Copyright 2004 Philips Consumer Electronics B.V. Eindhoven, The Netherlands.
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, electronic,
mechanical, photocopying, or otherwise without the prior permission of Philips.
Top Control Panel(Diagram E)5253
EMC Filter Panel(Diagram EMC) 5455
LED and Switch Panel (Diagram J)5657
8. Alignments59
9. Circuit Descriptions 63
Abbreviation List68
IC Data Sheets70
10 Spare Parts List73
11 Revision List79
Published by WO 0469 Service PaCEPrinted in the NetherlandsSubject to modificationEN 3122 785 14721
Page 2
EN 2LC4.7E AA1.
Technical Specifications, Connections, and Chassis Overview
1.Technical Specifications, Connections, and Chassis Overview
Index of this chapter:
1. Technical Specifications
2. Connection Overview
3. Chassis Overview
Note: Figures below can deviate slightly from the actual
situation, due to the different set executions.
): 1000
Viewing angle (HxV degrees): 160x160
Tuning system: PLL
TV Colour systems: PAL B/G, D/K, I
Video playback: NTSC M/N 4.43
Supported inputs: VGA (640x350)
Channel selections: 100 presets
Aerial input: 75 ohm, Coax
1.1.2 Sound
Sound systems: FM-mono
Maximum power (W
): 2 x 15
RMS
1.1.3 Miscellaneous
Power supply:
- Mains voltage (V
): 90 - 264
AC
- Mains frequency (Hz): 50
: 42” (106 cm), 16:9
: SECAM B/G, D/K, L/L’
: PAL B/G
: SECAM L/L’
: VGA (640x480)
: VGA (720x400)
: MAC (640x480)
: MAC (832x624)
: SVGA (800x600)
: XVGA (1024x768)
: WXGA (1280x768)
: PAL 576i 1fH CVI
: NTSC 480i 1fH CVI
: PAL 576p 2fH HD
: NTSC 480p 2fH HD
: ATSC 720p 2fH HDMI
: ATSC 1080i 2fH
: UVSH
: IEC-type
: AM-mono
: FM-stereo B/G
: NICAM B/G, D/K, I, L
HDMI
1.2Connection Overview
Note: The following connector colour abbreviations are used
(acc. to DIN/IEC 757): Bk= Black, Bu= Blue, Gn= Green, Gy=
Grey, Rd= Red, Wh= White, and Ye= Yellow.
1.2.1 Rear Connections
(PDP)
(PDP)
Figure 1-1 Rear I/O
Cinch: Video CVBS - In, Audio - In
Wh - Audio L 0.5 V
Rd - Audio R 0.5 V
Ye - Video CVBS 1 V
SVHS (Hosiden): Video Y/C - In
1 - Ground Y Gnd H
2 - Ground C Gnd H
3 - Video Y 1 V
4 - Video C 0.3 V
VGA: Video RGB - In
1
6
11
Figure 1-2 VGA Connector
1 - Video Red 0.7 V
2 - Video Green 0.7 V
3 - Video Blue 0.7 V
4-n.c.
5 - Ground Gnd H
6 - Ground Red Gnd H
7 - Ground Green Gnd H
8 - Ground Blue Gnd H
9 - +5V_DC +5 VDC j
10 - Ground Sync Gnd H
11 - n.c.
12 - DDC_SDA DDC data j
13 - H-sync 0 - 5 V j
14 - V-sync 0 - 5 V j
15 - DDC_SCL DDC clock j
Cinch: VGA (PC) Audio - In
Rd - Audio - R 0.5 V
Wh - Audio - L 0.5 V
Cinch: Audio - Out
Rd - Audio - R 0.5 V
Wh - Audio - L 0.5 V
/ 10kohm jq
RMS
/ 10kohm jq
RMS
/ 75 ohm jq
PP
/ 75 ohm j
PP
/ 75 ohm j
PP
5
10
15
E_06532_002.eps
050404
/ 75 ohm j
PP
/ 75 ohm j
PP
/ 75 ohm j
PP
/ 10 kohm jq
RMS
/ 10 kohm jq
RMS
/ 10 kohm kq
RMS
/ 10 kohm kq
RMS
(LCD)
E_14720_011.eps
130804
Ambient conditions:
- Temperature range (deg. C): +5 to +40
- Maximum humidity: 90% R.H.
Page 3
Technical Specifications, Connections, and Chassis Overview
EN 3LC4.7E AA1.
External 2: Video CVBS/YC - In/Out, Audio - In/Out
21
20
E_06532_001.eps
2
1
050404
Figure 1-3 SCART connector
1 - Audio R 0.5 V
2 - Audio R 0.5 V
3 - Audio L 0.5 V
4 - Ground Audio Gnd H
/ 1 kohm k
RMS
/ 10 kohm j
RMS
/ 1 kohm k
RMS
5 - Ground Blue Gnd H
6 - Audio L 0.5 V
7 - Video C 0.7 V
8 - Function Select 0 - 2 V: INT
/ 10 kohm j
RMS
/ 75 ohm k
PP
4.5 - 7 V: EXT 16:9
9.5 - 12 V: EXT 4:3 j
9 - Ground Green Gnd H
10 - Easylink P50 0 - 5 V / 4.7 kohm jk
11 - n.c.
12 - n.c.
13 - Ground Red Gnd H
14 - Ground FBL Gnd H
15 - Video C 0.7 V
16 - n.c.
/ 75 ohm j
PP
17 - Ground Video Gnd H
18 - n.c.
19 - Video CVBS 1 V
20 - Video Y/CVBS 1 V
21 - Shield Gnd H
/ 75 ohm k
PP
/ 75 ohm j
PP
External 1: Video RGB/YUV-In, CVBS-In/Out, Audio-In/Out
1 - Audio R 0.5 V
2 - Audio R 0.5 V
3 - Audio L 0.5 V
4 - Ground Audio Gnd H
/ 1 kohm k
RMS
/ 10 kohm j
RMS
/ 1 kohm k
RMS
5 - Ground Blue Gnd H
6 - Audio L 0.5 V
7 - Video Blue/U 0.7 V
/ 10 kohm j
RMS
/ 75 ohm j
PP
8 - Function Select 0 - 2 V: INT
4.5 - 7 V: EXT 16:9
9.5 - 12 V: EXT 4:3 j
9 - Ground Green Gnd H
10 - n.c.
11 - Video Green/Y 0.7 or 1 V
/ 75 ohm j
PP
12 - n.c.
13 - Ground Red Gnd H
14 - n.c. H
15 - Video Red/V 0.7 V
16 - RGB Ctrl 0 - 0.4 V: INT
/ 75 ohm j
PP
1 - 3 V: EXT / 75 ohm j
17 - Ground Video Gnd H
18 - Ground RGB Ctrl Gnd H
19 - Video CVBS 1 V
20 - Video CVBS 1 V
21 - Shield Gnd H
/ 75 ohm k
PP
/ 75 ohm j
PP
Aerial - In
--IEC-type (EU) Coax, 75 ohm D
Service connector 1 (UART)
1 - UART_TX Transmit data k
2 - Ground Gnd H
3 - UART_RX Receive data j
Service connector 2 (ComPair)
1 - SDA-S I
2 - SCL-S I
2
C Data (0 - 5 V) jk
2
C Clock (0 - 5 V) j
3 - Ground Gnd H
1.3Chassis Overview
LED + SWITCH PANEL
J
EMC INTERFACE PANEL
EMC
SIDE I/O PANEL
D
Figure 1-4 PWB / CBA locations
TOP CONTROL PANEL
AUDIO PANEL
SMALL SIGNAL BOARD
E_14720_013.eps
E
C
C
A
250804
Page 4
EN 4LC4.7E AA2.
Safety Instructions, Warnings, and Notes
2.Safety Instructions, Warnings, and Notes
2.1Safety Instructions
Safety regulations require that during a repair:
•Connect the set to the AC Power via an isolation
transformer (> 800 VA).
•Replace safety components, indicated by the symbol h,
only by components identical to the original ones. Any
other component substitution (other than original type) may
increase risk of fire or electrical shock hazard.
Safety regulations require that after a repair, the set must be
returned in its original condition. Pay in particular attention to
the following points:
•Route the wire trees correctly and fix them with the
mounted cable clamps.
•Check the insulation of the AC Power lead for external
damage.
•Check the strain relief of the AC Power cord for proper
function.
•Check the electrical DC resistance between the AC Power
plug and the secondary side (only for sets which have a AC
Power isolated power supply):
1. Unplug the AC Power cord and connect a wire
between the two pins of the AC Power plug.
2. Set the AC Power switch to the "on" position (keep the
AC Power cord unplugged!).
3. Measure the resistance value between the pins of the
AC Power plug and the metal shielding of the tuner or
the aerial connection on the set. The reading should be
between 4.5 Mohm and 12 Mohm.
4. Switch "off" the set, and remove the wire between the
two pins of the AC Power plug.
•Check the cabinet for defects, to avoid touching of any
inner parts by the customer.
2.2Warnings
•All ICs and many other semiconductors are susceptible to
electrostatic discharges (ESD w). Careless handling
during repair can reduce life drastically. Make sure that,
during repair, you are connected with the same potential as
the mass of the set by a wristband with resistance. Keep
components and tools also at this same potential.
Available ESD protection equipment:
– Complete kit ESD3 (small tablemat, wristband,
connection box, extension cable and earth cable) 4822
310 10671.
– Wristband tester 4822 344 13999.
•Be careful during measurements in the high voltage
section.
•Never replace modules or other components while the unit
is switched "on".
•When you align the set, use plastic rather than metal tools.
This will prevent any short circuits and the danger of a
circuit becoming unstable.
2.3Notes
2.3.1 General
•Measure the voltages and waveforms with regard to the
chassis (= tuner) ground (H), or hot ground (I), depending
on the tested area of circuitry. The voltages and waveforms
shown in the diagrams are indicative. Measure them in the
Service Default Mode (see chapter 5) with a colour bar
signal and stereo sound (L: 3 kHz, R: 1 kHz unless stated
otherwise) and picture carrier at 475.25 MHz for PAL, or
61.25 MHz for NTSC (channel 3).
•Where necessary, measure the waveforms and voltages
with (D) and without (E) aerial signal. Measure the
voltages in the power supply section both in normal
operation (G) and in standby (F). These values are
indicated by means of the appropriate symbols.
•The semiconductors indicated in the circuit diagram and in
the parts lists, are interchangeable per position with the
semiconductors in the unit, irrespective of the type
indication on these semiconductors.
•Manufactured under license from Dolby Laboratories.
“Dolby” and the “double-D symbol”, are trademarks of
Dolby Laboratories.
2.3.2 Schematic Notes
•All resistor values are in ohms and the value multiplier is
often used to indicate the decimal point location (e.g. 2K2
indicates 2.2 kohm).
•Resistor values with no multiplier may be indicated with
either an "E" or an "R" (e.g. 220E or 220R indicates 220
ohm).
•All capacitor values are given in micro-farads (µ= x10
nano-farads (n= x10
•Capacitor values may also use the value multiplier as the
decimal point indication (e.g. 2p2 indicates 2.2 pF).
•An "asterisk" (*) indicates component usage varies. Refer
to the diversity tables for the correct values.
•The correct component values are listed in the Electrical
Replacement Parts List. Therefore, always check this list
when there is any doubt.
2.3.3 Rework on BGA (Ball Grid Array) ICs
General
Although (LF)BGA assembly yields are very high, there may
still be a requirement for component rework. By rework, we
mean the process of removing the component from the PWB
and replacing it with a new component. If an (LF)BGA is
removed from a PWB, the solder balls of the component are
deformed drastically so the removed (LF)BGA has to be
discarded.
Device Removal
As is the case with any component that, it is essential when
removing an (LF)BGA, the board, tracks, solder lands, or
surrounding components are not damaged. To remove an
(LF)BGA, the board must be uniformly heated to a temperature
close to the reflow soldering temperature. A uniform
temperature reduces the chance of warping the PWB.
To do this, we recommend that the board is heated until it is
certain that all the joints are molten. Then carefully pull the
component off the board with a vacuum nozzle. For the
appropriate temperature profiles, see the IC data sheet.
Area Preparation
When the component has been removed, the vacant IC area
must be cleaned before replacing the (LF)BGA.
Removing an IC often leaves varying amounts of solder on the
mounting lands. This excessive solder can be removed with
either a solder sucker or solder wick. The remaining flux can be
removed with a brush and cleaning agent.
After the board is properly cleaned and inspected, apply flux on
the solder lands and on the connection balls of the (LF)BGA.
Note: Do not apply solder paste, as this has shown to result in
problems during re-soldering.
-9
), or pico-farads (p= x10
-12
-6
),
).
Page 5
Directions for Use
EN 5LC4.7E AA3.
Device Replacement
The last step in the repair process is to solder the new
component on the board. Ideally, the (LF)BGA should be
aligned under a microscope or magnifying glass. If this is not
possible, try to align the (LF)BGA with any board markers.
To reflow the solder, apply a temperature profile according to
the IC data sheet. So as not to damage neighbouring
components, it may be necessary to reduce some
temperatures and times.
More Information
For more information on how to handle BGA devices, visit this
URL: www.atyourservice.ce.philips.com
not available for all regions) ). After login, select “Magazine”,
then go to “Workshop Information”. Here you will find
Information on how to deal with BGA-ICs.
2.3.4 Lead Free Solder
Some PWBs in this chassis are “lead-free prepared”. This is
indicated on the PWB by the PHILIPS lead-free logo (either by
a service-printing or by a sticker). It does not mean that leadfree solder is actually used!
(needs subscription,
P
b
Figure 2-1 Lead-free logo
Due to this fact, some rules have to be respected by the
workshop during a repair:
•Use only lead-free soldering tin Philips SAC305 with order
code 0622 149 00106. If lead-free solder paste is required,
please contact the manufacturer of your soldering
equipment.
•Use only adequate solder tools applicable for lead-free
soldering tin.
•Adjust your solder tool so that a temperature around 217 220 deg. C is reached at the solder joint.
•Do not mix lead-free soldering tin with leaded soldering tin;
this will lead to unreliable solder joints!
•Use only original spare parts listed in this manual. These
are lead-free parts!
•On the website www.atyourservice.ce.philips.com
subscription, not available for all regions) you can find
more information on:
– Aspects of lead-free technology.
– BGA (de-)soldering, heating-profiles of BGAs used in
Philips sets, and others.
2.3.5Practical Service Precautions
•It makes sense to avoid exposure to electrical shock.
While some sources are expected to have a possible
dangerous impact, others of quite high potential are of
limited current and are sometimes held in less regard.
•Always respect voltages. While some may not be
dangerous in themselves, they can cause unexpected
reactions - reactions that are best avoided. Before reaching
into a powered TV set, it is best to test the high voltage
insulation. It is easy to do, and is a good service precaution.
(needs
3.Directions for Use
You can download this information from the following websites:
•Figures below can deviate slightly from the actual situation,
due to the different set executions.
•Follow the disassemble instructions in described order.
4.2Service Positions
For easy servicing of this set, there are a few possibilities
created:
•The buffers from the packaging (see figure "Rear cover").
•Foam bars (created for service).
•Aluminium service stands (created for Service).
4.2.1 Foam Bars
E_06532_018.eps
Figure 4-2 Foam bars
The foam bars (order code 3122 785 90580 for two pieces) can
be used for all types and sizes of Flat TVs. By laying the TV
face down on the (ESD protective) foam bars, a stable situation
is created to perform measurements and alignments.
By placing a mirror under the TV, you can monitor the screen.
Figure 4-1 Cable dressing
170504
E_14720_012.eps
4.2.2 Aluminium Stands
E_06532_019.eps
170504
Figure 4-3 Aluminium stands (drawing of MkI)
The aluminium stands (order code 3122 785 90480) can be
mounted with the back cover removed or still left on. So, the
stand can be used to store products or to do measurements. It
is also very suitable to perform duration tests without taking
much space, without having the risk of overheating, or the risk
of products falling. The stands can be mounted and removed
quick and easy with use of the delivered screws that can be
tightened and loosened manually without the use of tools. See
figure above.
Note: Only use the delivered screws to mount the monitor to
the stands.
130804
Page 7
Mechanical Instructions
EN 7LC4.7E AA4.
4.3Assy/Panel Removal
4.3.1 Metal Back Plate
Warning: Disconnect the mains power cord before you open
the set.
1. Place the TV set upside down on a table top, using the
foam bars (see part "Foam Bars").
Caution: do not put pressure on the display, but let the
monitor lean on the speakers or the Front cover.
2. Remove all T10 screws from the metal back plate.
3. Then, remove the four "mushrooms" from the back plate.
4. Lift the back plate from the set. Make sure that wires and
flat foils are not damaged during the back plate removal.
4.3.2 Rear Cover
1. Remove the screws that secure the rear cover. The screws
are located at the top, bottom, left and right sides.
2. Lift the rear cover from the cabinet. Make sure that wires
and flat foils are not damaged during cover removal.
4.3.3 EMC Interface Panel
1. Disconnect the cables from the panel.
2. Remove the fixation screws.
3. Take out the panel.
4.3.4 LED/Switch Panel
1. Remove the middle fixation screw (1) from the bottom side
of the connector plate (as this holds the SSB bracket).
Note: Sometimes it is easier to loosen the complete
connector plate and remove it together with the SSB.
2. Remove all connector fixation screws (2) from the front
side of the connector plate.
3. Remove the two female screw locks (3) of the VGA
connector.
4. Release the plastic cable clips (4) on the shielding and
disconnect all cables from the SSB.
Note: Be careful with the fragile LVDS connector on the
SSB.
5. Now, completely remove the SSB (together with all the
shieldings) from the set.
6. Once the SSB is out, remove the fixation screws (5) from
the shielding.
7. Remove the shielding, it hinges at the left side (acc. photo).
8. Remove the fixation screws that hold the panel(s), and take
out the panel(s).
Notes:
•Pay special attention to the EMC foam on the SSB
shielding. These must be replaced in their initial positions
during set re-assembly.
•Insulate the tuner pins, so they cannot touch the shielding
(see also figure “SDM Service jumper” in Chapter 5).
4.3.7Audio Panel
1. Disconnect all cables from the panel.
2. Remove the fixation screws and take out the panel.
1. Remove the fixation screws.
2. Take out the panel.
3. Disconnect the cable from the rear of the panel.
4.3.5 Top Control Panel
1. Remove the fixation screws.
2. Release the two fixation clamps and lift the panel out of the
bracket.
3. Take out the panel.
4. Disconnect the cable from the panel.
4.3.6 Small Signal Panel (SSB) and Side I/O Panel
2
(PDP)
(PDP)
31
Figure 4-4 SSB Connector plate
5
4
E_14710_003.eps
Figure 4-5 Shielding of the SSB
210404
(LCD)
E_14720_015.eps
180804
4.3.8Plasma Panel
Important: Be sure to work in a dust free environment during
the following activities. In addition, the use of (fabric) hand
gloves is advised.
2
1
1
44
3
1
Figure 4-6 Plasma panel disassembly
Disassembly
1. Place the TV set face down on the foam bars. Place the
bars at the edges of the set, so they will support the front
frame and not only the glass plate!
2. Remove the LED/Switch and Top Control panels (1).
3. Next step is to unplug the following cables (see also
“Wiring Diagram” in Chapter 6):
– AC Power (Mains) plug between Mains Filter and PSU
(loosen cable from clamps).
– All cables on the Audio panel.
– LVDS plug on SSB. Caution: Be careful, because this
connection is very fragile!
– SSB supply plugs on PSU.
– Audio Panel supply plug on PSU.
E_14720_014.eps
180804
Page 8
EN 8LC4.7E AA4.
– Loudspeaker connections on speakers.
4. Remove all T10 parker screws around the frame (2).
5. Remove the two T10 tapping screws that hold the SSB (3).
6. Remove the four T25 screws (4) that hold the plasma
panel.
7. Lift the (gold coloured) plastic frame together with its PWBs
(except the Audio Panel) from the PDP panel.
8. Now the PDP (incl. the PSU and driving panels) can be
removed.
9. Before sending the plasma panel to the NSO for repair or
exchange, remove all its panels.
Assembly
In order to centre the (new) plasma panel correctly w.r.t. the
glass plate, do the following:
1. Place the (new) plasma panel face down on foam bars.
2. Also, place the front assy (front panel with glass plate) on
two other foam bars.
3. Mount the plastic frame on the plasma panel.
4. Lift the assy (frame and PDP), and place it into the front
assy.
5. Now follow the above described disassembly process in
reverse order.
4.4Set Re-assembly
Mechanical Instructions
To re-assemble the whole set, execute all processes in reverse
order.
Notes:
•While re-assembling, make sure that all cables are placed
and connected in their original position. See figure "Cable
dressing".
•Pay special attention not to damage the EMC foams at the
SSB shields. Control that EMC foams are put correctly on
their places.
Page 9
Service Modes, Error Codes, and Fault Finding
5.Service Modes, Error Codes, and Fault Finding
EN 9LC4.7E AA5.
Index of this chapter:
1. Test Points
2. Service Modes
3. Problems and Solving Tips (related to CSM)
4. ComPair
5. Error Codes
6. The Blinking LED Procedure
7. Fault Finding and Repair Tips
5.1Test Points
This chassis is equipped with test points in the service printing.
In the schematics test points are identified with a rectangle box
around Fxxx or Ixxx. These test points are specifically
mentioned in the service manual as “half moons” with a dot in
the centre.
Perform measurements under the following conditions:
•Television set in Service Default Alignment Mode.
•Video input: Colour bar signal.
•Audio input: 3 kHz left channel, 1 kHz right channel.
5.2Service Modes
Service Default mode (SDM) and Service Alignment Mode
(SAM) offers several features for the service technician, while
the Customer Service Mode (CSM) is used for communication
between the call centre and the customer.
This chassis also offers the option of using ComPair, a
hardware interface between a computer and the TV chassis. It
offers the abilities of structured troubleshooting, error code
reading, and software version read-out for all chassis.
Minimum requirements for ComPair: a Pentium processor, a
Windows OS, and a CD-ROM drive (see also paragraph
"ComPair").
5.2.1 Service Default Mode (SDM)
(do not allow the OSD display to time out between entries
while keying the sequence).
•Short SDM jumper (item 4022, see Figure "Service
jumper") on the TV board and apply AC Power. Remove
the short after start-up.
Caution: Entering SDM by shorting "Service" jumpers will
override the software protections. Do this only for a short
period. When doing this, the service-technician must
know exactly what he is doing, as it could damage the
television set.
SDM
I2CUART
E_14710_062.eps
260804
Figure 5-1 SDM Service jumper
After entering SDM, the following screen is visible, with SDM in
the upper right corner of the screen to indicate that the
television is in Service Default Alignment Mode.
Purpose
•To create a predefined setting for measurements to be
made.
•To override software protections.
•To start the blinking LED procedure.
•To inspect the error buffer.
•To check the life timer.
Specifications
•Tuning frequency: 475.25 MHz.
•Colour system: PAL B/G.
•All picture settings at 50% (brightness, colour contrast,
hue).
•Bass, treble and balance at 50%; volume at 25%.
•All service-unfriendly modes (if present) are disabled. The
service unfriendly modes are:
– Timer / Sleep timer.
– Child / parental lock.
– Blue mute.
– Hotel / hospital mode.
– Auto shut off (when no “IDENT” video signal is
received for 15 minutes).
– Skipping of non-favourite presets / channels.
– Auto-storage of personal presets.
– Auto user menu time-out.
– Auto Volume Levelling (AVL).
How to enter
To enter SDM, use one of the following methods:
•Press the following key sequence on the remote control
transmitter: “062596” directly followed by the MENU button
00022 LC42EP1 2.03/S42GV1 2.02 SDM
ERR 0 0 0 0 0
OP 000 057 140 032 120 128 000
E_14710_006.eps
240604
Figure 5-2 SDM menu (example from LC4.2E)
How to navigate
When you press the MENU button on the remote control, the
set will switch on the normal user menu in the SDM mode.
How to exit
Switch the set to STANDBY by pressing the POWER button on
the remote control transmitter.
If you turn the television set off by removing the mains (i.e.,
unplugging the television) or by using the POWER button on
the TV set, the television set will remain in SDM when mains is
re-applied, and the error buffer is not cleared.
Page 10
EN 10LC4.7E AA5.
Service Modes, Error Codes, and Fault Finding
5.2.2 Service Alignment Mode (SAM)
Purpose
•To change option settings.
•To display / clear the error code buffer.
•To perform alignments.
Specifications
•Operation hours counter (maximum five digits displayed).
•Software version, Error codes, and Option settings display.
•Error buffer clearing.
•Option settings.
•Software alignments (Tuner, White Tone, Geometry, and
Audio).
•NVM Editor.
•ComPair Mode switching.
How to enter
Press the following key sequence on the remote control
transmitter: “062596" directly followed by the OSD/STATUS/
INFO button (do not allow the OSD display to time out between
entries while keying the sequence).
After entering SAM, the following screen is visible, with SAM in
the upper right corner of the screen to indicate that the
television is in Service Alignment Mode.
00022 LC42EP1 2.03/S42GV1 2.02 SAM
ERR 0 0 0 0 0
OP 000 057 140 032 120 128 000
. Clear Clear ?
. Options
. Tuner
. White Tone
. Audio
. NVM Editor
. SC NVM Editor
. Test Pattern
. ComPair Mode On
E_14710_007.eps
Figure 5-3 SAM menu (example from LC4.2E)
Menu explanation
1. LLLLL. This represents the run timer. The run timer counts
normal operation hours (including “on/off” switching), but
does not count stand-by hours.
2. AAAABCD-X.YY/EEEEEE_F.GG. This is the software
identification of the Main/Scaler microprocessor:
– A= the chassis name.
– B= the region: E= Europe, A= Asia Pacific, U= NAFTA,
L= LATAM.
– C= the software diversity:
•Europe: T= 1 pg TXT, F= Full TXT, V= Voice ctrl.
•LATAM and NAFTA: N= Stereo non-dBx,
S= Stereo dBx.
•Asian Pacific: T= TXT, N= non-TXT, C= NTSC.
•ALL regions: M= mono, D= DVD, Q= Mk2.
– D= the language cluster number.
– X= the Main software version number (updated with a
major change that is incompatible with previous
versions).
– YY= the sub software version number (updated with a
minor change that is compatible with previous
versions).
– EEEEEE= the Scaler SW cluster
– F= the Scaler SW version no.
– GG= the sub-version no.
3. SAM. Indication of the Service Alignment Mode.
240604
4. Error Buffer (ERR). Shows all errors detected since the
last time the buffer was erased. Five errors possible.
5. Option Bytes (OP). Shows all option settings. See
“Options” in the Alignments section for a detailed
description. Seven codes are available.
6. Clear. Erases the contents of the error buffer. Select the
CLEAR menu item and press the CURSOR RIGHT key.
The content of the error buffer is cleared.
7. Options. Used to set the option bits. See “Options” in the
Alignments section for a detailed description.
8. Tuner. Used to align the tuner. See “Tuner” in the
Alignments section for a detailed description.
9. White Tone. Used to align the white tone. See “White
Tone” in the Alignments section for a detailed description.
10. Audio. No audio alignment is necessary for this television
set.
11. NVM Editor. Can be used to change the NVM data in the
television set.
12. SC NVM Editor. Can be used to edit Scaler NVM.
13. Test Pattern. For future use.
14. ComPaIr. Can be used to switch the television to “In
System Programming” (ISP) mode, for software uploading
via ComPair.
Caution: When this mode is selected without ComPair
connected, the TV will be blocked. Remove the AC power
to reset the TV.
How to navigate
•In SAM, select menu items with the CURSOR UP/DOWN
keys on the remote control transmitter. The selected item
will be highlighted. When not all menu items fit on the
screen, use the CURSOR UP/DOWN keys to display the
next / previous menu items.
•With the CURSOR LEFT/RIGHT keys, it is possible to:
– Activate the selected menu item.
– Change the value of the selected menu item.
– Activate the selected submenu.
•In SAM, when you press the MENU button twice, the set
will switch to the normal user menus (with the SAM mode
still active in the background). To return to the SAM menu
press the MENU button again.
•When you press the MENU key in while in a submenu, you
will return to the previous menu.
How to store SAM settings
To store the settings changed in SAM mode, leave the top level
SAM menu by using the POWER button on the remote control
transmitter or the television set.
How to exit
Switch the set to STANDBY by pressing the POWER button on
the remote control transmitter or on the television set.
5.2.3 Customer Service Mode (CSM)
Purpose
The Customer Service Mode shows error codes and
information on the TV’s operation settings. The call centre can
instruct the customer (by telephone) to enter CSM in order to
identify the status of the set. This helps the call centre to
diagnose problems and failures in the TV set before making a
service call.
The CSM is a read-only mode; therefore, modifications are not
possible in this mode.
How to enter
To enter CSM, press the following key sequence on the remote
control transmitter: “123654” (do not allow the OSD display to
time out between entries while keying the sequence).
Upon entering the Customer Service Mode, the following
screen will appear:
6. Press the CURSOR LEFT/RIGHT keys to increase or
decrease the BRIGHTNESS value.
7. Use the CURSOR UP/DOWN keys to select PICTURE.
8. Press the CURSOR LEFT/RIGHT keys to increase or
decrease the PICTURE value.
9. Press the MENU button on the remote control transmitter
twice to exit the user menu.
10. The new PERSONAL preference values are automatically
stored.
White line(s) around picture elements and text
If:
The picture improves after you have pressed the AUTO
PICTURE button on the remote control transmitter,
E_14710_008.eps
240604
Figure 5-4 CSM menu (example from LC4.2E)
Menu explanation
1. Indication of the decimal value of the operation hours
counter, Main/Scaler software version (see "Service
Alignment Mode" for an explanation), and service mode
(CSM= Customer Service Mode).
2. Displays the last five errors detected in the error code
buffer.
3. Displays the option bytes.
4. Displays the type number version of the set (option).
5. Reserved.
6. Indicates the television is receiving an "IDENT" signal on
the selected source. If no "IDENT" signal is detected, the
display will read "NOT TUNED"
7. Displays the detected Colour system (e.g. PAL/NTSC).
8. Displays the detected Audio (e.g. stereo/mono).
9. Displays the picture setting information.
10. Displays the sound setting information.
How to exit
To exit CSM, use one of the following methods:
•Press the MENU, STATUS (or EXIT/INFO/[i+]), or POWER
button on the remote control transmitter.
•Press the POWER button on the television set.
Then:
1. Press the AUTO PICTURE button on the remote control
transmitter repeatedly (if necessary) to choose
PERSONAL picture mode.
2. Press the MENU button on the remote control transmitter.
This brings up the normal user menu.
3. In the normal user menu, use the CURSOR UP/DOWN
keys to highlight the PICTURE sub menu.
4. Press the CURSOR LEFT/RIGHT keys to enter the
PICTURE sub menu.
5. Use the CURSOR UP/DOWN keys to select
SHARPNESS.
6. Press the CURSOR LEFT key to decrease the
SHARPNESS value.
7. Press the MENU button on the remote control transmitter
twice to exit the user menu.
8. The new PERSONAL preference value is automatically
stored.
Snowy picture
Check CSM line 6. If this line reads “Not Tuned”, check the
following:
•Antenna not connected. Connect the antenna.
•No antenna signal or bad antenna signal. Connect a proper
antenna signal.
•The tuner is faulty (in this case line 2, the Error Buffer line,
will contain error number 10). Check the tuner and replace/
repair the tuner if necessary.
5.3Problems and Solving Tips Related to CSM
5.3.1 Picture Problems
Note: The problems described below are all related to the TV
settings. The procedures used to change the value (or status)
of the different settings are described.
Picture too dark or too bright
If:
•The picture improves when you press the AUTO PICTURE
button on the remote control transmitter, or
•The picture improves when you enter the Customer
Service Mode,
Then:
1. Press the AUTO PICTURE button on the remote control
transmitter repeatedly (if necessary) to choose
PERSONAL picture mode.
2. Press the MENU button on the remote control transmitter.
This brings up the normal user menu.
3. In the normal user menu, use the CURSOR UP/DOWN
keys to highlight the PICTURE sub menu.
4. Press the CURSOR LEFT/RIGHT keys to enter the
PICTURE sub menu.
5. Use the CURSOR UP/DOWN keys (if necessary) to select
BRIGHTNESS.
Black and white picture
If:
•The picture improves after you have pressed the AUTO
PICTURE button on the remote control transmitter,
Then:
1. Press the AUTO PICTURE button on the remote control
transmitter repeatedly (if necessary) to choose
PERSONAL picture mode.
2. Press the MENU button on the remote control transmitter.
This brings up the normal user menu.
3. In the normal user menu, use the CURSOR UP/DOWN
keys to highlight the PICTURE sub menu.
4. Press the CURSOR LEFT/RIGHT keys to enter the
PICTURE sub menu.
5. Use the CURSOR UP/DOWN keys to select COLOUR.
6. Press the CURSOR RIGHT key to increase the COLOUR
value.
7. Press the MENU button on the remote control transmitter
twice to exit the user menu.
8. The new PERSONAL preference value is automatically
stored.
Page 12
EN 12LC4.7E AA5.
Service Modes, Error Codes, and Fault Finding
Menu text not sharp enough
If:
•The picture improves after you have pressed the AUTO
PICTURE button on the remote control transmitter,
Then:
1. Press the AUTO PICTURE button on the remote control
transmitter repeatedly (if necessary) to choose
PERSONAL picture mode.
2. Press the MENU button on the remote control transmitter.
This brings up the normal user menu.
3. In the normal user menu, use the CURSOR UP/DOWN
keys to highlight the PICTURE sub menu.
4. Press the CURSOR LEFT/RIGHT keys to enter the
PICTURE sub menu.
5. Use the CURSOR UP/DOWN keys to select PICTURE.
6. Press the CURSOR LEFT key to decrease the PICTURE
value.
7. Press the MENU button on the remote control transmitter
twice to exit the user menu.
8. The new PERSONAL preference value is automatically
stored.
5.4ComPair
5.4.1 Introduction
the fault finding tree by asking you questions (e.g. Does the
screen give a picture? Click on the correct answer: YES /
NO) and showing you examples (e.g. Measure test-point I7
and click on the correct oscillogram you see on the
oscilloscope). You can answer by clicking on a link (e.g.
text or a waveform picture) that will bring you to the next
step in the fault finding process.
By a combination of automatic diagnostics and an interactive
question / answer procedure, ComPair will enable you to find
most problems in a fast and effective way.
Beside fault finding, ComPair provides some additional features like:
•Up- or downloading of pre-sets.
•Managing of pre-set lists.
•Emulation of the (European) Dealer Service Tool (DST).
•If both ComPair and Force/SearchMan (Electronic Service
Manual) are installed, all the schematics and the PWBs of
the set are available by clicking on the appropriate
hyperlink.
Example: Measure the DC-voltage on capacitor C2568
(Schematic/Panel) at the Mono-carrier.
– Click on the “Panel” hyperlink to automatically show
the PWB with a highlighted capacitor C2568.
– Click on the “Schematic” hyperlink to automatically
show the position of the highlighted capacitor.
5.4.3 How To Connect
ComPair (Computer Aided Repair) is a service tool for Philips
Consumer Electronics products. ComPair is a further
development on the European DST (service remote control),
which allows faster and more accurate diagnostics. ComPair
has three big advantages:
•ComPair helps you to quickly get an understanding on how
to repair the chassis in a short time by guiding you
systematically through the repair procedures.
•ComPair allows very detailed diagnostics (on I
is therefore capable of accurately indicating problem areas.
You do not have to know anything about I
yourself because ComPair takes care of this.
•ComPair speeds up the repair time since it can
automatically communicate with the chassis (when the
microprocessor is working) and all repair information is
directly available. When ComPair is installed together with
the Force/SearchMan electronic manual of the defective
chassis, schematics and PWBs are only a mouse click
away.
5.4.2 Specifications
ComPair consists of a Windows based fault finding program
and an interface box between PC and the (defective) product.
The ComPair interface box is connected to the PC via a serial
(or RS232) cable.
For this chassis, the ComPair interface box and the TV
communicate via a bi-directional service cable via the service
connector(s).
The ComPair fault finding program is able to determine the
problem of the defective television. ComPair can gather
diagnostic information in two ways:
•Automatic (by communication with the television): ComPair
can automatically read out the contents of the entire error
buffer. Diagnosis is done on I
access the I
send and receive I
2
C/UART bus of the television. ComPair can
2
C/UART commands to the micro
2
C/UART level. ComPair can
controller of the television. In this way, it is possible for
ComPair to communicate (read and write) to devices on
2
the I
C/UART buses of the TV-set.
•Manually (by asking questions to you): Automatic
diagnosis is only possible if the micro controller of the
television is working correctly and only to a certain extend.
When this is not the case, ComPair will guide you through
2
C level) and
2
C commands
1. First, install the ComPair Browser software (see the Quick
Reference Card for installation instructions).
2. Connect the RS232 interface cable between a free serial
(COM) port of your PC and the PC connector (marked with
“PC”) of the ComPair interface.
3. Connect the mains adapter to the supply connector
(marked with “POWER 9V DC”) of the ComPair interface.
4. Switch the ComPair interface “OFF”.
5. Switch the television set “OFF” with the POWER switch.
6. Connect the ComPair I
the connector on the rear side of the ComPair interface
(marked with “I
“VCR”) and the appropriate ComPair connector at the rear
side of the TV (I
2
C/UART interface cable between
2
C” or for UART on the connector marked
2
C or UART).
Note: Some chassis need an additional I
cable due to a different connector pitch!
7. Plug the mains adapter in a mains outlet, and switch the
interface “ON”. The green and red LEDs light up together.
The red LED extinguishes after approx. 1 second while the
green LED remains lit.
8. Start the ComPair program and read the “Introduction”
chapter.
Note: If you encounter any problems, contact your local
support desk.
5.5Error Codes
The error code buffer contains all errors detected since the last
time the buffer was erased. The buffer is written from left to
right. When an error occurs that is not yet in the error code
buffer, it is displayed at the left side and all other errors shift one
position to the right.
5.5.1 How To Read The Error Buffer
You can read the error buffer in 3 ways:
•On screen via the SAM (if you have a picture).
Examples:
– ERROR: 0 0 0 0 0: No errors detected
– ERROR: 6 0 0 0 0: Error code 6 is the last and only
detected error
– ERROR: 9 6 0 0 0: Error code 6 was detected first and
error code 9 is the last detected (newest) error
•Via the blinking LED procedure (when you have no
picture). See “The Blinking LED Procedure”.
•Via ComPair.
Table 5-1 Error code overview
Error DeviceError description Check itemDiagram
0 Not applicable ---
1 Not applicable ---
2 Not applicable ---
3 Not applicable ---
4 GM1501
Scaler
Flash-ROM
5 Not applicable +5V protection7930A6
6I2C busGeneral I2C error7011, 3088, 3096A2
7 Not applicable ---
8M24C32I2C error while
9M24C16I2C error while
10 TunerI2C error while
11 Not applicable ---
12 Not applicable ---
13 Not applicable ---
14 K4D263238M Read-write error
15 TDA9178T/N1 I2C error while
16 TDA9178T/N1 I2C error while
I2C error while
communicating with
the Genesis Scaler
and/or Flash-ROM
is faulty/empty
communicating with
the Scaler EEPROM
communicating with
the EEPROM
communicating with
the PLL tuner
with the Scaler
SDRAM
communicating with
Histogram
communicating with
EPLD on Pixel Plus
panel
7401
7530
7531A11
7099A2
1302, 3302, 3303, 3327 A1
7501A10
7560A3
7560A3
A7
A11
5.5.2 How To Clear The Error Buffer
The error code buffer is cleared in the following cases:
•By using the CLEAR command in the SAM menu:
– To enter SAM, press the following key sequence on the
remote control transmitter: “062596” directly followed
by the OSD/STATUS button (do not allow the OSD
display to time out between entries while keying the
sequence).
– Make sure the menu item CLEAR is highlighted. Use
the CURSOR UP/DOWN buttons, if necessary.
– Press the CURSOR RIGHT button to clear the error
buffer. The text on the right side of the “CLEAR” line will
change from “CLEAR?” to “CLEARED”
•If an error does not reoccur within 50 hours it is deleted
from the error buffer.
5.5.3 Error Codes
In case of non-intermittent faults, write down the errors present
in the error buffer and clear the error buffer before you begin
the repair. This ensures that old error codes are no longer
present.
If possible, check the entire contents of the error buffer. In
some situations, an error code is only the result of another error
and not the actual cause of the problem (for example, a fault in
the protection detection circuitry can also lead to a protection).
5.6The Blinking LED Procedure
Using this procedure, you can make the contents of the error
buffer visible via the front LED. This is especially useful when
there is no picture.
When the SDM is entered, the front LED will blink the contents
of the error-buffer:
•The Led blinks with as many pulses as the error code
number, followed by a time period of 1.5 seconds, in which
the Led is off.
•Then this sequence starts is repeated.
Any RC5 command terminates this sequence.
Example of error buffer: 12 9 6 0 0
After entering SDM, the following occurs:
•1 long blink of 5 seconds to start the sequence,
•12 short blinks followed by a pause of 1.5 seconds,
•9 short blinks followed by a pause of 1.5 seconds,
•6 short blinks followed by a pause of 1.5 seconds,
•1 long blink of 1.5 seconds to finish the sequence,
•The sequence starts again at 12 short blinks.
5.7Fault Finding and Repair Tips
Notes:
•It is assumed that the components are mounted correctly
with correct values and no bad solder joints.
•Before any fault finding actions, check if the correct options
are set.
Page 14
EN 14LC4.7E AA5.
Service Modes, Error Codes, and Fault Finding
5.7.1 NVM Editor
In some cases, it can be handy if one directly can change the
NVM contents. This can be done with the “NVM Editor” in SAM
mode. With this option, single bytes can be changed.
HexDecDescription
.ADR0x000A10Existing value
.VAL0x00000New value
.StoreStore ?
5.7.2 Load default NVM values
In case a blank NVM is placed or when the NVM content is
corrupted, default values can be downloaded into the NVM.
After the default values are downloaded it will be possible to
start up and to start aligning the TV set. This is no longer
initiated automatically; to initiate the download the following
action has to be performed:
1. Switch the TV set “off” via the AC Power switch.
2. Short circuit the SDM jumpers (keep short-circuited).
3. Press P+ or Ch+ on the local keyboard (and keep it
pressed).
4. Switch the TV set “on” via the AC Power switch.
5. When the set has started, the P+/Ch+ button can be
released and the short circuit of the SDM jumpers can be
removed.
6. The red LED will be on continuously to indicate that the
download is initiated (normally when SDM is activated the
red LED will start with the Blinking LED sequence).
7. Wait +/- 30 s (time needed to download default values to
the NVM).
•If the H-out (pin 67) has a signal (or has a signal for a very
short time), change IC7016 (NE555).
No TV but PC is present
1. Check if HSYNC and VSYNC are present at pin 3 of 7017
and 7015.
2. If they are present, check RGB output.
3. If there is no RGB output, the IC TDA120xx can be defect.
Comb Filter not working
Check Option Byte 5 in SAM (see also chapter 8 “Alignments”).
5.7.5 Power Supply
This power supply is for Service a “black box”. When defective,
(this can be traced by error-codes in the error buffer, or by
strange phenomena), a new panel must be ordered and after
receipt, the defective panel must be send in for repair.
For some basic voltage-measurements, you can use the block
diagram(s) in Chapter 6.
5.7.3 Tuner and IF
No Picture in RF mode
1. Check whether picture is present in EXT. If not, go to Video
processing troubleshooting section.
2. If present, check that the Option settings are correct.
3. Check that all supply voltages are present.
4. Check if I
5. Manually store a known channel and check if there is IF
output at Tuner pin 11.
6. Feed in 105 dBuV at Tuner pin 11 and check whether there
is RGB output from Video Processing IC. If yes, Tuner may
be defect. Replace Tuner.
Required system is not selected correctly
1. Check whether a Service jumper (#4022, 0805 size) is
present. If yes, remove it.
5.7.4 Video Processing
No power
1. Check +12 V and 3V3 at position 1910.
2. If no supply, check the connector 1910.
3. If it is correct, check the power supply board.
Power supply is correct but no green LED
1. Check if connectors 1005 and 1601 are properly inserted.
2. If yes, check if the 3V3 is present.
2
C lines are working correctly (3.3V).
No picture display
1. Check the RGB signal.
2. If it is present, check 3-IC7016 (NE555).
3. If it has output, the problem is in SCALER part.
4. Otherwise, check H-out on pin 2 of NE555. If the input
signal of pin2 is present, but no output, the IC is defect.
Note:
•If the H-out (pin 67) doesn’t have signal or the level is low,
check the output of NE555 (pin 3) during start up.
Page 15
Block Diagrams, Testpoint Overviews, and Waveforms
6.Block Diagrams, Testpoint Overviews, and Waveforms
Wiring Diagram
15LC4.7E AA6.
Top control
E
0345_
3_KR
PLASMA SCREEN
Right
Speaker
Lspeak
posilock
8345
1320_10_KR
EMC
interface assy
1330_10_KR
8346
1355_
3_KR
1345_
3_KR
Delta
Mainsfilter
AC Inlet
SUB Supply
_4_KR
CN900
4
_11_KR
CN9006
_7_HR
GND
CN9005_10_KR
Side I/O
D
0936_11_KR
LA03_30_UJU
1M46_11_KR
8320
8303
8301
SHIELDING
8350
8302
PDP Main Supply
Left
Speaker
CN8001
2P
ferrite
_10_KR
1G51_31_FI
A
SSB
1M03
8336
1M52_9_KR
1408_
1M02_7_HR
1301_
8352
4_KR
1M02
1735
7P
3P
C
9P
AUDIO AMPL
1736
3P
1M36
_12_
KR
1M01
3_KR
_
1M20
_10_K
R
1739
Lspeak
posilock
LED/
J
SWITCH
_10_KR
0320
8330
8735
8736
E_14720_001.eps
030904
Page 16
Block Diagrams, Testpoint Overviews, and Waveforms
Block Diagram Audio and Video
TUNER + VIF
A 3
A1
TV
FM
SCL
A2
SDA
A2
SSIF
A2
SEL_IF
A2
A 3
A17
16
MON-Out
15
C-In
12
L-Out
11
R-Out
TER-Out
9
7
R-In
G-In
6
B-In
5
L-Out
2
R-Out
1
LR
AUDIO-OUT
D
SVHS
2
CVBS
L
R
SIDE I/O
5
COMPAIR
1301
REAR IO SCART
34
1
FRONT_DETECT
+5VSW
1302
6,7
4
2
1
3
7316
SCART 2
21
20
2
1
SCART 1
21
20
2
1
Y/CVBS
+VTUN
51
Y/CVBS-In
P50
Status
L-In
R-In
CVBS-In
FBL-In
Status
L-In
R-In
C
L
R
9
11
10
10
09361336
4
2
6
8
7
10
11
F306
10
15
16
12
11
9
7
5
2
1
2321
F305
3311
7138
EF
L
R
7119
EF
6
L
R
L
R
4
2
6
8
7
10
11
RF_AGC
6323
3323
7320
SC1_COMP_AV1_G_Y_CVBS_IN
SC1_COMP_AV1_LR_IN
1328
4327
2
4331
3
1330
4333
2
4334
3
+5VSW
SC1_CVBS_IN
SC2_Y_IN
SC2_C_IN
SC2_CVBS_MON_OUT
STATUS_2
SC2_LR_MON_OUT
SC2_LR_IN
SC1 _CVBS_RF_OUT
SC1_FBL_IN
SC1_COMP_R_V_IN
SC1_COMP_B_U_IN
STATUS_1
SC1_LR_RF-OUT
Const_LR_OUT
HP_DET_IN
SVHS_C_IN
SVHS _AV2_Y_CVBS_IN
SVHS_LR_IN
HP_LROUT
TV SUPPLY
A6
+12VSW
7
8
7
8
P50
VIF2
VIF1
SIF2
SIF1
5930
A2
7011 - IF
25
24
31
30
29
3931
HERCULES
P50
STATUS_2
STATUS_1
7930
8
7
OSC
VCC
6
7920
5920
13
16LC4.7E AA6.
SYSTEM7011
PAL-MULTI/SECAMTDA12021
A 4
NTSCTDA12001
CHINA/NTSC-APTDA12011
H/V
CVBS/Y-X
SAND
CASTLE
SDA
SCL
15
7377-A
7376-A
7376-B
7377-B
CONBRI
RGB Matrix
Blue & Black
Gamma Corr.
R_OSD
SAT
SCAVEM
on Text
C-X
A2
4590
1:1
1:1
7372
Stretch
B_OSD
G_OSD
Fast Blanking
cvbs/y
Sync Sep
H-OSC
H-Shift
H-Drive
Vertical & EastWest Geometry
7561
7563
SC
PROC.
A5
PROTECT_AUDIO
A9
SOUND_ENABLE
POR-AUDIO
AUDIO_R
AUDIO_L
A
AUDOUTLSR
SOUND_ENABLE
A2
POWER_DOWN
A6
EXT_MUTE
A2
OUT_MUTE
RO
GO
BO
HOUT
FB/SC
VDRA
VDRB
SANDCASTLE
AUDIO
AMPLIFIER
AUDIO_R
N.C.
AUDIO_L
N.C.
3753
3752
SL
UDOUTL
85
86
87
67
66
23
22
1752
7013
HISTOGRAM
A3
7018
3010
3
2
4
5
1
6
7
8
9
7713
7714
3058
C
1739
3021
7019
3
2
4
5
1
6
7
8
9
2020
7016#
8
VCC
6
THR
TR
RES
7
DISC
OUT
CTRL
5
2028
2051
2022
3346
2034
PDP AUDIO
AUDIO_R
AUDIO_L
-16V-19V+16V+19V
NC
PROT
67
2
SOUND_ENABLE
+3V3STBY
7706
14
12
13
77
POR_AUDIO
Sound
Tr a p s
AGC
Detect
QSS Mixer/
AM Demod.
A2
CONTROL
SC
1_CVBS_IN
SVHS_AV2_Y_CVBS_IN
SC2_Y_IN
SVHS_C_IN
SC2_C_IN
SC2_CVBS_RF_OUT
SC2_CVBS_MON_OUT
SC1_FBL_IN
SC1_COMP_R_V_IN
SC1_COMP_AV1_G_Y_CVBS_IN
SC1_COMP_B_U_IN
5010
2055
7004
SC2_LR_MON_OUT
SC2_LR_IN
SC1_COMP_AV1_LR_IN
SC1_LR_RF-OUT
Const_LR_OUT
HP_DET_IN
SVHS_LR_IN
36
HP_LROUT
45
1
Q
S
R
5
2
3
4
REF
2
2931
3910
7910
2921
5931
+8VSW_TV
F913
6930
F915
F912
6910
Y_NOTCH
+5VSW
+VTUN
6911
CVBS1
QSS/FM
AM
CVBS/Y-X
C-X
55
58
51
59
52
43
64
A7
A4
7585
A5
HERCULES
A2
A5
A1
SSIF(Tuner FM)33
SC1_COMP_AV1_LR_IN
SVHS_LR_IN
SC2_LR_IN
AudioIN2LR
A12
SC2_LR_MON_OUT
SC1_LR_RF_OUT
Const_LR_OUT
Input
sw.
cvbs/y
Dig. 2H/4H
INA..D
Combfilter
Y Delay Adj.
c
CS1A..D
Output
sw.
H/V
+
cvbs
7562
5560
7011 - SOUND
QSS/FM
34,35
49,50
56,57
53,54
13
2
7x
AD Conv
Std Stereo
Decoder
Audio Select
ADC/DAC
+12VSW
AUDIO DELAY LINE (LIPSYNC)
COUNTERCOUNTER
Y
int
Chroma
PA L / N T SC /
SECAM
Decoder &
Baseband
INSSW3
78 79 807774 75 76
+8VSW_2
2561
7x
I2SCLK
I2S Proc
36,37
Delay
R/Pr-3
RAM
I2SDO
U
V
RGB/YPRPB Insert
YUV Interface
G/Y3
B/Pb-3
20
I2SDI1
7370
int
int
UOUT
YOU T
VOUT
9
68
Pix Improvement
(Histogram)
7560
TDA9178T
2
7x8x
"D" F.F."D" F.F.
8x
Audio
Control
Vo l/T reb /
Bass
Features
DACs
RGB Matrix
Blue & Black
Stretch
Gamma Corr.
Skin Tone
U/V Tint
Saturation
Pea king
SCAVEM
U/V Delay
UIN
VIN
70
71 72
161719
8x
61
60
62,63
7371
YUV
YUV IN/OUT
YIN
1
14
11
75847583758275817580
8x 8x
EF
2
4
3
# = NE555 TIMER
7017#
VCC
6
THR
7
DISC
CTRL
I722
18
6
10
I711
SOUND_
ENABLE
POR_CLASSD
+3V3STBY
40
11
7014
7012
3347
8
TR
RES
OUT
5
2047
7700
TDA7490
STBYMUTE
1
EF
EF
+5VSW
7015#
VCC
6
THR
7
DISC
CTRL
2042
+5VSW
2
4
3
-16V-19V
-16V-19V
7701 : 7707
SOUND
ENABLE
8
2
TR
4
RES
OUT
3
5
2021
SANDCASTLE
I357
I357
1V / div DC
5ms / div
2422
PWM
OSC
PWM
24
HP_LOUT
HP_ROUT
7708
3707
7710
AUD_SUP
R_SDTV
G_SDTV
B_SDTV
H_CS_SDTV
I354
V_SDTV
+16 +19V
I778
23
I776
3
+16V+19V
PROT1
A2
A13
A13
A13
I354
1V / div DC
20us / div
A13
A13
5702
3717
5701
3718
+16V+19V
E_14720_002.eps
1735
1
3
1736
1
3
300604
R
15W/
8R
L
15W/
8R
Page 17
Block Diagrams, Testpoint Overviews, and Waveforms
Note: The Service Default Mode (SDM) and Service Alignment
Mode (SAM) are described in chapter 5. Menu navigation is
done with the Cursor Up, Down, Left or Right keys of the
remote control transmitter.
8.1General Alignment Conditions
8.1.1 Start Conditions
Perform all electrical adjustments under the following
conditions:
•Power supply voltage (depends on region):
– EU: 230 V
– US: 120 V
– AP: 120 V
•Connect the set to the mains via an isolation transformer
with low internal resistance.
•Allow the set to warm up for approximately 15 minutes.
•Measure voltages and waveforms in relation to chassis
ground (with the exception of the voltages on the primary
side of the power supply).
Caution: never use heatsinks as ground.
•Test probe: Ri > 10 Mohm, Ci < 20 pF.
•Use an isolated trimmer/screwdriver to perform
alignments.
8.1.2 Initial Settings
Perform all electrical adjustments with the following initial
settings:
1. To avoid the working of the lightsensor, set "Active Control"
to "Off" (via the "Active Control" button on the RC).
2. Set "Smart Picture" to "Natural" or “Soft” (via the "Smart
Picture" button on the RC).
8.1.3 Alignment Sequence
•First, set the correct options:
– In SAM, select OPTIONS,
– Fill in the option settings according to the set sticker
(see also paragraph "Option Settings"),
– Store the OPTIONS by switching the set to STAND-
. OP1 0. Delta Cool Red -3
. OP2 57 . Delta Cool Green -1
. OP3 140. Delta Cool Blue 5
. OP4 32
. OP5 120
. OP6 128
. OP7 0
SAM SAM
. IFPLL 32. Normal Red 32
. AGC 30. Normal Green 35
. AGCL' 255. Normal Blue 41
SAM SAM
. Cool . Delta Warm Red 2
. Normal . Delta Warm Green -3
. Warm . Delta Warm Blue -13
SAM
. QSS Off
. FMI On
. NICAM Alignment 63
. Lip SyncOff
. DBEOff
SAM
.ADR 0x0000 0
.VAL 0x0000 0
.Store Store ?
SAM
.ADR 0x0000 0
.VAL 0x0000 0
.Store Store ?
Figure 8-1 Overview SAM menu
8.3.2White Tone
Method 1 (with color analyser):
Supply a 100% white uniformity test signal to the tuner.
Enter SAM menu. Color features are switched “off”
automatically.
Do NOT change the SMART PICTURE, ACTIVE CONTROL
and CONTRAST+ settings, to prevent activating of Green
Enhancement, Blue Stretch, and Black Stretch.
Offset values in NVM are used for HD-, HDMI- and VGA mode
only the settings in TV mode need to be set.
Make the following settings in the normal user menu, when
television is in TV Mode:
E_14710_009.eps
240604
8.2Hardware Alignments
No hardware alignments necessary.
8.3Software Alignments
With the software alignments of the Service Alignment Mode
(SAM), Options can be set and the WHITE TONE, TUNER (IF)
and AUDIO settings can be aligned.
To store the data: Use the RC button MENU to switch to the
main menu and then switch to STAND-BY mode.
Table 8-1 Picture settings for white tone alignment
AUOLPLPDP
Contrast999999
Brightness424444
Color 505050
Set the following settings in SAM:
WHITE TONE - NORMAL RED to: Initial value.
WHITE TONE - NORMAL GREEN to: Initial value.
WHITE TONE - NORMAL BLUE to: Initial value.
Initial value is: 200 for LCD sets (LPL and AUO) and 180 for
PDP sets.
Measure the RGB values with a color analyzer.
Leave the value with the lowest output on the initial value.
Page 60
EN 60LC4.7E AA8.
Alignments
Align the normal white points, by lowering the other 2 colors, to
the right x-y coordinates (see table "White Tone alignment
values").
Note: Only lower the colors to prevent clipping!
Table 8-2 White Tone alignment values
Color temp.
(K)
Normal
All regions
(8700)
X0.289
Y0.299
Note: Measure with a calibrated (phosphor- independent) color
analyser in the centre of the screen. Use a contact less
analyser (e.g. Minolta CA-210) to align the LCD TV. The color
analyser may not touch the screen surface. Also, the
measurement needs to be done in a dark environment.
The color analyser must be calibrated for the LCD or Plasma
panel in question. See the manual of the color analyser for the
procedure on how to perform this calibration.
Only the values for Normal are aligned with X, Y values. The
delta values for COLD and WARM are given below.
Table 8-3 Fixed delta values
Screen TypeREDGREENBLUE
PDPDelta Cool-6-10+5
Delta Warm+4-5-19
LCD LPLDelta Cool-8-12+3
Delta Warm+2-10-21
8.3.3 Tuner Adjustment
AGC (RF AGC Take Over Point)
Set pattern generator (e.g. PM5580) with colour bar pattern
and connect to aerial input with RF signal amplitude - 10mV
and set frequency for PAL/SECAM to 475.25 MHz. For France
select the L’-signal.
•Activate the SAM-menu. Go to the sub-menu TUNER,
select the sub-menu option AFC WINDOW and adjust the
value to “100 kHz”.
•Select the AGC sub-menu.
•Connect a DC multi-meter to test point F306 or pin1 of the
tuner.
•Adjust the AGC until the voltage at pin 1 of the tuner is
3.3 V +0.5 / -1.0.
•The value can be increased or decreased by pressing the
RIGHT/LEFT cursor button on the RC.
•Switch the set to STAND-BY to store the data.
8.3.4 Grey Scale Adjustment
SDTV Grey Scale Adjustment
Equipment and setting
•E.g. Fluke 54200 or Philips PM5580.
•100% “8-step grey scale” pattern.
Alignment Method
•Switch with the RC to TV mode,
•Press the MUTE button on RC,
•Set SMART PICTURE to SOFT mode,
•Activate the auto colour function by pressing key-
sequence:
"INFO - MUTE - MUTE - MUTE - INFO - MENU - INFO”.
LCD AUODelta Cool-3-12+10
Delta Warm+5-5-20
After the alignment is finished, switch the set to STANDBY, in
order to store the alignments. When disconnecting the power
before doing this, the settings will not be stored.
Method 2 (without color analyser):
If you do not have a color analyser, you can use the default
values. These values are based on the average values in
production.
•Set the values for the NORMAL color temperature. Given
in the table “Average statistical values for “NORMAL” from
production.
•Set the delta values for the COOL and WARM mode. See
table: “Fixed delta values.”
•After the alignment is finished, switch the set to STANDBY,
in order to store the alignments. When disconnecting the
power before doing this, the settings will not be stored.
Table 8-4 Average statistical values for “NORMAL” from
production.
Screen typeREDGREEN BLUE
PDPNormal?????????
LCD LPLNormal?????????
LCD AUONormal?????????
Values are valid for all regions
Recently a new and more accurate method to perform this alignment has been
introduced. Therefore there are no statistical values available yet. When available
they will be published in an update manual.
Expected Results
•Visual check if the 8 Grey levels are correct.
Analog PC Grey Scale Adjustment
Equipment and setting
•Quantum Data 802B.
•PC input signal, with 64 levels Grey scale pattern,
•Activate the auto colour function by pressing key-
sequence:
"INFO - MUTE - MUTE - MUTE - INFO - MENU - INFO”.
Expected Results
•Visual check if Colour bar tint and Grey scale is correct.
8.3.5 Sound
No adjustments needed for sound.
8.3.6 Options
Options are used to control the presence/absence of certain
features and hardware.
How to change an Option Byte
An Option Byte represents a number of different options.
Changing these bytes directly makes it possible to set all
options very fast. All options are controlled via seven option
bytes. Select the option byte (OP1.. OP7) with the cursor UP/
DOWN keys, and enter the new value.
Leaving the OPTION sub menu saves the changes in the
Option Byte settings. Some changes will only take effect after
the set has been switched “off” and “on” with the AC power
switch (cold start).
Alignments
EN 61LC4.7E AA8.
Page 62
EN 62LC4.7E AA8.
Alignments
Table 8-5 Option codes (general overview for all regions and displays)
Circuit Descriptions, Abbreviation List, and IC Data Sheets
9.Circuit Descriptions, Abbreviation List, and IC Data Sheets
EN 63LC4.7E AA9.
Index of this chapter
1. Introduction
2. Block Diagram
3. Power Supply
4. Input/Output
5. Tuner and IF
6. Video: TV Part
7. Video: Scaler Part
8. Audio Processing
9. Control
10. Display
11. Abbreviation List
12. IC Data Sheets
Note:
•Only new (not recently published) circuits are described
here. For the other circuit descriptions, see a.o. the A02,
FTL13, and FTL2.1 Service Manuals.
•Figures can deviate slightly from the actual situation, due
to different set executions.
•For a good understanding of the following circuit
descriptions, please use the wiring, block and circuit
diagrams. Where necessary, you will find a separate
drawing for clarification.
9.2Block Diagram
9.1Introduction
The LC4.x is a global chassis for the year 2004. Its architecture
is based upon the LC03 chassis (LC4.6 is LCD, LC4.7 is PDP).
This chassis has the following (new) features:
•Audio: The sound processor is part of the UOC processor
(called “Hercules”).
•Video: Enhanced video features, video drivers, Active
Control and multiple PIP.
The functions for video/audio processing, microprocessor (uP),
and CC/Teletext (TXT) decoder are all combined in one IC
(TDA120xx, item 7011), the so-called third generation Ultimate
One Chip (UOC-III) or “Hercules”. This chip has the following
features:
•Control, small signal, mono/stereo, and extensive Audio/
Video switching in one IC.
•Upgrade with digital sound & video processing.
•Alignment free IF.
•FM sound, no traps/bandpass filters.
•Full multi-standard color decoder.
•One Xtal reference for all functions (microprocessor, RCP,
TXT/CC, RDS, color decoder, and stereo sound
processor).
AC Mains
Input
Power Supply Unit
DMMI
ANALOGUE TVSCALER
Tuner
TV/FM
2
I
C
Hercules-
Compair
(Service)
3DYC
uPCxxx
(Option)
HM
Link
(RJ12)
NVM
CTI/LTI/Hist.
(VDP + STEREO)
LIP
SYNC
AV1 AV2 Side
TV/IOs
(SCART/Cinch)
TDA9178
YUV
Interface
HERCULES
Embedded
Flash
I2S
Const
Audio
Out
Audio
Amp
Speakers
& HP
RGB
& HV
DMMI
(Multi-media
Interface)
MUX
MUX
PC
Audio
INPUT
NVM
Analogue
Input
RGBHV/
YPbPr
VGA
INPUT
FLASH
GM1501
(SCALER)
SDRAM
DVI
Input
DVI-D
INPUT
Option: Choose one
24-bit
Input
HDMI
Processor
HDMI
INPUT
LVDS
Compair
(UART)
DISPLAY
PANEL
Figure 9-1 Block Diagram
Cinch-to-VGA
Adapter
(YPbPr- HD)
DVI-to-HDMI
Adapt er
E_14490_058.eps
190804
Page 64
EN 64LC4.7E AA9.
Circuit Descriptions, Abbreviation List, and IC Data Sheets
The PLL tuner delivers the IF-signal, via audio & video SAWfilters, to the Video Signal Processor with FLASH embedded
TEXT/Control/Graphics m-Controller (TCG m-Controller) and
US Closed Caption decoder. TDA120x1 (item 7011, also called
Hercules). This IC has the following functions:
•Analogue Video Processing.
•Sound Demodulation.
•Audio Interfaces and switching.
•Volume and tone control for loudspeakers.
•Reflection and delay for loudspeaker channels.
•Micro Controller.
•Data Capture.
•Display.
The Hercules has one input for the internal CVBS signal and a
video switch with 3 external CVBS inputs and a CVBS output.
All CVBS inputs can be used as Y-input for Y/C signals.
However, only 2 Y/C sources can be selected because the
circuit has 2 chroma inputs. It is possible to add an additional
CVBS(Y)/C input (CVBS/YX and CX) when the YUV interface
and the RGB/YPRPB input are not needed. The I/O is divided
over two parts: Rear I/O and Side I/O. The rear has two SCART
inputs and a PC (VGA) input. The side has a CVBS and Y/C
(SVHS) input.
The video part delivers the RGB signals to the Scaler IC.
The Genesis GM1501 Malibu Scaler IC can receive different
video input signals: SDTV (from Hercules) or PC (VGA) (from
external computer).
9.3Power Supply (SDI plasma panel)
See the FTP1.1 manual for a more detailed description.
9.3.1 Start-up sequence
AC Input
9V_stby
5V2
5V_relay_Io2
STANDBY
5V_SW, 8V6,
TUN, VSND
12V, V
3V3, 5V
Va, Vg
Vs_on
(LOGIC BD)
Power_Sequence
(LOGIC BD)
Vs, Vscan
Ve, Vset
Power _OK
(PSU)
Image data
S/W OnPlug-inRemote Off
Figure 9-2 Start-up sequence SDI plasma panel
About 1.4s
800ms
Remote On
800ms
Plug-outRemote On
E_14720_016.eps
260804
After the video processing, the digital data is send via a Low
Voltage Differential Signalling bus to the display panel. LVDS
is used to improve data speed and to reduce EMI significantly.
There are two I
2
C lines and two interrupt and communication
lines (TV_IRQ and TV_SC_COM) for the Scaler control. The
Scaler communicates with the Hercules as a slave device. To
avoid buffer overflow at the Scaler side, the TV_SC_COM line
provides the necessary hardware flow control. To allow bidirectional communication, the Scaler can initiate a service
interrupt-request to the Hercules via the TV_IRQ line.
The Hercules, and EEPROM are supplied with 3.3 V, which is
also present during STANDBY.
The EEPROMs, or NVMs (Non Volatile Memory) are used to
store the settings.
The sound part is built up around the Hercules. The Source
Selection, Decoding and Processing are all done by the
Hercules.
Power supply input are several DC voltages coming from a
supply panel.
9.4Input/Output
The I/O is divided over two parts: Rear I/O and Side I/O. The
rear has two SCART inputs, a PC (VGA) input, and an Audio
input. The side has a CVBS and Y/C (SVHS) input.
EXT1: The input of SCART1 is CVBS + RGB + L/R and the
output is the video (+ sound) signal from the tuner
(SC1_CVBS_RF_OUT).
EXT2: The input of SCART2 is Y/C + CVBS + L/R. The output
signal is CVBS_SC2_MON_OUT (+ sound).
SCART2 is meant for VCR and has therefore some additional
signals in relation to EXT1 but no RGB: it has the possibility for
Y/C_in: Y_in on pin 20 and Chroma_in on pin 15.
The selection of the external I/O's is controlled by the Hercules.
PC (VGA) in: This input is directly going to the Scaler IC. See
paragraph “Video: Scaler Part”.
9.5Tuner and IF
A Philips UV13xx Tuner is used in the TV board. The SIF
signals are decoded by the Hercules. Tuning is done via I
9.5.1 Video IF amplifier
2
C.
The IF-filter is integrated in a SAW (Surface Acoustic Wave)
filter. One for filtering IF-video (1328) and one for IF-audio
(1330). The type of these filters is depending of the standard(s)
that has to be received.
The output of the tuner is controlled via an IF-amplifier with
AGC-control. This is a voltage feedback from pin 31 of the
Hercules to pin 1 of the tuner. The AGC-detector operates on
top sync and top white level. AGC take-over point is adjusted
via the service alignment mode "Tuner” - “AGC". If there is too
much noise in the picture, then it could be that the AGC setting
is wrong. The AGC-setting could also be mis-aligned if the
picture deforms with perfect signal; the IF-amplifier amplifies
too much.
Page 65
Circuit Descriptions, Abbreviation List, and IC Data Sheets
EN 65LC4.7E AA9.
9.6Video: TV Part (diagrams A1, A2, and A3)
The video processing is completely handled by the Hercules
•IF demodulator.
•Chrominance decoder
•Sync separator.
•Horizontal & vertical drive.
•RGB processing.
•CVBS and SVHS source select.
It has also build in features like:
•CTI.
•Black stretch.
•Blue stretch.
•White stretch.
•Slow start up.
•Dynamic skin tone correction etc.
Further, it also incorporates sound IF traps and filters, and
requires only one crystal for all systems.
9.6.1 Histogram (YUV picture improvement) IC
The demodulated video-signal can be checked on pins 74, 75,
and 76 of IC7011 and is fed to pins 70, 71, and 72. In this path,
the Histogram IC TDA9171 is inserted.
This TDA9178 can control various picture improvements:
•Histogram processing.
•Colour transient improvement.
•Luminance transient improvement.
•Black and white stretch.
•Skin tone correction.
•Green enhancement.
•Blue stretch.
•Smart peaking.
•Video dependent coring.
•Colour dependent stretching.
Since the TDA9171 is connected to the Hercules, picture
improvement works only for signals that are routed through the
Hercules and not for signals directly connected to the Scaler.
PC (VGA) input
The VGA input is processed by the VGA block of the Scaler.
The Scaler supports pixel frequencies up to 165MHz.
YpbPr format is also supported via the VGA interface and
covers resolutions of 480p/560p/720p/1080i.
9.7.3Output
The Display Output Port provides data and control signals that
permit the Scaler to connect to a variety of display devices
using a TTL or LVDS interface. The output interface is
configurable for single or dual wide TTL/LVDS in 18, 24 or 30bit RGB pixels format. All display data and timing signals are
synchronous with the DCLK output clock. The integrated LVDS
transmitter is programmable to allow the data and control
signals to be mapped into any sequence depending on the
specified receiver format.
9.8Audio Processing
Hercules
AUDIO-LSL
AUDIO-LSR
AUDIO-OUTHPL
AUDIO-OUTHPR
AUDIO-OUTSL
AUDIO-OUTSR
P0.0/I2SDO1
P0.0/I2SDI1
P0.3/I2SCLK
For iTV only
106
105
103
Is used on the DMMI
=> No SCART2/AV2 for
Bolt-on
I2S
HDMIDAC
PC_HDMI_AUD_SEL
GPIO_G07_B0)
PC in
(From Scaler,
Tuner
AV1 in
*AP/USA/Latam
SCART1 in
*Europe only
AV2 in
*AP/USA/Latam
SCART2 in
*Europe only
Side in
*All region
HEF4053
3X SPDT
SIF
FM
SIF Input
SSIF Input
AUDIO-IN5L
AUDIO-IN5R
AUDIO-IN3L
AUDIO-IN3R
AUDIOI-N4L
AUDIO-IN4R
AUDIO-IN2L
AUDIO-IN2R
Figure 9-3 Block diagram audio processing
Monitor out
* Not available
SCART2 out
*Europe only
SCART1 out
*Europe only
Lip Sync
Circuit
2x
Amplifier
Constant Level Out
*Europe only
Amplifier
E_14490_061.eps
130804
2x Stereo
Speaker
Headphone
9.7Video: Scaler Part (diagram A7 and A13)
The Genesis GM1501 Scaler is a dual channel graphics and
video processing IC for flat monitors and televisions
incorporating Picture in Picture, up to SXGA output resolutions.
The Scaler controls the display processing in a FTV, e.g. like
the deflection circuit in a CRT-based TV. It controls all the view
modes (e.g. like "zooming" and "shifting"). Features like PC
(VGA) or HD inputs, are also handled by this part.
9.7.1 Features
The Scaler provides several key IC functions:
•Scaling.
•Auto-configuration/ Auto-Detection.
•Various Input Ports:
– Analog RGB.
– Video Graphics.
•Integrated LVDS Transmitter.
•On-chip Micro-controller
9.7.2 Inputs
Analog RGB
The RGB input is fed to pins B2, C2 and D2. This input consists
of either the Hercules RGB output or the RGB/YpbPr input of
the VGA connector. The Scaler can switch between the two
signals via the PC_HD_SEL signal and selection IC SM5301.
The audio decoding is done entirely via the Hercules. The IF
output from the Tuner is fed directly to either the Video-IF or the
Sound-IF input depending on the type of concept chosen.
There are mainly two types of decoder in the Hercules, an
analogue decoder that decodes only Mono, regardless of any
standards, and a digital decoder (or DEMDEC) that can decode
both Mono and Stereo, again regardless of any standards.
In this chassis, the analogue decoder is used in two cases:
•It is used for AM Sound demodulation in the Europe
SECAM LL’ transmission.
•It is used for all FM demodulation in AV-Stereo sets.
9.8.1Diversity
The diversity for the Audio decoding can be broken up into two
main concepts:
•The Quasi Split Sound concept used in Europe and some
AP sets.
•The Inter Carrier concept, used in NAFTA and LATAM.
The UOC-III family makes no difference anymore between
QSS- and Intercarrier IF, nearly all types are softwareswitchable between the two SAW-filter constructions.
Simple data settings are required for the set to determine
whether it is using the Inter Carrier or the QSS concept. These
settings are done via the “QSS” and “FMI” bit found in SAM
mode. Due to the diversity involved, the data for the 2 bits are
being placed in the NVM location and it is required to write once
during startup.
Page 66
EN 66LC4.7E AA9.
Circuit Descriptions, Abbreviation List, and IC Data Sheets
On top of that, it can be further broken down into various
systems depending on the region. The systems or region
chosen, will in turn affect the type of sound standard that is/are
allowed to be decoded.
•For Europe, the standard consists of BG/DK/I/LL’ for a
Multi-System set. There are also versions for Eastern
Europe and Western Europe and the standard for decoding
will be BG/DK and I/DK respectively.
•For NAFTA and LATAM, there is only one transmission
standard, which is the M standard. The diversity then will
be based on whether it has a dBx noise reduction or a NondBx (no dBx noise reduction).
•For AP, the standard consists of BG/DK/I/M for a MultiSystem set. The diversity here will depend on the region.
AP China can have a Multi-System and I/DK version. For
India, it might only be BG standard.
9.8.2 Functionality
The features available in the Hercules are as follows:
•Treble and Bass Control.
•Surround Sound Effect that includes:
– Incredible Stereo.
– Incredible Mono.
– 3D Sound (not for AV Stereo).
– TruSurround (not for AV Stereo).
– Virtual Dolby Surround, VDS422 (not for AV Stereo).
– Virtual Dolby Surround, VDS423 (not for AV Stereo).
– Dolby Pro-Logic (not for AV Stereo).
•Bass Feature that includes:
– Dynamic Ultra-Bass.
– Dynamic Bass Enhancement.
– BBE (not for AV Stereo).
•Auto-Volume Leveler.
•5 Band Equalizer.
•Loudness Control.
All the features stated are available for the Full Stereo versions
and limited features for the AV Stereo
9.8.3 Audio Amplifier Panel (diagram SA3)
Introduction
This panel contains the audio filters and amplifiers necessary
for driving the speakers.
The audio inputs come from the SSB (via connector 1739).
The PSU delivers the positive and negative supply voltage of
16 VDC.
After being filtered and amplified, the signals go to the speaker
section, where the full range speakers are driven (load
impedance is 8 ohm).
Amplifier
The amplifier is an integrated class-D amplifier (TDA7490). It
combines a good performance with a high efficiency, resulting
in a big reduction in heat generation.
Principle
Audio-power-amplifier systems have traditionally used linear
amplifiers, which are well known for being inefficient. In fact, a
linear Class AB amplifier is designed to act as a variable
resistor network between the power supply and the load. The
transistors operate in their linear region, and the voltage that is
dropped across the transistors (in their role as variable
resistors) is lost as heat, particularly in the output transistors.
Class D amplifiers were developed as a way to increase the
efficiency of audio-power-amplifier systems.
The Class D amplifier works by varying the duty cycle of a
Pulse Width Modulated (PWM) signal.
By comparing the input voltage to a triangle wave, the amplifier
increases duty cycle to increase output voltage, and decreases
duty cycle to decrease output voltage.
The output transistors of a Class D amplifier switch from 'full off'
to 'full on' (saturated) and then back again, spending very little
time in the linear region in between. Therefore, very little power
is lost to heat. If the transistors have a low 'on' resistance
(RDS(ON)), little voltage is dropped across them, further
reducing losses.
A Low Pass Filter at the output passes only the average of the
output wave, which is an amplified version of the input signal.
In order to keep the distortion low, negative feedback is applied
(via R3723/3708).
The advantage of Class D is increased efficiency (= less heat
dissipation). Class D amplifiers can drive the same output
power as a Class AB amplifier using less supply current.
The disadvantage is the large output filter that drives up cost
and size. The main reason for this filter is that the switching
waveform results in maximum current flow. This causes more
loss in the load, which causes lower efficiency. An LC filter with
a cut-off frequency less than the Class D switching frequency,
allows the switching current to flow through the filter instead of
the load. The filter is less lossy than the speaker, which causes
less power dissipated at high output power and increases
efficiency in most cases.
Mute
A mute switch (item 7701) is provided at pin 6. This switch is
controlled by the SOUND_ENABLE line from the Hercules
(mute during operation).
Protections
Because of the symmetrical supply, a DC-blocking capacitor,
between the amplifier and the speaker, is not necessary.
However, it is still necessary to protect the speaker for DC
voltages. Therefore, the following protections are therefore
implemented:
•Via R3765 and R3767, each stabilised supply voltage line
is checked on deviations.
•Via R3718 and 3717, each amplifier output is checked for
DC-voltage.
9.9Control
9.9.1 Hercules
The System Board has two main micro-controllers on board.
These are:
•On-chip x86 micro-controller (OCM) from Genesis LCD TV/
Monitor Controller.
•On-chip 80C51 micro-controller from Philips
Semiconductors UOCIII (Hercules) series.
Each micro-controller has it own I2C bus which host its own
internal devices.
The Hercules is integrated with the Video and Audio Processor.
For dynamic data storage, such as SMART PICTURE and
SMART SOUND settings, an external NVM IC is being used.
Another feature includes an optional Teletext/Closed Caption
decoder with the possibility of different page storage depending
on the Hercules type number.
The Micro Controller ranges in ROM from 128 kB with no TXTdecoder to 128 kB with a 10 page Teletext or with Closed
Caption.
9.9.2 Block Diagram
The block diagram of the Micro Controller application is shown
below.
Page 67
Circuit Descriptions, Abbreviation List, and IC Data Sheets
Figure 9-4 Micro Controller block diagram
9.9.3 Basic Specification
The Micro Controller operates at the following supply voltages:
•+3.3 V
•+1.8 V
2
•I
9.9.4 Pin Configuration and Functionality
The ports of the Micro Controller can be configured as follows:
•A normal input port.
•An input ADC port.
•An output Open Drain port.
•An output Push-Pull port.
•An output PWM port.
•Input/Output Port
The following table shows the ports used for the L04 control:
Table 9-1 Micro Controller ports overview
Pin NameDescriptionConfiguration
97INT0/ P0.5IRINT0
98P1.0/ INT1TV_IRQINT2
99P1.1/ T0TV_SC_COMP1.1
102 P0.4/ I2SWSEXT_MUTEP0.4
103 P0.3/ I2SCLK Lip SyncI2SCLK
104 P0.2/ I2SDO2 NVM_WPP0.2
105 P0.1/ I2SDO1 Lip SyncI2SDO1
106 P0.0/ I2SDI/O Lip SyncI2SDI/O
107 P1.3/ T1PC-TV_LEDP1.3
108 P1.6/ SCLSCLSCL
109 P1.7/ SDASDASDA
111 P2.0/ TPWMSOUND_ENABLEP2.0
112 P2.1/ PWM0(for future use)-
113 P2.2/ PWM1(for future use)-
114 P2.3/ PWM2SEL_IFP2.3
115 P3.0/ ADC0Light Sensor - SDMADC0
116 P3.1/ ADC1STATUS_1ADC1
119 P3.2/ ADC2STATUS_2ADC2
120 P3.3/ ADC3KEYBOARDADC3
122 P2.4/ PWM3STANDBYP2.4
123 P2.5/ PWM4(for future use)-
126 P1.2/ INT2(for future use)-
127 P1.4/ RXHERC_RESET-
128 P1.5/ TXPOWER_DOWNP1.5
at pins 4, 88, 94, and 109.
DC
at pins 93, 96, and 117.
DC
C pull up supply: +3.3 VDC.
E_14490_062.eps
020604
EN 67LC4.7E AA9.
•LED. This signal is used to drive the LED for Stand-by,
Remote, and Error Indicaton:
– During protection mode, the LED blinks and the set is
in Stand-by mode.
– During error conditions it blinks at a predefined rate.
– After receiving a valid RC or local keyboard command
it flashes once.
– For sets with error message indication, the LED blinks
when message is active and the set is in Stand-by
mode.
•SCL. This is the clock wire of the two-wire single master bi-
directional I
•SDA. This is the data wire of the two-wire single master bi-
directional I
•STANDBY. The Hercules generates this signal. This can
enable the power supply in normal operation and disable it
during Stand-by. It is of logic “high” (3.3 V) under normal
operation and “low” (0 V) during Stand-by.
•IR. This input pin is connected to an RC5 remote control
receiver.
•SEL-IF. This is an output pin to switch the Video SAW filter
between M system and other systems.
– 0: NTSC M (default).
– 1: PAL B/G, DK, I, L.
•NVM_WP. The global protection line is used to enable and
disable write protection to the NVM. When write to the NVM
is required, pin 7 of the NVM must be pulled to logic “0" first
(via Write_Protect of the micro-controller pin) before a write
is performed. Otherwise pin 7 of NVM must always be at
logic “1”
– 0: Disabled.
– 1: Enabled (default).
•SOUND_ENABLE. This pin is use to MUTE the audio
amplifier. It is configured as push pull.
•STATUS_1. This signal is used to read the status of the
SCART 1 input (EU only).
•STATUS_2. This signal is used to read the status of the
SCART 2 input (EU only).
•HERC_RESET. This pin is use to switch the +1.8 V supply.
•POWER_DOWN. The power supply generates this signal.
Logic “high” (3.3 V) under normal operation of the TV and
goes “low” (0 V) when the Mains input voltage supply goes
below 70 V
•KEYBOARD. Following are the Keyboard functions and
the step values (8 bit) for it.
Table 9-2 Local keyboard values
Function
P+ / Ch+ 0.437 - 33
P- / Ch-0.9354 - 73
Menu (Vol - and Vol +)1.1974 - 96
Vol -1.4997 - 121
Vol +2.12148 - 169
•TV_IRQ. This signal is the interrupt from the Scaler IC.
•TV_SC_COM. This signal is used for the communication
with the Scaler IC.
•EXT_MUTE. This signal is used to reduce the switch “off”
plop.
2
C bus.
2
C bus.
.
AC
Voltage
(VDC)
Step values
(8 bit)
The description of each functional pin is explained below:
Page 68
EN 68LC4.7E AA9.
Circuit Descriptions, Abbreviation List, and IC Data Sheets
algorithm that adapts aspect ratio to
remove horizontal black bars; keeping
up the original aspect ratio
ACIAutomatic Channel Installation:
algorithm that installs TV channels
directly from a cable network by
means of a predefined TXT page
ADCAnalogue to Digital Converter
AFCAutomatic Frequency Control: control
signal used to tune to the correct
frequency
AGCAutomatic Gain Control: algorithm that
controls the video input of the feature
box
AMAmplitude Modulation
APAsia Pacific
ARAspect Ratio: 4 by 3 or 16 by 9
ASDAutomatic Standard Detection
AVAudio Video
B-SC1-INBlue SCART1 in
B-SC2-INBlue SCART2 in
B-TXTBlue teletext
B/GMonochrome TV system. Sound
carrier distance is 5.5 MHz
BTSCBroadcast Television System
Committee
C-FRONTChrominance front input
CBACircuit Board Assembly (or PWB)
CLConstant Level: audio output to
connect with an external amplifier
CLUTColor Look Up Table
ComPairComputer aided rePair
CSMCustomer Service Mode
CVBSComposite Video Blanking and
Synchronisation
CVBS-EXTCVBS signal from external source
(VCR, VCD, etc.)
CVBS-INTCVBS signal from Tuner
CVBS-MONCVBS monitor signal
CVBS-TER-OUTCVBS terrestrial out
DACDigital to Analogue Converter
DBEDynamic Bass Enhancement: extra
low frequency amplification
DFUDirections For Use: owner's manual
DNRDynamic Noise Reduction
DRAMDynamic RAM
DSPDigital Signal Processing
DSTDealer Service Tool: special
(European) remote control designed
for service technicians
DTSDigital Theatre Sound
DVDDigital Versatile Disc
DVIDigital Visual Interface
DWDouble Window
EEPROMElectrically Erasable and
Programmable Read Only Memory
EUEUrope
EXTEXTernal (source), entering the set by
SCART or by cinches (jacks)
FBLFast Blanking: DC signal
accompanying RGB signals
FBL-SC1-INFast blanking signal for SCART1 in
FBL-SC2-INFast blanking signal for SCART2 in
FBL-TXTFast Blanking Teletext
FLASHFLASH memory
FMField Memory / Frequency Modulation
FMRFM Radio
FRCFrame Rate Converter
FRONT-CFront input chrominance (SVHS)
FRONT-DETECTFront input detection
FRONT-Y_CVBSFront input luminance or CVBS
(SVHS)
FTVFlat TeleVison
G-SC1-INGreen SCART1 in
G-SC2-INGreen SCART2 in
G-TXTGreen teletext
HH_sync to the module
HDHigh Definition
HDMIHigh Definition Multimedia Interface,
HPHeadPhone
IMonochrome TV system. Sound
2
I
CIntegrated IC bus
2
I
SIntegrated IC Sound bus
ICIntegrated Circuit
IFIntermediate Frequency
InterlacedScan mode where two fields are used
IRInfra Red
IRQInterrupt ReQuest
Last StatusThe settings last chosen by the
LATAMLATin AMerica
LC04Philips chassis name for LCD TV 2004
LCDLiquid Crystal Display
LEDLight Emitting Diode
L/L'Monochrome TV system. Sound
LSLoudSpeaker
LVDSLow Voltage Differential Signalling,
M/NMonochrome TV system. Sound
MOSFETMetal Oxide Semiconductor Field
MPEGMotion Pictures Experts Group
MSPMulti-standard Sound Processor: ITT
O/COpen Circuit
ON/OFF LEDOn/Off control signal for the LED
OSDOn Screen Display
PALPhase Alternating Line. Color system
digital audio and video interface
carrier distance is 6.0 MHz
to form one frame. Each field contains
half the number of the total amount of
lines. The fields are written in "pairs",
causing line flicker.
customer and read and stored in RAM
or in the NVM. They are called at startup of the set to configure it according
the customers wishes
project
carrier distance is 6.5 MHz. L' is Band
I, L is all bands except for Band I
data transmission system for high
speed and low EMI communication.
carrier distance is 4.5 MHz
Effect Transistor
sound decoder
Association: Trade agreement
between Canada, USA and Mexico
Audio Multiplexing. This is a digital
sound system, used mainly in Europe.
Committee. Color system used mainly
in North America and Japan. Color
carrier NTSC M/N = 3.579545 MHz,
NTSC 4.43 = 4.433619 MHz (this is a
VCR norm, it is not transmitted off-air)
TV related data (for example, options)
used mainly in Western Europe (color
Page 69
Circuit Descriptions, Abbreviation List, and IC Data Sheets
EN 69LC4.7E AA9.
carrier = 4.433619 MHz) and South
America (color carrier PAL M =
3.575612 MHz and PAL N = 3.582056
MHz)
PCPersonal Computer
PCBPrinted Circuit Board (or PWB)
PDPPlasma Display Panel
PIGPicture In Graphic
PIPPicture In Picture
PLLPhase Locked Loop. Used, for
example, in FST tuning systems. The
customer can directly provide the
desired frequency
Progressive ScanScan mode where all scan lines are
displayed in one frame at the same
time, creating a double vertical
resolution.
PWBPrinted Wiring Board (or PCB)
RAMRandom Access Memory
RCRemote Control transmitter
RC5 (6)Remote Control system 5 (6), the
RGBRed, Green, and Blue. The primary
RGBHVRed, Green, Blue, Horizontal sync,
ROMRead Only Memory
SAMService Alignment Mode
SIFSound Intermediate Frequency
SCSandCastle: two-level pulse derived
SC1-OUTSCART output of the MSP audio IC
SC2-B-INSCART2 Blue in
SC2-C-INSCART2 chrominance in
SC2-OUTSCART output of the MSP audio IC
S/CShort Circuit
SCLClock signal on I
SDStandard Definition
SDAData signal on I
SDMService Default Mode
SDRAMSynchronous DRAM
SECAMSEequence Couleur Avec Memoire.
SIFSound Intermediate Frequency
SMPSSwitch Mode Power Supply
SNDSouND
SNDL-SC1-INSound left SCART1 in
SNDL-SC1-OUTSound left SCART1 out
SNDL-SC2-INSound left SCART2 in
SNDL-SC2-OUTSound left SCART2 out
SNDR-SC1-INSound right SCART1 in
SNDR-SC1-OUTSound right SCART1 out
SNDR-SC2-INSound right SCART2 out
SNDR-SC2-OUTSound right SCART2 out
SNDS-VL-OUTSurround sound left variable level out
SNDS-VR-OUTSurround sound right variable level out
SOPSSelf Oscillating Power Supply
S/PDIFSony Philips Digital InterFace
SRAMStatic RAM
STBYStand-by
SVHSSuper Video Home System
SWSubWoofer / SoftWare
THDTotal Harmonic Distortion
TXTTeleteXT
uPMicroprocessor
VLVariable Level out: processed audio
VCRVideo Cassette Recorder
VGAVideo Graphics Array
WDWatch Dog
signal from the remote control receiver
color signals for TV. By mixing levels
of R, G, and B, all colors (Y/C) are
reproduced.
and Vertical sync
from sync signals
2
C bus
2
C bus
Color system used mainly in France
and Eastern Europe. Color carriers =
4.406250 MHz and 4.250000 MHz
output toward external amplifier
WYSIWYRWhat You See Is What You Record:
record selection that follows main
picture and sound
XTALQuartz crystal
YPbPrComponent video (Y= Luminance, Pb/
Pr= Colour difference signals B-Y and
R-Y, other amplitudes w.r.t. to YUV)
Y/CVideo related signals: Y consists of
luminance signal, blanking level and
sync; C consists of colour signal.
Y-OUTLuminance-signal
YUVBaseband component video (Y=
Luminance, U/V= Color difference
signals)
Page 70
EN 70LC4.7E AA9.
9.11 IC Data Sheets
This section shows the internal block diagrams and pin layouts
of ICs that are drawn as "black boxes" in the electrical diagrams
(with the exception of "memory" and "logic" ICs).
9.11.1 Diagram A2, Type TDA12029H (IC7011)
Circuit Descriptions, Abbreviation List, and IC Data Sheets
s
d
B
kcol
TUOMA/OSSQ
OFER
HCTIWS
VD/NIFIS
NIB
/OVFI/OBVD
ORMF
ORMF/OBVD
TUOC
GA
NIFIV
I
/OVS/OVF
ISBVC
CNYSY
2
C
Y/2SBV
3Y/3SBV
C
C/2
3
C
4Y/4SBVC
4
C
/OSBVC
PIP
FI DNUOS SSQ
CGA
EXIM SS
R
Q
ROTALUDOMED MA
CFA/CGA/FI NOISIV
.DOMED LLP
PART DNUOS
YALED PUORG
.PMA OEDIV
C
HCTIWS OEDIV
.TNEDI OEDI
V
SRETLIF OEDIV
Y
YS V/H
.PES CN
V/H
LLP + .CSO-H
d
n
2
POOL
TFIHS-H
EVIRD-
H
TUOH
ro
secorp VT ”oerets-VA“ eht fo margai
FISS
H4/H2
V
VIRD-V
D oi
PS
dua htiw
LLP DNUOS
SISAHPMEED
M
A
CSTN/MACES/LAP
REDOCED
FER
LATIGID
RETLIF BMOC
.JDA YALED Y
LACITRE
TSEW-TSAE &
YRTEMOEG
E
OTH
E
LB
Y/G
P/R
R
DWE
Pin configuration “stereo” and “AV-stereo” versions with Audio DSP
R
LPH+RSL_SOP_FERV
RSL+LSL_GEN_FERV
P
H+LPH_
RPH_SOP_FERV
P1.5/TX
P1.4/RX
P1.2/INT2
VSSC3
VDDC3
P2.5/PWM4
P2.4/PWM3
VSSC1/P
P3.3/ADC3
P3.2/ADC2
DECV1V8
VDDC1(1.8)
P3.1/ADC1
P3.0/ADC0
P2.3/PWM2
P2.2/PWM1
P2.1/PWM0
P2.0/PMW
VDDP(3.3V)
P1.7/SDA
P1.6/SCL
P1.3/T1
P0.0/I2SDI1
P0.1/I2SDO1
P0.2/I2SDO2
P0.3/I2SCLK
P0.4/I2SWS
VSSC2
VDDC2
P1.1/T0
P1.O/INT1
INT0/P0.5
LSL_SOP_FERV
)V3.3(3ADDV
G
E
4
2PSSV
C
SS
V
721
821
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
QFP-128 0.8 mm pitch “face down version”
4
3
3
3
)
c
8.
d
a
1(
SSV
c
d
aD
D
V
N
4CDDV
_FERV
221
121
521
321
421
621
9
0
7
5
8
6
3
4
3
3
3
3
)V3.3
)
A
S
G
D
V
DN
E
A
O
8.
F
N
P
1(
E
(
2ADDV
_DAFERV
_DA
G
R
A
V
DD
F
E
V
R
V
OIWS/DRAUGV
TU
GIDCED
1
NILATX
OL
A
TX
021
91
811
1
24
1
4
)
.
OB
V3.
3
(1A
D
D
V
FL2HP
A
SS
1
P
V
V
311
411
711
511
611
7
84
54
34
64
44
4
3DNG
3P
OR
N
NIL
OG
I
K
V
L
C
B
B
TUO/NI HCNIC/TRACS
TCELES OIDUA
CAD/CDA
DNAB-ESAB
ENIL YALED
PY/BGR
RPB
E
Y
CAFRETNI VU
o
Y
iY
oUoV
P/B
B
LB
1OWS
DWE/LVA
LLPCES
G
FL1HP
1DNG
B
C
E
D
111
211
801
011
90
1
35
0
25
15
94
5
)1OWS(TUO
3WSSNI
3-
3-
3-
R
Y/
B
P
P/B
/
G
R
V
TRESNI
BRDV
701
)2
WSNI(
T
U
O
U
B
Y/G
45
S2I
P/
B
ARDV
601
55
T
U
O
Y
L
µREDOCED TXETELET DNA ROSSECORP-
ID
YUV IN/OUT
iUiV
P/R
R
)xC()xY/xSBVC(
1N
2
N
IF
IFIV
CSV
IV
301
401
501
85
75
65
)X-Y/SBVC/2-Y
C
N
Y
SY
/
G(NIY
TUO-SL
TUO-PH
R
RL
LORTNOC OIDUA
EMULOV
SSAB/ELBBERT
SERUTAEF
sCAD
ATIG
GNIKAEP
YTICOLEV NACS
NOITALUDOM
ALED V/U
Y
TNIT V/U
2NIF
1N
I
FIS/1N
I
S/2NIBVD
FIDNG
I
FERI
BVD
101
001
201
16
06
95
)2-
)
b
b
X
m
-
moc
B
ocS
C
P
/
/B(
2-
DD
S
R
V
NIU
V
P/R(NIV
MEVACS
TXET NO
IRB
ENOT NIKS
NOITARUTAS
TAS
TU
O
OTHE
CG
A
9
79
8
9
9
96
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
26
4
36
6
TUO
Y
M
S
V
C
S
/OS
H
I
BF
SDR
GNISSECORP LANGIS L
SERUTAEF
B
.NOC
CCC
XIRTAM BGR
TS EULB
AVL/SWO/SSIF/
REFIN/REFOUT
95
AUDIOIN5L
AUDIOIN5R
AUDOUTSL
AUDOUTSR
DECSDEM
AMOUT/QSSO/AUDEEM
GND2
PLLIF
SIFAGC/DVBAGC
DVBO//IFVO/FMRO
DVBO/FMRO
VCC8V
AGC2SIF
VP2
SVO/IFOUT/CVBSI
AUDIOIN4L
AUDIOIN4R
CVBS4/Y4
C4
AUDIOIN2L/SSIF
AUDIOIN2R
CVBS2/Y2
AUDIOIN3L
AUDIOIN3R
CVBS3/Y3
C2/C3
AUDOUTLSL
AUDOUTLSR
AUDOUTHPL
AUDOUTHPR
CVBSO/PIP
LORTNOC BGR
TRESNI TXET/DSO
NTHGIRB/RTNOC
.JDA .P-ETIHW
HCTER
HCTERTS KCALB
LORTNOC AMMAG
RCBGRL
S
MV
E_14490_063.eps
sO/I
OR
OG
OB
NILCB
NIKLB
160804
Figure 9-5 Internal Block Diagram and Pin Configuration
Page 71
Circuit Descriptions, Abbreviation List, and IC Data Sheets