Philips hef4738v DATASHEETS

INTEGRATED CIRCUITS
DATA SH EET
The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC
HEF4738V LSI
IEC/IEEE bus interface
Product specification File under Integrated Circuits, IC04
January 1995
Philips Semiconductors Product specification
IEC/IEEE bus interface

DESCRIPTION

The HEF4738V is an implementation of the IEC-bus as described in IEC report 66 CO 22 (interface system for programmable measuring apparatus) as well as in IEEE standard 488-1975 (standard digital interface for programmable instrumentation). Together with bus-drivers, level converters and multiplexers it is suitable for connecting electronic programmable and non-programmable equipment to an IEC/IEEE interface bus. All inputs have standard HE4000B family levels. In the circuit the following standard interface functions are incorporated:
HEF4738V
LSI
Complete source handshake (subset SH1)
Complete acceptor handshake (subset AH1)
Basic talker with serial poll and talk-only mode (when It
= LOW, subset T1; It = HIGH, subset T5)
Basic listener with listen-only mode (when It = LOW, subset L1; It = HIGH, subset L3)
Complete service request (subset SR1)
Complete remote local (subset RL1)
Remote parallel poll configuration (subset PP1)
Complete device clear (subset DC1)
Complete device trigger (subset DT1)
Some controller facilities
Fig.1 Basic IEC/IEEE bus interface using the HEF4738V.

SUPPLY VOLTAGE

RATING RECOMMENDED OPERATING
0,5 to 18 4,5 to 12,5 V
January 1995 2

FAMILY DATA, IDDLIMITS category LSI

See Family Specifications
Philips Semiconductors Product specification
IEC/IEEE bus interface

GENERAL DESCRIPTION

The inputs IRFD, IDAC,IDAV,IIFC, IREN, IATN, IIDY and IDIO1 to IDIO7 must be connected via an inverting TTL to LOCMOS level converter to the respective bus lines: NRFD, NDAC, DAV, IFC, REN, ATN, IDY and DIO1 to DIO7. The outputs ORFD, ODAC, ODAV and OSRQ can drive one standard TTL load and are suitable for driving NRFD, NDAC, DAV and SRQ via an inverting bus-driver circuit. The parallel poll outputs OP1, OP2, OP3 and OPP can also drive one standard TTL load. Outputs OP1, OP2 and OP3 are connected to flip-flops, which store the attendant bits P1, P2 and P3 of the last PPE message. OP1, OP2 and OP3 have to be decoded externally and multiplexed to the DIO-lines when OPP is LOW. All other output stages are standard HE4000B family. Most of the functions in the IEC/IEEE interface IC are realized with synchronous sequential logic, which is driven from the clock input CP. HIGH to LOW transitions are used to synchronize input signals and LOW to HIGH transitions trigger the internal flip-flops. In order to meet the IEC/IEEE timing specifications, the maximum clock frequency is 2 MHz. The maximum data transfer is then 200 kbytes/second.
Irdy (not ready for next message) and output Odvd
Input (data valid device) are intended for a two-wire handshake procedure between the acceptor function in the IC and the data input of the device (instrument to be connected to the interface system). The procedure is made so, that if the device reacts fast enough, the handshake procedure can be omitted by interconnecting Odvd and Irdy. The conditions to be fulfilled by the device are:
The device must be able to accept a data byte within one clock period after dvd goes HIGH under all conditions.
The device must be ready to process a data byte within two clock periods plus the minimum settling time of the talker devices under all conditions.
Input Inba (not new byte available) and output Odcd (don’t change data) are intended for a two-wire handshake procedure with the source function in the IC and the data output of the device (instrument). The procedure is so made that if the device reacts fast enough the handshake procedure can be omitted by interconnecting Odcd and Inba. The conditions to be fulfilled by the device are:
The device must be able to set a new data byte on the bus within one clock period after dcd goes LOW under all conditions.
The device must be able to have the next data byte available within seven clock periods under all conditions.
HEF4738V
LSI
Input Isr and output Ored should be connected to an external parallel-in/serial-out (when Ored is HIGH parallel-in, when LOW serial-out) shift register, which must be connected to the clock CP and must trigger on the LOW to HIGH transitions. The data on the parallel inputs of this external shift register are loaded in parallel and shifted-out via input Isr into an internal shift register. The eleven serial input signals are in the order of shifting: A5, A4, A3, A2, A1, ton, Ion, It, rsv, rtl and ist. Signals A5, A4, A3, A2 and A1 represent the device talker and listener address. When signal It (either listener or talker) is HIGH, a listener addressing sets the talker to the idle state and a talker addressing sets the listener to the idle state (subset T5 and L3). With It LOW, the device can be addressed to be a listener and a talker. Because of the serial input procedure, all these input signals arrive in the interface functions of the IC between 16 and 32 clock cycles. The signals ton, Ion, rsv, rtl and ist are standard IEC/IEEE inputs. When using ton or Ion no controller action is possible. The output Oclr or Otrg is HIGH for one clock pulse if DCAS (device clear active state) or DTAS (device trigger active state) respectively is active. The output Oloc is HIGH when LOCS (local state) or LWLS (local with lock-out state) is active. Output when the rsv signal is read from the external shift register and the SRQS (request service state) is active. After this request has been answered by a serial poll, ORQS is HIGH in the APRS (affirmative poll response state). The inverted signal on ORQS must be multiplexed to bus-line DIO7, together with the status byte of the other DIO lines, when output Osp is HIGH in the SPAS (serial poll active state). When the device is in the SPAS state the signal rsv may be removed (can be checked on ORQS). N.B.: When the interface has asked for service via rsv and is addressed as talker in the serial poll mode, a handshake must be initialized by the device via Inba.
Input Icats and output Otct are intended for use of this IC in a controller. When Icats is HIGH, the source handshake function will exit SIDS and SIWS and enter respectively SGNS and SWNS. When the controller function is not used, the input Icats must be connected to VSS. Output Otct is HIGH if the tct message is sent over the interface and the ACDS state is active. A HIGH on input Ipon sets each function to its initial state. This level can be set to LOW after the IC has received 32 clock pulses at stabilized supply voltage.
OSRQ is HIGH
January 1995 3
Loading...
+ 5 hidden pages