1. Technical Specifications, Connections, and Chassis
Overview2
2. Safety Instructions, Warnings, and Notes5
3. Directions for Use7
4. Mechanical Instructions8
5. Service Modes, Error Codes, and Fault Finding 14
6. Block Diagrams, Test Point Overviews, and
Waveforms
Wiring Diagram23
Block Diagram Video24
Block Diagram Audio25
Testpoint Overview Small Signal Board 6093.1 26
Testpoint Overview Small Signal Board 6141.1 27
I2C IC Overview28
Supply Voltage Overview29
Copyright 2006 Philips Consumer Electronics B.V. Eindhoven, The Netherlands.
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, electronic,
mechanical, photocopying, or otherwise without the prior permission of Philips.
SSB: Columbus(B19) 4852-61
SSB: EPLD(B20) 4952-61
SSB: EPLD(B21) 5052-61
SSB: Diversity Tables B9-B2151
SSB: 61411(B1-B21) 62-8283-92
Class D Audio Amplifier(C) 9394
Keyboard Control Panel(E) 9596
Side A/V Panel(G) 9798
IR-LED and Light Sensor Panel(J) 9999
8. Alignments101
9. Circuit Descriptions, Abbreviation List, and IC Data
Sheets106
Abbreviation List114
IC Data Sheets117
10. Spare Parts List121
11. Revision List128
Published by WS 0669 BG CD Customer ServicePrinted in the NetherlandsSubject to modificationEN 3122 785 15274
EN 2LC4.3E AA1.
Technical Specifications, Connections, and Chassis Overview
1.Technical Specifications, Connections, and Chassis Overview
Index of this chapter:
1.1 Technical Specifications
1.2 Connection Overview
1.3 Chassis Overview
Notes:
•Figures can deviate due to the different set executions.
•Specifications are indicative (subject to change).
: FM-stereo B/G
: NICAM B/G, D/K, I, L
: AV Stereo
Maximum power (W
- 26PF4310/10: 2 x 5
):
RMS
- 26PF5320/10: 2 x 5
- 32PF5320/10: 2 x 15
- 32PF7320/10: 2 x 15
1.1.3Miscellaneous
Power supply:
- Mains voltage (V
): 95 - 240
AC
- Mains frequency (Hz): 50 / 60
Ambient conditions:
- Temperature range (°C): +5 to +40
- Maximum humidity: 90% R.H.
Power consumption
- Normal operation (W): ≈ 96
- Stand-by (W): < 1
Dimensions (WxHxD cm):
- 26PF4310/10: 79.2 x 43.1 x 24.2
- 26PF5320/10: 80.45 x 47.7 x 22.2
- 32PF5320/10: 92.4 x 55.0 x 22.2
- 32PF7320/10: 92.4 x 55.0 x 22.2
Weight (kg):
- 26PF4310/10: 15
- 26PF5320/10: 16
- 32PF5320/10: 18.2
- 32PF7320/10: 18.2
1.2Connection Overview
Note: The following connector colour abbreviations are used
(acc. to DIN/IEC 757): Bk= Black, Bu= Blue, Gn= Green, Gy=
Grey, Rd= Red, Wh= White, and Ye= Yellow.
1.2.1Side I/O connections
AudioS-Video Video
LR
E_14710_005.eps
210404
Figure 1-1 Side I/O connections
SVHS (Hosiden): Video Y/C - In
1-Ground Y Gnd H
2-Ground C Gnd H
3 - Video Y 1 V
4 - Video C 0.3 V
Cinch: Video CVBS - In, Audio - In
Ye -Video CVBS 1 V
Wh - Audio L 0.5 V
Rd - Audio R 0.5 V
/ 75 ohm j
PP
/ 75 ohm j
PP
/ 75 ohm jq
PP
/ 10 kohm jq
RMS
/ 10 kohm jq
RMS
Technical Specifications, Connections, and Chassis Overview
EN 3LC4.3E AA1.
Mini Jack: Audio Head phone - Out
Bk - Head phone 32 - 600 ohm / 10 mW ot
1.2.2Rear Connections
AERIAL IN
C5
Audio In
AUDIO
EXT 2EXT 1
DVIDVI-I
EXT 2UARTI2CEXT 1
DVI
18
916
17
C1 C2
24
C3 C4
Figure 1-2 Rear I/O
Aerial - In
-- IEC-type (EU) Coax, 75 ohm D
Mini Jack: PC-Audio - In
1 - Ground Gnd H
2 - Audio L 0.5 V
3 - Audio R 0.5 V
Service connector (ComPair)
1 - SDA-S I
2 - SCL-S I
2
2
/ 10 kohm j
RMS
/ 10 kohm j
RMS
C Data (0 - 5 V) jk
C Clock (0 - 5 V) j
3 - Ground Gnd H
Service connector (UART)
1 - UART_TX Transmit k
2 - Ground Gnd H
3 - UART_RX Receive j
DVI-I: Digital/Analogue Video - In
18
916
17
C1 C2
C5
24
C3 C4
E_06532_004.eps
050404
ComPair
F_15270_001.eps
120505
EXT1: Video RGB - In, CVBS - In/Out, Audio - In/Out
21
20
E_06532_001.eps
2
1
050404
Figure 1-4 SCART connector
1 - Audio R 0.5 V
2 - Audio R 0.5 V
3 - Audio L 0.5 V
/ 1 kohm k
RMS
/ 10 kohm j
RMS
/ 1 kohm k
RMS
4 - Ground Audio Gnd H
5 - Ground Blue Gnd H
6 - Audio L 0.5 V
7 - Video Blue 0.7 V
8 - Function Select 0 - 2 V: INT
/ 10 kohm j
RMS
/ 75 ohm j
PP
4.5 - 7 V: EXT 16:9
9.5 - 12 V: EXT 4:3 j
9 - Ground Green Gnd H
10 - n.c.
11 - Video Green 0.7 V
12 - n.c.
/ 75 ohm j
PP
13 - Ground Red Gnd H
14 - Ground Gnd H
15 - Video Red 0.7 V
16 - Status/FBL 0 - 0.4 V: INT
/ 75 ohm j
PP
1 - 3 V: EXT / 75 ohm j
17 - Ground Video Gnd H
18 - Ground FBL Gnd H
19 - Video Terr. CVBS 1 V
20 - Video CVBS/Y 1 V
21 - Shield Gnd H
/ 75 ohm k
PP
/ 75 ohm j
PP
EXT2: Video Y/C - in, CVBS - In/Out, Audio - In/Out
20
2
Figure 1-3 DVI-I connector
1-D2- j
2-D2+ j
3 - Shield Gnd H
4-D4- j
5-D4+ j
6 - DDC_SCL DDC clock k
7 - DDC_SDA DDC data jk
8 - V-sync 0 - 5 V j
9-D1- j
10 - D1+ j
11 - Shield Gnd H
12 - D3- j
13 - D3+ j
14 - +5V j
15 - Ground Gnd H
16 - HPD Hot Plug Detect j
17 - D0- j
18 - D0+ j
19 - Shield Gnd H
20 - D5- j
21 - D5+ j
22 - Shield Gnd H
23 - CLK+ j
24 - CLK- j
C1 - Video Red 0.7 V
C2 - Video Green 0.7 V
C3 - Video Blue 0.7 V
C4 - H-sync 0 - 5 V j
/ 75 ohm j
PP
/ 75 ohm j
PP
/ 75 ohm j
PP
C5 - Ground Gnd H
21
E_06532_001.eps
1
050404
Figure 1-5 SCART connector
1 - Audio R 0.5 V
2 - Audio R 0.5 V
3 - Audio L 0.5 V
4 - Ground Audio Gnd H
/ 1 kohm k
RMS
/ 10 kohm j
RMS
/ 1 kohm k
RMS
5 - Ground Blue Gnd H
6 - Audio L 0.5 V
7-n.c.
/ 10 kohm j
RMS
8 - Function Select 0 - 2 V: INT
4.5 - 7 V: EXT 16:9
9.5 - 12 V: EXT 4:3 j
9 - Ground Green Gnd H
10 - n.c.
11 - n.c.
12 - n.c.
13 - Ground Red Gnd H
14 - Ground Gnd H
15 - YC/C - in 0.7 V
16 - n.c.
/ 75 ohm j
PP
17 - Ground Video Gnd H
18 - Ground Gnd H
19 - Video Mon. CVBS 1 V
20 - YC/Y - in 0.7 V
/ 75 ohm k
PP
/ 75 ohm j
PP
21 - Shield Gnd H
EN 4LC4.3E AA1.
1.3Chassis Overview
Technical Specifications, Connections, and Chassis Overview
LCD PANEL
POWER SUPPLY
PANEL
Figure 1-6 Chassis overview
CLASS D AUDIO
AMPLIFIER PANEL
SMALL SIGNAL BOARD
KEYBOARD CONTROL
PANEL
SIDE I/O PANEL
LED & IR PANEL
F_15270_002.eps
C
B
E
G
J
2450505
Safety Instructions, Warnings, and Notes
2.Safety Instructions, Warnings, and Notes
EN 5LC4.3E AA2.
Index of this chapter:
2.1 Safety Instructions
2.2 Warnings
2.3 Notes
2.1Safety Instructions
Safety regulations require the following during a repair:
•Connect the set to the Mains/AC Power via an isolation
transformer (> 800 VA).
•Replace safety components, indicated by the symbol h,
only by components identical to the original ones. Any
other component substitution (other than original type) may
increase risk of fire or electrical shock hazard.
Safety regulations require that after a repair, the set must be
returned in its original condition. Pay in particular attention to
the following points:
•Route the wire trees correctly and fix them with the
mounted cable clamps.
•Check the insulation of the Mains/AC Power lead for
external damage.
•Check the strain relief of the Mains/AC Power cord for
proper function.
•Check the electrical DC resistance between the Mains/AC
Power plug and the secondary side (only for sets that have
a Mains/AC Power isolated power supply):
1. Unplug the Mains/AC Power cord and connect a wire
between the two pins of the Mains/AC Power plug.
2. Set the Mains/AC Power switch to the "on" position
(keep the Mains/AC Power cord unplugged!).
3. Measure the resistance value between the pins of the
Mains/AC Power plug and the metal shielding of the
tuner or the aerial connection on the set. The reading
should be between 4.5 Mohm and 12 Mohm.
4. Switch "off" the set, and remove the wire between the
two pins of the Mains/AC Power plug.
•Check the cabinet for defects, to prevent touching of any
inner parts by the customer.
2.2Warnings
•All ICs and many other semiconductors are susceptible to
electrostatic discharges (ESD w). Careless handling
during repair can reduce life drastically. Make sure that,
during repair, you are connected with the same potential as
the mass of the set by a wristband with resistance. Keep
components and tools also at this same potential. Available
ESD protection equipment:
– Complete kit ESD3 (small tablemat, wristband,
connection box, extension cable and earth cable) 4822
310 10671.
– Wristband tester 4822 344 13999.
•Be careful during measurements in the high voltage
section.
•Never replace modules or other components while the unit
is switched "on".
•When you align the set, use plastic rather than metal tools.
This will prevent any short circuits and the danger of a
circuit becoming unstable.
2.3Notes
2.3.1General
•Measure the voltages and waveforms with regard to the
chassis (= tuner) ground (H), or hot ground (I), depending
on the tested area of circuitry. The voltages and waveforms
shown in the diagrams are indicative. Measure them in the
Service Default Mode (see chapter 5) with a colour bar
signal and stereo sound (L: 3 kHz, R: 1 kHz unless stated
otherwise) and picture carrier at 475.25 MHz for PAL, or
61.25 MHz for NTSC (channel 3).
•Where necessary, measure the waveforms and voltages
with (D) and without (E) aerial signal. Measure the
voltages in the power supply section both in normal
operation (G) and in stand-by (F). These values are
indicated by means of the appropriate symbols.
•The semiconductors indicated in the circuit diagram and in
the parts lists, are interchangeable per position with the
semiconductors in the unit, irrespective of the type
indication on these semiconductors.
•Manufactured under license from Dolby Laboratories.
“Dolby”, “Pro Logic” and the “double-D symbol”, are
trademarks of Dolby Laboratories.
2.3.2Schematic Notes
•All resistor values are in ohms, and the value multiplier is
often used to indicate the decimal point location (e.g. 2K2
indicates 2.2 kohm).
•Resistor values with no multiplier may be indicated with
either an "E" or an "R" (e.g. 220E or 220R indicates 220
ohm).
•All capacitor values are given in micro-farads (μ= x10
nano-farads (n= x10
•Capacitor values may also use the value multiplier as the
decimal point indication (e.g. 2p2 indicates 2.2 pF).
•An "asterisk" (*) indicates component usage varies. Refer
to the diversity tables for the correct values.
•The correct component values are listed in the Spare Parts
List. Therefore, always check this list when there is any
doubt.
2.3.3Rework on BGA (Ball Grid Array) ICs
General
Although (LF)BGA assembly yields are very high, there may
still be a requirement for component rework. By rework, we
mean the process of removing the component from the PWB
and replacing it with a new component. If an (LF)BGA is
removed from a PWB, the solder balls of the component are
deformed drastically so the removed (LF)BGA has to be
discarded.
Device Removal
As is the case with any component that, is being removed, it is
essential when removing an (LF)BGA, that the board, tracks,
solder lands, or surrounding components are not damaged. To
remove an (LF)BGA, the board must be uniformly heated to a
temperature close to the reflow soldering temperature. A
uniform temperature reduces the risk of warping the PWB.
To do this, we recommend that the board is heated until it is
certain that all the joints are molten. Then carefully pull the
component off the board with a vacuum nozzle. For the
appropriate temperature profiles, see the IC data sheet.
Area Preparation
When the component has been removed, the vacant IC area
must be cleaned before replacing the (LF)BGA.
Removing an IC often leaves varying amounts of solder on the
mounting lands. This excessive solder can be removed with
either a solder sucker or solder wick. The remaining flux can be
removed with a brush and cleaning agent.
After the board is properly cleaned and inspected, apply flux on
the solder lands and on the connection balls of the (LF)BGA.
Note: Do not apply solder paste, as this has been shown to
result in problems during re-soldering.
-9
), or pico-farads (p= x10
-12
-6
),
).
EN 6LC4.3E AA2.
Safety Instructions, Warnings, and Notes
Device Replacement
The last step in the repair process is to solder the new
component on the board. Ideally, the (LF)BGA should be
aligned under a microscope or magnifying glass. If this is not
possible, try to align the (LF)BGA with any board markers.
So as not to damage neighbouring components, it may be
necessary to reduce some temperatures and times.
More Information
For more information on how to handle BGA devices, visit this
URL: www.atyourservice.ce.philips.com (needs subscription,
not available for all regions). After login, select “Magazine”,
then go to “Repair downloads”. Here you will find Information
on how to deal with BGA-ICs.
2.3.4 Lead-free Solder
Philips CE is producing lead-free sets (PBF) from 1.1.2005
onwards.
Identification: The bottom line of a type plate gives a 14-digit
serial number. Digits 5 and 6 refer to the production year, digits
7 and 8 refer to production week (in example below it is 1991
week 18).
MODEL :
PROD.NO:
32PF9968/10
AG 1A0617 000001
220-240V 50/60Hz
VHF+S+H+UHF
S
MADE IN BELGIUM
~
128W
BJ3.0E LA
E_06532_024.eps
130606
•Use only original spare-parts listed in the Service-Manuals.
Not listed standard material (commodities) has to be
purchased at external companies.
•Special information for lead-free BGA ICs: these ICs will be
delivered in so-called "dry-packaging" to protect the IC
against moisture. This packaging may only be opened
shortly before it is used (soldered). Otherwise the body of
the IC gets "wet" inside and during the heating time the
structure of the IC will be destroyed due to high (steam-)
pressure inside the body. If the packaging was opened
before usage, the IC has to be heated up for some hours
(around 90°C) for drying (think of ESD-protection!).
Do not re-use BGAs at all!
•For sets produced before 1.1.2005, containing leaded
soldering tin and components, all needed spare parts will
be available till the end of the service period. For the repair
of such sets nothing changes.
In case of doubt whether the board is lead-free or not (or with
mixed technologies), you can use the following method:
•Always use the highest temperature to solder, when using
SAC305 (see also instructions below).
•De-solder thoroughly (clean solder joints to avoid mix of
two alloys).
Caution: For BGA-ICs, you
profile, which is coupled to the 12NC. For an overview of these
profiles, visit the website www.atyourservice.ce.philips.com
(needs subscription, but is not available for all regions)
You will find this and more technical information within the
"Magazine", chapter "Repair downloads".
For additional questions please contact your local repair help
desk.
must use the correct temperature-
Figure 2-1 Serial number example
Regardless of the special lead-free logo (which is not always
indicated), one must treat all sets from this date onwards
according to the rules as described below.
P
b
Figure 2-2 Lead-free logo
Due to lead-free technology some rules have to be respected
by the workshop during a repair:
•Use only lead-free soldering tin Philips SAC305 with order
code 0622 149 00106. If lead-free solder paste is required,
please contact the manufacturer of your soldering
equipment. In general, use of solder paste within
workshops should be avoided because paste is not easy to
store and to handle.
•Use only adequate solder tools applicable for lead-free
soldering tin. The solder tool must be able:
– To reach a solder-tip temperature of at least 400°C.
– To stabilise the adjusted temperature at the solder-tip.
– To exchange solder-tips for different applications.
•Adjust your solder tool so that a temperature of around
360°C - 380°C is reached and stabilised at the solder joint.
Heating time of the solder-joint should not exceed ~ 4 sec.
Avoid temperatures above 400°C, otherwise wear-out of
tips will increase drastically and flux-fluid will be destroyed.
To avoid wear-out of tips, switch “off” unused equipment or
reduce heat.
•Mix of lead-free soldering tin/parts with leaded soldering
tin/parts is possible but PHILIPS recommends strongly to avoid mixed regimes. If this cannot be avoided, carefully
clear the solder-joint from old tin and re-solder with new tin.
2.3.5Alternative BOM identification
In September 2003, Philips CE introduced a change in the way
the serial number (or production number, see Figure 2-1) is
composed. From this date on, the third digit in the serial
number (example: AG2B0335000001) indicates the number of
the alternative BOM (Bill of Materials used for producing the
specific model of TV set). It is possible that the same TV model
on the market is produced with e.g. two different types of
displays, coming from two different O.E.M.s.
By looking at the third digit of the serial number, the service
technician can see if there is more than one type of B.O.M.
used in the production of the TV set he is working with. He can
then consult the At Your Service Web site, where he can type
in the Commercial Type Version Number of the TV set (e.g.
28PW9515/12), after which a screen will appear that gives
information about the number of alternative B.O.M.s used.
If the third digit of the serial number contains the number 1
(example: AG1B033500001), then there is only one B.O.M.
version of the TV set on the market. If the third digit is a 2
(example: AG2B0335000001), then there are two different
B.O.M.s. Information about this is important for ordering
the correct spare parts!
For the third digit, the numbers 1...9 and the characters A...Z
can be used, so in total: 9 plus 26 = 35 different B.O.M.s can
be indicated by the third digit of the serial number.
2.3.6Practical Service Precautions
•It makes sense to avoid exposure to electrical shock.
While some sources are expected to have a possible
dangerous impact, others of quite high potential are of
limited current and are sometimes held in less regard.
•Always respect voltages. While some may not be
dangerous in themselves, they can cause unexpected
reactions that are best avoided. Before reaching into a
powered TV set, it is best to test the high voltage insulation.
It is easy to do, and is a good service precaution.
3.Directions for Use
You can download this information from the following websites:
•Figures below can deviate slightly from the actual situation,
due to the different set executions.
•Follow the disassembling instructions in described order.
4.2Service Position
First, put the TV set in its service position. Therefore, place it
upside down on a table top (use a protection sheet or foam
bars).
4.2.1The Foam Bars
E_06532_018.eps
Figure 4-2 Foam bars
F_15270_043.eps
180505
Figure 4-1 Cable dressing
The foam bars (order code 3122 785 90580) can be used for
all types and sizes of Flat TVs. By laying the plasma or LCD TV
flat on the (ESD protective) foam bars, a stable situation is
created to perform measurements and alignments. By first
placing a mirror flat on the table under the TV you can easily
see if something is happening on the screen.
4.3Assy/Panel Removal
4.3.1Rear Cover
Warning: Disconnect the mains power cord before you remove
the rear cover.
1. Remove the screws that secure the rear cover.
2. Lift the rear cover from the cabinet cautiously. Make sure
that wires and other internal components are not damaged
during cover removal.
170504
Mechanical Instructions
EN 9LC4.3E AA4.
4.3.2Side I/O Panel
4.3.3LED Panel
2
1
2
F-15390_039.eps
280205
Figure 4-4 LED panel
1
1. Release the fixation clamp (1) and take the panel out of the
bracket.
2. Disconnect the cable (2) from the panel.
F_15390_046.eps
240505
Figure 4-3 Side I/O panel
1. Disconnect the cable (1) from the panel.
2. Release the two fixation clamps (2) and lift the panel out of
the bracket.
4.3.4Keyboard Control Panel
1
4
3
2
3
3
2
1
F_15390_049.eps
250505
Figure 4-5 Keyboard control panel
1. Remove the two fixation screws (1) from the bracket and
take out the panel/bracket combination.
2. Remove the fixation tape (2) from the panel/bracket
combination.
3. Release the three fixation clamps (3) and lift the panel out
of the bracket.
4. Disconnect the cable (4) from the panel.
EN 10LC4.3E AA4.
Mechanical Instructions
4.3.5SSB Board Cover Shield (depending on model)
1
F_15270_044.eps
Figure 4-6 Cable clip on cover shield
2
180505
4.3.6SSB Board
Figure 4-8 SSB board connectors
1
2
2
F_15270_046.eps
180505
2
F_15270_045.eps
190505
Figure 4-7 SSB board cover shield
1. Release the cable from the plastic cable clip (1) on the
shield (see Figure “Cable clip on cover shield” above).
2. Remove the four fixation screws (2, see Figure “SSB board
cover shield”; the screws are also indicated by arrows on
the shield) and remove the shield.
Notice that on one side, the shield is not only held by two
screws, but also by two brackets (see Figure “Cable clip on
cover shield” above).
3
F_15270_047.eps
180505
Figure 4-9 DVI-I connector screws
1. Very cautiously disconnect the LVDS cable (1) from the
panel (see Figure “SSB board connectors”). Notice that this
cable is very fragile.
2. Disconnect the six remaining cables (2) from the panel.
3. Remove the fixation screws that secure the SSB board
(depending on model) and also the two fixation screws (3)
from the DVI-I connector on the SSB board (see Figure
“DVI-I connector screws”).
4. Take the panel out of its brackets.
Mechanical Instructions
EN 11LC4.3E AA4.
4.3.7Power Supply Panel (various models used)
X530
1
1
X520
2
1
2
1
4.3.8Audio Amplifier Panel
2
1
Figure 4-11 Audio amplifier panel
1. Disconnect all cables (1) from the panel.
2. Remove the fixation screws (2) from the panel.
3. Remove the panel.
2
F_15270_049.eps
180505
2
F_15270_048.eps
180505
Figure 4-10 Power supply panel
1. Disconnect all cables (1) from the panel.
Notice that the two connectors for X520 and X530 on
this panel are similar, and should not be mixed up later
when they are reconnected (X520 is connected via its
flatcable to connector CN01 on the LCD panel, near the Rspeaker; X530 is connected via its flatcable to connector
CN04 on the LCD panel, near the L-speaker).
2. Remove the three fixation screws (2) from the panel.
3. Take the panel out of its brackets.
EN 12LC4.3E AA4.
s
5
4.3.9LCD Panel
Mechanical Instructions
1
Figure 4-12 Anti-static copper foil
Figure 4-13 LVDS connector
F_15390_047.eps
3
F_15270_051.ep
2
280205
28020
5
5
F_15390_052.eps
280205
Figure 4-15 Connectors X520 and X530 on power supply panel
6
F_15390_051.eps
280205
4
F_15270_052.eps
180505
Figure 4-14 SSB board connectors for side I/O, keyboard control,
and LED
Figure 4-16 Connector 66B on LCD panel
7
Figure 4-17 LCD panel
F_15390_050.eps
280205
Mechanical Instructions
EN 13LC4.3E AA4.
To remove the LCD-panel, carry out the following steps:
1. Cautiously pull back the upper parts of the anti-static
copper foils next to the “L” and “R” loudspeakers (see
Figure “Anti-static copper foil”). Do this in such a way that
the foils are no longer attached to the metal ground plate
on which the SSB board is mounted.
2. Disconnect the cables (2) from the “L” and the “R”
loudspeakers (see Figure “Anti-static copper foil”).
3. Important: Unplug the LVDS connector (3) on the LCD
panel (see Figure “LVDS connector”).
Be careful, as this is a very fragile connector!
4. Unplug the connectors (4) of the Side I/O panel, the Top
Control panel, and the LED panel on the SSB board (see
Figure “SSB board connectors for side I/O, keyboard
control, and LED”).
5. Unplug the X520 and X530 connectors (5) on the Power
Supply board (see Figure “ Connectors X520 and X530 on
power supply panel”). Instead of X520, also connector 66B
(6) on the other end of the flatcable can be unplugged (see
Figure “Connector 66B on LCD panel”).
6. Lift the metal frame (together with all PWBs) from the LCD
panel.
Take care not to damage the fragile LVDS cable, the
66B connector and the anti-static copper foils near the
“L” and “R” loudspeakers (take care of this too when
later re-assembling the TV set and replacing the
copper foil).
7. After removal of the metal frame, you can lift the LCD
display (7) from its plastic frame (see Figure “LCD panel”).
8. If the plastic frame is damaged, replace it by a new frame,
after removing the loudspeakers, the Side I/O panel, the
Top Control panel, and the LED panel.
4.4Set Re-assembly
To re-assemble the whole set, execute all processes in reverse
order.
Notes:
•While re-assembling, make sure that all cables are placed
and connected in their original positions. See Figure "Cable
dressing". Also make sure that the anti-static copper foils
are not damaged and that they make good electrical
contact with the metal frame. Be careful with the fragile
LVDS cable.
EN 14LC4.3E AA5.
Service Modes, Error Codes, and Fault Finding
5.Service Modes, Error Codes, and Fault Finding
Index of this chapter:
5.1 Test Points
5.2 Service Modes
5.3 Problems and Solving Tips Related to CSM
5.4 Service Tools
5.5 Error Codes
5.6 The Blinking LED Procedure
5.7 Fault Finding and Repair Tips
5.1Test Points
This chassis is equipped with test points in the service printing.
In the schematics test points are identified with a rectangle box
around Fxxx or Ixxx.
Perform measurements under the following conditions:
•Television set in Service Default Alignment Mode.
•Video input: Colour bar signal.
•Audio input: 3 kHz left channel, 1 kHz right channel.
5.2Service Modes
Service Default mode (SDM) and Service Alignment Mode
(SAM) offers several features for the service technician, while
the Customer Service Mode (CSM) is used for communication
between the call centre and the customer.
This chassis also offers the option of using ComPair, a
hardware interface between a computer and the TV chassis. It
offers the possibilities of structured troubleshooting, error code
reading, and software version readout for all chassis.
Minimum requirements for ComPair: a Pentium processor, a
Windows OS, and a CD-ROM drive (see also paragraph
"ComPair").
How to Enter
To enter SDM, use one of the following methods:
•Press the following key sequence on the remote control
transmitter: “062596” directly followed by the MENU button
(do not allow the display to time out between entries while
keying the sequence).
•Short "Service" jumpers on the TV board during cold start
and apply mains (see Figure "Service jumpers"). Then
press the mains button (remove the short after start-up).
Caution: Entering SDM by shorting "Service" jumpers will
override the +8V-protection. Do this only for a short period.
When doing this, the service-technician must know exactly
what he is doing, as it could damage the television set.
•Or via ComPair.
1
F_15270_053.eps
180505
Figure 5-1 Service jumpers
5.2.1Service Default Mode (SDM)
Purpose
•To create a predefined setting for measurements to be
made.
•To override software protections.
•To start the blinking LED procedure.
•To inspect the error buffer.
•To check the life timer.
Specifications
•Tuning frequency: 475.25 MHz.
•Colour system: PAL-BG.
•All picture settings at 50% (brightness, colour contrast,
hue).
•Bass, treble, and balance at 50 %; volume at 25 %.
•All service-unfriendly modes (if present) are disabled. The
service unfriendly modes are:
– Timer / Sleep timer.
– Child / parental lock.
–Blue mute.
– Hotel / hospital mode.
– Auto shut off (when no “IDENT” video signal is
received for 15 minutes).
– Skipping of non-favourite presets / channels.
– Auto-storage of personal presets.
– Auto user menu time-out.
– Auto Volume Levelling (AVL).
After entering SDM, the following screen is visible, with SDM in
the upper right corner of the screen to indicate that the
television is in Service Default Mode.
•When you press the MENU button on the remote control,
the set will switch on the normal user menu in the SDM
mode.
•On the TV, press and hold the VOLUME DOWN and press
the CHANNEL DOWN for a few seconds, to switch from
SDM to SAM and reverse.
How to Exit
Switch the set to STANDBY by pressing the mains button on
the remote control transmitter or the television set.
If you turn the television set off by removing the mains (i.e.,
unplugging the television) without using the mains button, the
television set will remain in SDM when mains is re-applied, and
the error buffer is not cleared.
5.2.2Service Alignment Mode (SAM)
Purpose
•To change option settings.
•To display / clear the error code buffer.
•To perform alignments.
Specifications
•Operation hours counter (maximum five digits displayed).
•Software version, Error codes, and Option settings display.
•Error buffer clearing.
•Option settings.
•AKB switching.
•Software alignments (Tuner, White Tone, Geometry &
Audio).
•NVM Editor.
•ComPair Mode switching.
How to Enter
To enter SAM, use one of the following methods:
•Press the following key sequence on the remote control
transmitter: “062596" directly followed by the OSD/
STATUS/INFO(I+) button (do not allow the display to time
out between entries while keying the sequence).
•Or via ComPair.
After entering SAM, the following screen is visible, with SAM in
the upper right corner of the screen to indicate that the
television is in Service Alignment Mode.
00035 LC4XEP1 1.08/S4XGVX 1.10 SAM
ERR 0 0 0 0 0
OP 000 057 140 032 120 128 000
. Clear Clear ?
. Options
. Tuner
. White Tone
. Audio
. NVM Editor
. SC NVM Editor
. ComPair Mode On
Figure 5-3 SAM menu
F_15270_004.eps
250505
Menu Explanation
1. LLLLL. This represents the run timer. The run timer counts
normal operation hours, but does not count standby hours.
2. AAABCD-X.Y. This is the software identification of the
main microprocessor:
– A= the project name (LC04.x).
– B= the region: E= Europe, A= Asia Pacific, U= NAFTA,
•LATAM and NAFTA: N= Stereo non-dBx, S=
Stereo dBx.
•Asian Pacific: T= TXT, N= non-TXT, C= NTSC.
•ALL regions: M= mono, D= DVD, Q= Mk2.
– D= the language cluster number.
– X= the main software version number (updated with a
major change that is incompatible with previous
versions).
– Y= the sub software version number (updated with a
minor change that is compatible with previous
versions).
3. EEEEE-F.GG. This is the software identification of the
Scaler:
– EEEEEE= the scaler sw cluster
– F= the main sw version no.
– GG= the sub-version no.
4. SAM. Indication of the Service Alignment Mode.
5. Error Buffer. Shows all errors detected since the last time
the buffer was erased. Five errors possible.
6. Option Bytes. Used to set the option bytes. See “Options”
in the Alignments section for a detailed description. Seven
codes are possible.
7. Clear. Erases the contents of the error buffer. Select the
CLEAR menu item and press the MENU RIGHT key. The
content of the error buffer is cleared.
8. Options. Used to set the option bits. See “Options” in the
Alignments section for a detailed description.
9. Tuner. Used to align the tuner. See “Tuner” in the
Alignments section for a detailed description.
10. White Tone. Used to align the white tone. See “White
Tone” in the Alignments section for a detailed description.
11. Audio. No audio alignment is necessary for this television
set.
12. NVM Editor. Can be used to change the NVM data in the
television set. See table “NVM data” further on.
13. SC NVM Editor. Can be used to edit Scaler NVM.
14. ComPaIr. Can be used to switch on the television to In
System Programming (ISP) mode, for software uploading
via ComPair.
Caution: When this mode is selected without ComPair
connected, the TV will be blocked. Remove the AC power
to reset the TV.
How to Navigate
•In SAM, select menu items with the MENU UP/DOWN keys
on the remote control transmitter. The selected item will be
highlighted. When not all menu items fit on the screen, use
the MENU UP/DOWN keys to display the next / previous
menu items.
•With the MENU LEFT/RIGHT keys, it is possible to:
– Activate the selected menu item.
– Change the value of the selected menu item.
– Activate the selected submenu.
•In SAM, when you press the MENU button twice, the set
will switch to the normal user menus (with the SAM mode
still active in the background). To return to the SAM menu
press the MENU or STATUS/EXIT button.
•When you press the MENU key in while in a submenu, you
will return to the previous menu.
EN 16LC4.3E AA5.
Service Modes, Error Codes, and Fault Finding
How to Store SAM Settings
To store the settings changed in SAM mode, leave the top level
SAM menu by using the POWER button on the remote control
transmitter or the television set.
How to Exit
Switch the set to STANDBY by pressing the mains button on
the remote control transmitter or the television set.
If you turn the television set “off” by removing the mains (i.e.,
unplugging the television) without using the mains button, the
television set will remain in SAM when mains is re-applied, and
the error buffer is not cleared.
5.2.3Customer Service Mode (CSM)
Purpose
The Customer Service Mode shows error codes and
information on the TV’s operation settings. The call centre can
instruct the customer (by telephone) to enter CSM in order to
identify the status of the set. This helps the call centre to
diagnose problems and failures in the TV set before making a
service call.
The CSM is a read-only mode; therefore, modifications are not
possible in this mode.
How to Enter
To enter CSM, press the following key sequence on the remote
control transmitter: “123654” (do not allow the display to time
out between entries while keying the sequence).
Upon entering the Customer Service Mode, the following
screen will appear:
3 OP 000 057 140 032 120 128 000
4
5
6 NOT TUNED
7 PAL
8 STEREO
9 CO 50 CL 50 BR 50
0 AVL Off
8. Displays the detected Audio (e.g. stereo/mono).
9. Displays the picture setting information.
10. Displays the sound setting information.
How to Exit
To exit CSM, use one of the following methods:
•Press the MENU, STATUS/EXIT, or POWER button on the
remote control transmitter.
•Press the POWER button on the television set.
5.3Problems and Solving Tips Related to CSM
5.3.1Picture Problems
Note: The problems described below are all related to the TV
settings. The procedures used to change the value (or status)
of the different settings are described.
Picture too Dark or too Bright
If:
•The picture improves when you press the AUTO PICTURE
button on the remote control transmitter, or
•The picture improves when you enter the Customer
Service Mode,
Then:
1. Press the AUTO PICTURE button on the remote control
transmitter repeatedly (if necessary) to choose
PERSONAL picture mode.
2. Press the MENU button on the remote control transmitter.
This brings up the normal user menu.
3. In the normal user menu, use the MENU UP/DOWN keys
to highlight the PICTURE sub menu.
4. Press the MENU LEFT/RIGHT keys to enter the PICTURE
sub menu.
5. Use the MENU UP/DOWN keys (if necessary) to select
BRIGHTNESS.
6. Press the MENU LEFT/RIGHT keys to increase or
decrease the BRIGHTNESS value.
7. Use the MENU UP/DOWN keys to select PICTURE.
8. Press the MENU LEFT/RIGHT keys to increase or
decrease the PICTURE value.
9. Press the MENU button on the remote control transmitter
twice to exit the user menu.
10. The new PERSONAL preference values are automatically
stored.
E_15270_005.eps
120505
Figure 5-4 CSM menu
Menu Explanation
1. Indication of the decimal value of the operation hours
counter, Software identification of the main microprocessor
(see "Service Default or Alignment Mode" for an
explanation), and the service mode (CSM = Customer
Service Mode).
2. Displays the last five errors detected in the error code
buffer.
3. Displays the option bytes.
4. Displays the type number version of the set.
5. Reserved item for P3C call centres (AKBS stands for
Advanced Knowledge Base System).
6. Indicates the television is receiving an "IDENT" signal on
the selected source. If no "IDENT" signal is detected, the
display will read "NOT TUNED"
7. Displays the detected Colour system (e.g. PAL/NTSC).
White Line around Picture Elements and Text
If:
The picture improves after you have pressed the AUTO
PICTURE button on the remote control transmitter,
Then:
1. Press the AUTO PICTURE button on the remote control
transmitter repeatedly (if necessary) to choose
PERSONAL picture mode.
2. Press the MENU button on the remote control transmitter.
This brings up the normal user menu.
3. In the normal user menu, use the MENU UP/DOWN keys
to highlight the PICTURE sub menu.
4. Press the MENU LEFT/RIGHT keys to enter the PICTURE
sub menu.
5. Use the MENU UP/DOWN keys to select SHARPNESS.
6. Press the MENU LEFT key to decrease the SHARPNESS
value.
7. Press the MENU button on the remote control transmitter
twice to exit the user menu.
8. The new PERSONAL preference value is automatically
stored.
Service Modes, Error Codes, and Fault Finding
EN 17LC4.3E AA5.
Snowy Picture
Check CSM line 6. If this line reads “Not Tuned”, check the
following:
•Antenna not connected. Connect the antenna.
•No antenna signal or bad antenna signal. Connect a proper
antenna signal.
•The tuner is faulty (in this case line 2, the Error Buffer line,
will contain error number 10). Check the tuner and replace/
repair the tuner if necessary.
Black and White Picture
If:
•The picture improves after you have pressed the AUTO
PICTURE button on the remote control transmitter,
Then:
1. Press the AUTO PICTURE button on the remote control
transmitter repeatedly (if necessary) to choose
PERSONAL picture mode.
2. Press the MENU button on the remote control transmitter.
This brings up the normal user menu.
3. In the normal user menu, use the MENU UP/DOWN keys
to highlight the PICTURE sub menu.
4. Press the MENU LEFT/RIGHT keys to enter the PICTURE
sub menu.
5. Use the MENU UP/DOWN keys to select COLOR.
6. Press the MENU RIGHT key to increase the COLOR value.
7. Press the MENU button on the remote control transmitter
twice to exit the user menu.
8. The new PERSONAL preference value is automatically
stored.
Menu Text not Sharp Enough
If:
•The picture improves after you have pressed the AUTO
PICTURE button on the remote control transmitter,
Then:
1. Press the AUTO PICTURE button on the remote control
transmitter repeatedly (if necessary) to choose
PERSONAL picture mode.
2. Press the MENU button on the remote control transmitter.
This brings up the normal user menu.
3. In the normal user menu, use the MENU UP/DOWN keys
to highlight the PICTURE sub menu.
4. Press the MENU LEFT/RIGHT keys to enter the PICTURE
sub menu.
5. Use the MENU UP/DOWN keys to select PICTURE.
6. Press the MENU LEFT key to decrease the PICTURE
value.
7. Press the MENU button on the remote control transmitter
twice to exit the user menu.
8. The new PERSONAL preference value is automatically
stored.
You do not have to know anything about I
2
C commands
yourself because ComPair takes care of this.
3. ComPair speeds up the repair time since it can
automatically communicate with the chassis (when the
microprocessor is working) and all repair information is
directly available. When ComPair is installed together with
the Force/SearchMan electronic manual of the defective
chassis, schematics and PWBs are only a mouse click
away.
Specifications
ComPair consists of a Windows based fault finding program
and an interface box between PC and the (defective) product.
The ComPair interface box is connected to the PC via a serial
(or RS-232) cable.
For this chassis, the ComPair interface box and the TV
communicate via a bi-directional service cable via the service
connector(s).
The ComPair fault finding program is able to determine the
problem of the defective television. ComPair can gather
diagnostic information in two ways:
•Automatically (by communicating with the television):
ComPair can automatically read out the contents of the
entire error buffer. Diagnosis is done on I
ComPair can access the I
ComPair can send and receive I
2
C/UART bus of the television.
2
2
C/UART level.
C/UART commands to
the microcontroller of the television. In this way, it is
possible for ComPair to communicate (read and write) to
devices on the I
2
C/UART buses of the TV-set.
•Manually (by asking questions to you): Automatic
diagnosis is only possible if the microcontroller of the
television is working correctly and only to a certain extent.
When this is not the case, ComPair will guide you through
the fault finding tree by asking you questions (e.g. Does the
screen give a picture? Click on the correct answer: YES /
NO) and showing you examples (e.g. Measure test-point I7
and click on the correct oscillogram you see on the
oscilloscope). You can answer by clicking on a link (e.g.
text or a waveform picture) that will bring you to the next
step in the fault finding process.
By a combination of automatic diagnostics and an interactive
question / answer procedure, ComPair will enable you to find
most problems in a fast and effective way.
How To Connect
This is described in the chassis fault finding database in
ComPair.
TO
UART SERVICE
CONNECTOR
TO
I2C SERVICE
CONNECTOR
5.4Service Tools
5.4.1 ComPair
Introduction
ComPair (Computer Aided Repair) is a service tool for Philips
Consumer Electronics products. ComPair is a further
development on the European DST (service remote control),
which allows faster and more accurate diagnostics. ComPair
has three big advantages:
1. ComPair helps you to quickly get an understanding on how
to repair the chassis in a short time by guiding you
systematically through the repair procedures.
2. ComPair allows very detailed diagnostics (on I
is therefore capable of accurately indicating problem areas.
Note: If you encounter any problems, contact your local
support desk.
5.4.2LVDS Tool
Introduction
This service tool (also called “ComPair Assistant 1“) may help
you to identify, in case the TV does not show any picture,
whether the Small Signal Board (SSB) or the display of a Flat
TV is defective.
Furthermore it is possible to program EPLDs with this tool (Byte
blaster). Read the user manual for an explanation of this
feature.
Since 2004, the LVDS output connectors in our Flat TV models
are standardised (with some exceptions). With the two
delivered LVDS interface cables (31p and 20p) you can cover
most chassis (in special cases, an extra cable will be offered).
When operating, the tool will show a small (scaled) picture on
a VGA monitor. Due to a limited memory capacity, it is not
possible to increase the size when processing high-resolution
LVDS signals (> 1280x960). Below this resolution, or when a
DVI monitor is used, the displayed picture will be full size.
Generally this tool is intended to determine if the SSB is
working or not. Thus to determine if LVDS, RGB, and sync
signals are okay.
How to Connect
Connections are explained in the user manual, which is packed
with the tool.
5.5Error Codes
The error code buffer contains all errors detected since the last
time the buffer was erased. The buffer is written from left to
right. When an error occurs that is not yet in the error code
buffer, it is displayed at the left side and all other errors shift one
position to the right.
5.5.1How to Read the Error Buffer
You can read the error buffer in 3 ways:
•On screen via the SAM (if you have a picture).
Examples:
– ERROR: 0 0 0 0 0 : No errors detected
– ERROR: 6 0 0 0 0 : Error code 6 is the last and only
detected error
– ERROR: 9 6 0 0 0 : Error code 6 was detected first and
error code 9 is the last detected (newest) error
•Via the blinking LED procedure (when you have no
picture). See “The Blinking LED Procedure”.
•Via ComPair.
5.5.2How to Clear the Error Buffer
The error code buffer is cleared in the following cases:
•By using the CLEAR command in the SAM menu:
– To enter SAM, press the following key sequence on the
remote control transmitter: “062596” directly followed
by the OSD/STATUS button (do not allow the display
to time out between entries while keying the
sequence).
– Make sure the menu item CLEAR is highlighted. Use
the MENU UP/DOWN buttons, if necessary.
– Press the MENU RIGHT button to clear the error
buffer. The text on the right side of the “CLEAR” line will
change from “CLEAR?” to “CLEARED”
•If the contents of the error buffer have not changed for 50
hours, the error buffer resets automatically.
Note: If you exit SAM by disconnecting the mains from the
television set, the error buffer is not reset.
Note: To use the LVDS tool, you must have ComPair release
2004-1 (or later) on your PC (engine version >= 2.2.05).
For every TV type number and screen size, one must choose
the proper settings via ComPair. The ComPair file will be
updated regularly with new introduced chassis information.
How to Order
•LVDS tool (incl. two LVDS cables: 31p and 20p):
3122 785 90671.
•LVDS cable 41p -> 31p for HD PDPs (dual -> single LVDS):
3122 785 90830 (available soon).
Service Modes, Error Codes, and Fault Finding
EN 19LC4.3E AA5.
5.5.3 Error Codes
In case of non-intermittent faults, write down the errors present
in the error buffer and clear the error buffer before you begin
the repair. This ensures that old error codes are no longer
present.
If possible, check the entire contents of the error buffer. In
some situations, an error code is only the result of another error
and not the actual cause of the problem (for example, a fault in
the protection detection circuitry can also lead to a protection).
Table 5-1 Error code overview
ErrorDeviceError Description Check ItemDiagram
0Not applicableNo Error
1Not applicableMis-match of TV
C error while
communicating with
the Genesis Scaler
and/or Flash-ROM
is faulty/empty
+5V protection7752B6
2
2
C error 7L04B18
2
C error while
communicating with
the Scaler
EEPROM
2
C error while
I
communicating with
the Hercules
EEPROM (NVM for
TV).
Remark: when the
Hercules EEPROM
is defective, the
Hercules should
operate with its
default values.
communicating with
the PLL tuner
2
C error while
communicating with
the 2D/3D
combfilter
Columbus
2
C error while
I
communicating with
the iBoard HDMI
Panellink Receiver/
Decoder (only in
NAFTA and AP
sets)
with the Scaler
SDRAM
communicating with
EPLD
I2C error while
communicating with
the Digital Module
(only on Digital
sets)
--
7801
7B01
C error 1102, 7L04, 7M00 B1 + B18
7C01B11
7207B2
1102, F102, F104,
F107
7M00B19
7D03B12
7B01B10
7N02B20 +
Digital Module
(only on Digital
sets)
B7 + B8
B10
+ B19
B1
(only in
NAFTA
and AP
sets)
B21
5.6The Blinking LED Procedure
Using this procedure, you can make the contents of the error
buffer visible via the front LED. This is especially useful when
there is no picture.
When the SDM is entered, the front LED will blink the contents
of the error-buffer:
•The LED blinks with as many pulses as the error code
number, followed by a time period of 1.5 seconds, in which
the LED is off.
•Then this sequence is repeated.
Any RC5 command terminates this sequence.
Example of error buffer: 12 9 6 0 0
After entering SDM, the following occurs:
•1 long blink of 5 seconds to start the sequence,
•12 short blinks followed by a pause of 1.5 seconds,
•9 short blinks followed by a pause of 1.5 seconds,
•6 short blinks followed by a pause of 1.5 seconds,
•1 long blink of 1.5 seconds to finish the sequence,
•The sequence starts again with 12 short blinks.
5.7Fault Finding and Repair Tips
Notes:
•It is assumed that the components are mounted correctly
with correct values and no bad solder joints.
•Before any fault finding actions, check if the correct options
are set.
5.7.1NVM Editor
In some cases, it can be handy if one directly can change the
NVM contents. This can be done with the “NVM Editor” in SAM
mode. With this option, single bytes can be changed.
Caution:
•Do not change the NVM settings without
understanding the function of each setting, because
incorrect NVM settings may seriously hamper the
correct functioning of the TV set!
•Do not change the Scaler NVM settings, as this will
hamper the DVI functionality of the TV set!
•Always note down the existing NVM settings, before
changing the settings. This will enable you to return to the
orgininal settings, if the new settings turn out to be
incorrect.
Table 5-2 NVM editor overview
HexDecDescription
.ADR0x000A10Existing value
.VAL0x00000New value
.StoreStore?
EN 20LC4.3E AA5.
Table 5-3 NVM Default values (option bit settings through NVM Editor in SAM Mode)
Byte Nr. BitFeature/ModeDescription
Byte 0
174(dec)
0 QSS (LSB)Mode of quasi split sound amplifier1111
1 FMIConnection of output of QSS amplifier1111
2 HCOEHT tracking mode0000
3 HP2Synchronization of OSD/Text display1111
4 FSLForced slicing level for vertical sync1111
5 TFRDC transfer ratio of luminance signal1111
6 OSVEBlack current measuring in overscan0000
7 MVK (MSB)(For Future Usage, as defined by software) 0000
Total Dec Values59 59 59 59
Total Hex Values3B 3B 3B 3B
Service Modes, Error Codes, and Fault Finding
32PF7320/10
32PF5320/10
26PF5320/10
26PF4310/10
Byte 1
175(dec)
Byte 2
176(dec)
Byte 3
177(dec)
0 PSEPSE0000
1OPCOPC0 0 0 0
2PRISPRIS0 0 0 0
3 CONTINUOUS FACTORY Continuous factory mode 0000
4 WHITE PATTERN ONLast color pattern status in factory mode0000
5 SDM MODEService default mode on/off0000
6 SAM MODEService Align mode on/off0000
7 SVMAScavm On / Off0000
Total Dec Values0000
Total Hex Values00 00 00 00
0 MUTE STATUSMute status0000
1 TUNER AUTO MODEAuto mode1111
2 CABLE MODECable/Antenna mode0000
3 LAST POWER MODELast power status of the set1111
4 CHILD LOCK MODEChild lock enabled0000
5 SURF MODESurf mode on/off0000
6 FACTORY MODEFactory mode on0000
7 PSNSFor PAL color enhancement in ES41111
Total Dec Values138 138 138 138
Total Hex Values8A 8A 8A 8A
0 RADIO/TV MODERadio mode or TV mode0000
1 WAKE-UP MODEWAKE-UP MODE0000
2 HOTEL MODETV in Hotel mode0000
3 HOTEL KBD LOCKKeyboard locked0000
4HBLHBL0 0 0 0
5 BLSBlue stretch mode1111
6SLSL0 0 0 0
7 CFA0Comb filter On/Off0000
Total Dec Values32 32 32 32
Total Hex Values20 20 20 20
Byte 4
178(dec)
0 Signal StrengthSignal Strength Switch in MK2 0000
1LPGLPG0 0 0 0
2 DVD TRAY LOCKLock/Unlock DVD tray0000
3 SCRSAVER MODEScreen saver mode1111
4 BKSBlack Stretch Mode1111
5 BSDBlack Stretch Depth1110
6 CRA0Coring on SVM1111
7 PIP QSSPIP QSS0000
Total Dec Values120 120 120 88
Total Hex Values78 78 78 58
Service Modes, Error Codes, and Fault Finding
Byte Nr. BitFeature/ModeDescription
Byte 5
179(dec)
Byte 6
180(dec)
0 FFIFast Filter0000
1 NNRNo red reduction during blue stretch1111
2 MUSNTSC matrix1111
3 GAMGamma control1111
4 CBSControl sequence of beam current limiting0000
5 LLBLow level of beam current limiter0000
6 DSADynamic skin tone angle area1110
7 DSKDynamic skin tone angle on/ off0001
Total Dec Values78 78 78 142
Total Hex Values4E 4E 4E 8E
0 LTI statusLTI last status0000
1 Inc_Life_TimeInc_Life_Time0000
2 PC_ModePC_Mode0000
3 HD_ModeHD_Mode0000
4 Tact_SwitchTact_Switch0000
5 Set_In_Special_StbySet_In_Special_Stby0000
6 Hotel_OSDDisplayHotel_OSDDisplay0000
7 Hotel_MonitorOutHotel_MonitorOut0000
Total Dec Values0000
Total Hex Values00 00 00 00
32PF7320/10
32PF5320/10
26PF5320/10
EN 21LC4.3E AA5.
26PF4310/10
Byte 7
181(dec)
5.7.2Load Default NVM Values
In case a blank NVM is placed or when the NVM content is
corrupted, default values can be downloaded into the NVM.
(For empty NVM replacement, short the SDM with a jumper
and apply the mains voltage. Remember to remove the jumper
after the reload is completed). After the default values are
downloaded, it will be possible to start up and to start aligning
the TV set. This is no longer initiated automatically; to initiate
the download the following action has to be performed:
1. Switch “off” the TV set by disconnecting the AC Power
2. Short circuit the SDM jumpers (keep short-circuited).
3. Press P+ or Ch+ on the local keyboard (and keep it
4. Switch on the TV set via the AC Power plug.
5. Keep pressing the P+/Ch+ button until the set has started
Alternative method:
1. Go to SAM.
2. Select NVM Editor (not SC NVM Editor).
3. Select ADR (address) to 1 (dec).
4. Change the VAL (value) to 170 (dec).
5. Store the value.
6. Disconnect the mains plug and wait for a few seconds.
7. Reconnect the mains plug and wait until the set goes into
No Picture in RF Mode, but there is a Noise Raster
1. Check whether picture is present in AV. If not, go to Video
processing troubleshooting section.
2. If present, check if the Option settings are correct.
3. Check if all the supply voltages are present (3.3/5/8/12/33
V).
4. Check if the I
5. Manually store a known channel and check if there is IF
output at Tuner pin 11.
6. Check the tuning DC voltage at pin 2 of the Tuner. The DC
voltage should vary according to the frequency/channel
being chosen.
7. If the tuning voltage is OK, check the tuner output, pin 11.
8. If it has no output, the Tuner may have a defect. Change
the Tuner.
Sound in Picture Problem for L' System (rolling horizontal
lines)
1. Check whether AGC L' in SAM mode is set to 0.
2. If yes, align the set to correct value.
Required System is not Selected Correctly
Check whether a Service jumper (#4204 & 4205, 0805 size) is
present. If yes, remove it.
2
C lines are working correctly (3.3 V).
EN 22LC4.3E AA5.
Service Modes, Error Codes, and Fault Finding
5.7.4Video Processing
No Power
1. Check +12 V and 3V3 at position 1J02.
2. If no supply, check the connector 1J02.
3. If it is correct, check the power supply board.
Power Supply is Correct, but no Green LED
1. Check if the connectors 1K00 are properly inserted.
2. If they are inserted correctly, check if the 3V3 is present.
No Picture Display (blank screen with correct sound
output)
1. Check whether the user menu is visible.
2. If the user menu is OK, activate teletext mode.
3. If teletext is OK, the problem is in the ADC (B18) &
Columbus 3D combfilter (B19), if present (depending on
model, see also paragraph “Teletext Path” in chapter 9).
4. If the user menu is not visible, check if the LCD panel
backlight is ON.
5. If the backlight is OFF, the problem is in the power supply
board or LCD panel. Also check pin 12 (LAMP_ON_OFF)
of 1J02. It should be HIGH during normal operation.
Note: For faultfinding purposes, it is important to know the
following: in Pixel Plus and Digital Crystal Clear models, which
have an ADC (B18) and Columbus 3D combfilter (B19), the
digital input of the scaler is used for the digital video path
(Hercules output), whereas the analogue RGB input (analogue
input of the scaler) is only used for teletext. This means that no
mixed mode (video plus teletext simultaneously) is possible. If
there is sound and teletext, but no video and user menu (blank
screen), the digital path (Hercules - ADC - Columbus - Scaler)
is faulty. If there is sound but no teletext, the back-end part
(Scaler - LCD panel) is faulty. In Crystal Clear models, which
do not have an ADC and Columbus, the RGB path (analogue
input of scaler) is used for both video and teletext.
4. 24 V output (for inverter X520 & X530): Short-circuit
proof with auto-restart. Over voltage protection when
output voltage is more than 40% above nominal value.
Standby Mode
1. Apply a 12 ohm load resistor of sufficient power rating to all
outputs mentioned above (+12 V, +18/ 24 V, +3V3 and +24
V). Connect the STBY pin (pin 10 of X200) to logical “L”
(low), i.e. to GND.
2. Over an input voltage range of 90 V
to 276 VAC only the
AC
+3V3 STBY output shall be up.
Normal Mode:
1. Apply a 12 ohm load resistor of sufficient power rating to all
outputs mentioned above (+12 V, +18/ 24 V, +3V3 and +24
V). Connect the STBY pin (pin 10 of X200) to logical “H”
(high), i.e. to the +3V3 STBY output via a 2,2 k pull up
resistor.
2. Over an input voltage range of 90 V
to 276 VAC all
AC
outputs shall be up. The voltage on the +3V3 STBY output
shall be 3.3 V over the entire input voltage range. The
voltage on the big 400 V capacitor on the power supply
should also be 400 V ±10%.
No TV, but PC is Present
1. Check if Hsync_SDTV and Vsync_SDTV are present at pin
1 & pin13 of 7E03.
2. If they are present, check teletext output.
3. If there is no teletext output, the IC TDA150xx may be
defect.
5.7.5Power Supply
Check Fuse
The power supply (various models are used) contains one fuse
near the AC input connector X002.
1. Check with power supply in “off” state by means of ohmic
measurement.
2. Fuse X102 may open in case of severe lightning strikes
and/or failures in the power supply.
3. Check the standby signal at pin 10 of X200. ON is HIGH,
OFF is LOW. During standby mode only the 3V3 is present
at pin 10.
Protections Concept on Power Supply Board (two models)
1. 12 V output (pin 8 of X200): Short-circuit protected by 2.5
A fuse X610. Over-voltage protection when output voltage
is more than 40% above nominal value.
2. Vaudio output (+18 or +24 V, depending on power supply model used); (pin 1 of X200): Short-circuit proof
(+18 V version has 2.5 A fuse X660). Over voltage
protection when output voltage is more than 40% above
nominal value.
3. 3V3STBY output (pin 3&4 of X200): Short-circuit proof
with auto-restart. Over voltage protection when output
voltage is more than 40% above nominal value.
Block Diagrams, Test Point Overviews, and Waveforms
6.Block Diagrams, Test Point Overviews, and Waveforms
Wiring Diagram
WIRING
EN 23LC4.3E AA6.
RIGHT
SPEAKER
INVERTER
INVERTER
14P
8520
X530
X520
12P
14P
POWER
SUPPLY
AC POWER
INLET
POWER
IN
8002
3P
X220
X200
X002
12P
2P3
8520
8903
LVDS CONNECTION
TO SCREEN
30P
C
8P06
8J02
30P
31P
1P06
SSB
B
Digital A/VAnalog A/VAnalog A/V
VGA
CLASS D
AUDIO
AMPLIFIER
1003
12P
1J02
3P
1J03
3P
1002
9P
8J03
4P
1001
3P
1J03
8903
8J04
1JO4(1M52)
TUNER
9P
6P
1K00(1M21)
12P
1K01(1M06)
3P
1K02
8870
8K01
8684
INVERTER
12P
D
12P
J
LEFT
SPEAKER
SIDE AV
1304
(1M06)
6P
1870
IR/LED/LIGHT
SENSOR
1303
HP
1302
L
R
Y
1301
SVHS
3P
KEYBOARD CONTROL
E
1684
F_15270_038.eps
140806
Block Diagrams, Test Point Overviews, and Waveforms