 30 V - 100 - nC
AVALANCHE LIMITING VALUE
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
W
DSS
December 1999 2 Rev 1.100
Drain-source non-repetitive ID = 12 A; VDD ≤ 15 V; VGS = 5 V; - 15 mJ
unclamped inductive turn-off RGS = 50 Ω; Tmb = 25 ˚C
energy
Philips Semiconductors Preliminary specification
TrenchMOS transistor PHD24N03LT
Logic level FET
PD%
120
110
100
90
80
70
60
50
40
30
20
10
0
0 20 40 60 80 100 120 140 160 180
Normalised Power Derating
Tmb / C
Fig.1. Normalised power dissipation.
PD% = 100⋅PD/P
ID%
120
110
100
90
80
70
60
50
40
30
20
10
0
0 20 40 60 80 100 120 140 160 180
Tmb / C
= f(Tmb)
D 25 ˚C
Normalised Current Derating
Fig.2. Normalised continuous drain current.
ID% = 100⋅ID/I
= f(Tmb); conditions: VGS ≥ 5 V
D 25 ˚C
p
t
T
PHP24N03T
p
t
D =
T
t
Transient thermal impedance, Zth j-mb (K/W)
10
D =
0.5
1
0.2
0.1
0.05
0.1
0.02
0
0.01
1us 10us 100us 1ms 10ms 0.1s 1s 10s
pulse width, tp (s)
P
D
Fig.4. Transient thermal impedance.
Z
= f(t); parameter D = tp/T
th j-mb
ID, Drain current (Amps)
20
5 V
15 V
15
10
5
0
0 5 10 15 20 25 30
VDS, Drain-Source voltage (Volts)
PHP24N03LT
3.5 V
3 V
VGS = 2.5 V
Tj = 25 C
Fig.5. Typical output characteristics, Tj = 25 ˚C.
ID = f(VDS); parameter V
GS
ID, Drain current (Amps)
100
RDS(ON) = VDS/ID
10
DC
Tmb = 25 C
1
1 10 100
VDS, Drain-source voltage (Volts)
PHP24N03T
10 us
100 us
1 ms
10 ms
Fig.3. Safe operating area. Tmb = 25 ˚C
ID & IDM = f(VDS); IDM single pulse; parameter t
RDS(on), Drain-Source on resistance (Ohms)
0.12
0.1
0.08
0.06
0.04
0.02
VGS = 2.5 V
Tj = 25 C
0
0 5 10 15 20
ID, Drain current (Amps)
Fig.6. Typical on-state resistance, Tj = 25 ˚C.
R
p
= f(ID); parameter V
DS(ON)
PHP24N03LT
3 V
3.5 V
5 V
15 V
GS
December 1999 3 Rev 1.100