Philips PCA82C250-N4, PCA82C250T-N4 Datasheet

0 (0)

INTEGRATED CIRCUITS

DATA SHEET

PCA82C250

CAN controller interface

Product specification

2000 Jan 13

Supersedes data of 1997 Oct 21

File under Integrated Circuits, IC18

Philips Semiconductors

Product specification

 

 

CAN controller interface

PCA82C250

 

 

 

 

FEATURES

Fully compatible with the “ISO 11898” standard

High speed (up to 1 Mbaud)

Bus lines protected against transients in an automotive environment

Slope control to reduce Radio Frequency Interference (RFI)

Differential receiver with wide common-mode range for high immunity against ElectroMagnetic Interference (EMI)

Thermally protected

Short-circuit proof to battery and ground

Low-current standby mode

An unpowered node does not disturb the bus lines

At least 110 nodes can be connected.

QUICK REFERENCE DATA

APPLICATIONS

High-speed applications (up to 1 Mbaud) in cars.

GENERAL DESCRIPTION

The PCA82C250 is the interface between the CAN protocol controller and the physical bus. The device provides differential transmit capability to the bus and differential receive capability to the CAN controller.

SYMBOL

 

PARAMETER

CONDITIONS

MIN.

MAX.

UNIT

 

 

 

 

 

 

 

VCC

supply voltage

 

4.5

5.5

V

ICC

supply current

standby mode

170

μA

1/tbit

maximum transmission speed

non-return-to-zero

1

Mbaud

VCAN

CANH, CANL input/output voltage

 

8

+18

V

Vdiff

differential bus voltage

 

1.5

3.0

V

tPD

propagation delay

high-speed mode

50

ns

Tamb

ambient temperature

 

40

+125

°C

ORDERING INFORMATION

 

 

 

 

 

 

 

 

 

 

 

 

TYPE

 

 

PACKAGE

 

 

 

 

 

 

 

 

 

NUMBER

NAME

 

DESCRIPTION

 

 

CODE

 

 

 

 

 

 

 

 

 

 

PCA82C250

DIP8

plastic dual in-line package; 8 leads (300 mil)

 

 

SOT97-1

 

 

 

 

 

PCA82C250T

SO8

plastic small outline package; 8 leads; body width 3.9 mm

 

SOT96-1

 

 

 

 

 

 

PCA82C250U

bare die; 2790 × 1780 × 380 μm

 

 

 

 

 

 

 

 

 

2000 Jan 13

2

Philips PCA82C250-N4, PCA82C250T-N4 Datasheet

Philips Semiconductors

Product specification

 

 

CAN controller interface

PCA82C250

 

 

BLOCK DIAGRAM

 

 

 

VCC

 

 

 

3

 

1

 

PROTECTION

 

TXD

 

 

 

8

SLOPE/

DRIVER

 

 

 

Rs

STANDBY

HS

 

 

 

 

 

 

7

4

 

 

CANH

 

RECEIVER

 

RXD

 

6

 

 

 

 

 

 

CANL

5

REFERENCE

 

 

Vref

VOLTAGE

PCA82C250

 

 

 

2

 

 

 

GND

MKA669

 

 

Fig.1

Block diagram.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PINNING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYMBOL

PIN

DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TXD

1

transmit data input

 

 

handbook, halfpage

 

 

 

 

GND

2

ground

 

 

TXD

1

 

8

Rs

 

 

 

 

 

 

 

 

 

 

VCC

3

supply voltage

 

 

GND

2

PCA82C250

7

CANH

RXD

4

receive data output

 

 

VCC

3

6

CANL

 

 

 

 

 

 

 

 

 

Vref

5

reference voltage output

 

 

 

RXD

4

 

5

Vref

CANL

6

LOW-level CAN voltage

 

 

 

 

 

 

 

 

 

 

 

 

input/output

 

 

 

 

MKA670

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANH

7

HIGH-level CAN voltage

 

 

 

 

 

 

 

 

 

input/output

 

 

Fig.2

Pin configuration.

 

 

 

 

 

Rs

8

slope resistor input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2000 Jan 13

3

Philips Semiconductors

Product specification

 

 

CAN controller interface

PCA82C250

 

 

FUNCTIONAL DESCRIPTION

The PCA82C250 is the interface between the CAN protocol controller and the physical bus. It is primarily intended for high-speed applications (up to 1 Mbaud) in cars. The device provides differential transmit capability to the bus and differential receive capability to the CAN controller. It is fully compatible with the “ISO 11898” standard.

A current limiting circuit protects the transmitter output stage against short-circuit to positive and negative battery voltage. Although the power dissipation is increased during this fault condition, this feature will prevent destruction of the transmitter output stage.

If the junction temperature exceeds a value of approximately 160 °C, the limiting current of both transmitter outputs is decreased. Because the transmitter is responsible for the major part of the power dissipation, this will result in a reduced power dissipation and hence a lower chip temperature. All other parts of the IC will remain in operation. The thermal protection is particularly needed when a bus line is short-circuited.

The CANH and CANL lines are also protected against electrical transients which may occur in an automotive environment.

Pin 8 (Rs) allows three different modes of operation to be selected: high-speed, slope control or standby.

For high-speed operation, the transmitter output transistors are simply switched on and off as fast as possible. In this mode, no measures are taken to limit the rise and fall slope. Use of a shielded cable is recommended to avoid RFI problems. The high-speed mode is selected by connecting pin 8 to ground.

For lower speeds or shorter bus length, an unshielded twisted pair or a parallel pair of wires can be used for the bus. To reduce RFI, the rise and fall slope should be limited. The rise and fall slope can be programmed with a resistor connected from pin 8 to ground. The slope is proportional to the current output at pin 8.

If a HIGH level is applied to pin 8, the circuit enters a low current standby mode. In this mode, the transmitter is switched off and the receiver is switched to a low current. If dominant bits are detected (differential bus voltage >0.9 V), RXD will be switched to a LOW level.

The microcontroller should react to this condition by switching the transceiver back to normal operation (via pin 8). Because the receiver is slow in standby mode, the first message will be lost.

Table 1 Truth table of the CAN transceiver

SUPPLY

 

TXD

CANH

CANL

 

BUS STATE

 

RXD

 

 

 

 

 

 

 

 

 

4.5 to 5.5 V

 

0

HIGH

LOW

 

dominant

 

0

 

 

 

 

 

 

 

 

 

4.5 to 5.5 V

 

1 (or floating)

floating

floating

 

recessive

 

1

 

 

 

 

 

 

 

 

 

<2 V (not powered)

 

X(1)

floating

floating

 

recessive

 

X(1)

2 V < V

CC

< 4.5 V

 

>0.75V

floating

floating

 

recessive

 

X(1)

 

 

 

CC

 

 

 

 

 

 

2 V < VCC < 4.5 V

 

X(1)

floating if

floating if

 

recessive

 

X(1)

 

 

 

 

 

VRs > 0.75VCC

VRs > 0.75VCC

 

 

 

Note

 

 

 

 

 

 

 

 

 

 

1. X = don’t care.

 

 

 

 

 

 

 

Table 2 Pin Rs summary

 

 

 

 

 

 

 

 

 

 

CONDITION FORCED AT PIN Rs

MODE

RESULTING VOLTAGE OR CURRENT AT PIN Rs

 

 

 

 

 

 

 

 

 

 

VRs > 0.75VCC

standby

 

 

IRs < ï10 mAï

 

 

-10 mA < IRs < -200 mA

slope control

 

0.4VCC < VRs < 0.6VCC

 

 

 

VRs < 0.3VCC

high-speed

 

 

IRs < -500 mA

 

2000 Jan 13

4

Philips Semiconductors

Product specification

 

 

CAN controller interface

PCA82C250

 

 

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); all voltages are referenced to pin 2; positive input current.

SYMBOL

PARAMETER

CONDITIONS

MIN.

MAX.

UNIT

 

 

 

 

 

 

VCC

supply voltage

 

0.3

+9.0

V

Vn

DC voltage at pins 1, 4, 5 and 8

 

0.3

VCC + 0.3

V

V6, 7

DC voltage at pins 6 and 7

0 V < VCC < 5.5 V;

8.0

+18.0

V

 

 

no time limit

 

 

 

 

 

 

 

 

 

Vtrt

transient voltage at pins 6 and 7

see Fig.8

150

+100

V

Tstg

storage temperature

 

55

+150

°C

Tamb

ambient temperature

 

40

+125

°C

Tvj

virtual junction temperature

note 1

40

+150

°C

Vesd

electrostatic discharge voltage

note 2

2000

+2000

V

 

 

note 3

200

+200

V

 

 

 

 

 

 

Notes

1.In accordance with “IEC 60747-1”. An alternative definition of virtual junction temperature is:

Tvj = Tamb + Pd × Rth(vj-a), where Rth(j-a) is a fixed value to be used for the calculation of Tvj. The rating for Tvj limits the allowable combinations of power dissipation (Pd) and ambient temperature (Tamb).

2.Classification A: human body model; C = 100 pF; R = 1500 Ω; V = ±2000 V.

3.Classification B: machine model; C = 200 pF; R = 25 Ω; V = ±200 V.

THERMAL CHARACTERISTICS

SYMBOL

PARAMETER

CONDITIONS

VALUE

UNIT

 

 

 

 

 

Rth(j-a)

thermal resistance from junction to ambient

in free air

 

 

 

PCA82C250

 

100

K/W

 

PCA82C250T

 

160

K/W

 

 

 

 

 

QUALITY SPECIFICATION

According to “SNW-FQ-611 part E”.

2000 Jan 13

5

Philips Semiconductors

Product specification

 

 

CAN controller interface

PCA82C250

 

 

CHARACTERISTICS

VCC = 4.5 to 5.5 V; Tamb = -40 to +125 °C; RL = 60 W; I8 > -10 mA; unless otherwise specified; all voltages referenced to ground (pin 2); positive input current; all parameters are guaranteed over the ambient temperature range by design, but only 100% tested at +25 °C.

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

 

 

 

 

 

 

 

Supply

 

 

 

 

 

 

 

 

 

 

 

 

 

I3

supply current

dominant; V1 = 1 V

-

-

70

mA

 

 

recessive; V1 = 4 V;

-

-

14

mA

 

 

R8 = 47 kW

 

 

 

 

 

 

recessive; V1 = 4 V;

-

-

18

mA

 

 

V8 = 1 V

 

 

 

 

 

 

standby; Tamb < 90 °C;

-

100

170

mA

 

 

note 1

 

 

 

 

 

 

 

 

 

 

 

DC bus transmitter

 

 

 

 

 

 

 

 

 

 

 

 

VIH

HIGH-level input voltage

output recessive

0.7VCC

-

VCC + 0.3

V

VIL

LOW-level input voltage

output dominant

-0.3

-

0.3VCC

V

IIH

HIGH-level input current

V1 = 4 V

-200

-

+30

mA

IIL

LOW-level input current

V1 = 1 V

-100

-

-600

mA

V6,7

recessive bus voltage

V1 = 4 V; no load

2.0

-

3.0

V

ILO

off-state output leakage current

-2 V < (V6,V7) < 7 V

-2

-

+1

mA

 

 

-5 V < (V6,V7) < 18 V

-5

-

+12

mA

V7

CANH output voltage

V1 = 1 V

2.75

-

4.5

V

V6

CANL output voltage

V1 = 1 V

0.5

-

2.25

V

DV6, 7

difference between output

V1 = 1 V

1.5

-

3.0

V

 

voltage at pins 6 and 7

V1 = 1 V; RL = 45 W;

1.5

-

-

V

 

 

VCC ³ 4.9 V

 

 

 

 

 

 

V1 = 4 V; no load

-500

-

+50

mV

Isc7

short-circuit CANH current

V7 = -5 V; VCC £ 5 V

-

-

-105

mA

 

 

V7 = -5 V; VCC = 5.5 V

-

-

-120

mA

Isc6

short-circuit CANL current

V6 = 18 V

-

-

160

mA

DC bus receiver: V1 = 4 V; pins 6 and 7 externally driven; -2 V < (V6, V7) < 7 V; unless otherwise specified

Vdiff(r)

differential input voltage

 

 

-1.0

-

+0.5

V

 

(recessive)

-7 V < (V6, V7) < 12 V;

-1.0

-

+0.4

V

 

 

not standby mode

 

 

 

 

 

 

 

 

 

 

 

 

Vdiff(d)

differential input voltage

 

 

0.9

-

5.0

V

 

(dominant)

-7 V < (V6, V7) < 12 V;

1.0

-

5.0

V

 

 

not standby mode

 

 

 

 

 

 

 

 

 

 

 

Vdiff(hys)

differential input hysteresis

see Fig.5

-

150

-

mV

VOH

HIGH-level output voltage

I4

= -100 mA

0.8VCC

-

VCC

V

 

(pin 4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOL

LOW-level output voltage (pin 4)

I4

= 1 mA

0

-

0.2VCC

V

 

 

I4

= 10 mA

0

-

1.5

V

Ri

CANH, CANL input resistance

 

 

5

-

25

kW

2000 Jan 13

6

Loading...
+ 14 hidden pages