Philips HEF4016BU, HEF4016BT, HEF4016BPB, HEF4016BP, HEF4016BDB Datasheet

...
DATA SH EET
Product specification File under Integrated Circuits, IC04
January 1995
INTEGRATED CIRCUITS
HEF4016B gates
For a complete data sheet, please also download:
The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC
January 1995 2
Philips Semiconductors Product specification
Quadruple bilateral switches
HEF4016B
gates
DESCRIPTION
The HEF4016B has four independent analogue switches (transmission gates). Each switch has two input/output terminals (Y/Z) and an active HIGH enable input (E). When E is connected to VDDa low impedance bidirectional path between Y and Z is established (ON condition). When E is connected to VSSthe switch is disabled and a high
impedance between Y and Z is established (OFF condition). Current through a switch will not cause additional V
DD
current provided the voltage at the terminals of the switch is maintained within the supply voltage range; VDD≥ (VY, VZ) VSS. Inputs Y and Z are electrically equivalent terminals.
Fig.1 Functional diagram.
HEF4016BP(N): 14-lead DIL; plastic (SOT27-1) HEF4016BD(F): 14-lead DIL; ceramic (cerdip) (SOT73) HEF4016BT(D): 14-lead SO; plastic (SOT108-1) ( ): Package Designator North America
Fig.2 Pinning diagram.
PINNING
APPLICATION INFORMATION
Some examples of applications for the HEF4016B are:
Signal gating
Modulation
Demodulation
Chopper
E
0
to E
3
enable inputs
Y
0
to Y
3
input/output terminals
Z
0
to Z
3
input/output terminals
Fig.3 Schematic diagram
(one switch).
January 1995 3
Philips Semiconductors Product specification
Quadruple bilateral switches
HEF4016B
gates
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
DC CHARACTERISTICS
T
amb
=25°C; VSS= 0 V (unless otherwise specified)
Power dissipation per switch P max. 100 mW For other RATINGS see Family Specifications
PARAMETER
V
DD
V
SYMBOL TYP. MAX. UNIT CONDITIONS
5 8000 −ΩE
n
at VIH; Vis= 0 to VDD; see Fig.4
ON resistance 10 R
ON
230 690
15 115 350
5 140 425 Enat VIH; Vis=VSS; see Fig.4
ON resistance 10 R
ON
65 195
15 50 145
5 170 515 Enat VIH; Vis=VDD; see Fig.4
ON resistance 10 R
ON
95 285
15 75 220
’ ON resistance 5 200 −ΩE
n
at VIH; Vis= 0 to VDD; see Fig.4
between any two 10 R
ON
15 −Ω
channels 15 10 −Ω
PARAMETER
V
DD
V SYMBOL
T
amb
(°C)
UNIT−40 + 25 + 85 CONDITION
MIN. MAX. MIN. MAX. MIN. MAX.
Quiescent 5 1,0 1,0 7,5 µAV
SS
= 0; all valid input combinations; VI=VSSor V
DD
device 10 I
DD
2,0 2,0 15,0 µA
current 15 4,0 4,0 30,0 µA
Input leakage
15 ± I
IN
−−−300 1000 nA E
n
at VSSor V
DD
current at E
n
OFF-state leakage 5 −−−−−−nA Enat VIL;
Vis=VSSor VDD; Vos=VDDor V
SS
current, any 10 I
OZ
−−−−−−nA
channel OFF 15 −−−200 −−nA
E
n
input 5 1,5 1,5 1,5 V switch OFF; see
Fig.9 for I
OZ
voltage LOW 10 V
IL
3,0 3,0 3,0 V
15 4,0 4,0 4,0 V
E
n
input 5 3,5 3,5 3,5 V low-impedance
between Y and Z (ON condition) see RONswitch
voltage HIGH 10 V
IH
7,0 7,0 7,0 V
15 11,0 11,0 11,0 V
Loading...
+ 5 hidden pages