Philips byv44 DATASHEETS

Philips Semiconductors Product specification
Dual rectifier diodes BYV44 series ultrafast

FEATURES SYMBOL QUICK REFERENCE DATA

• Low forward volt drop V
• Fast switching
• High thermal cycling performance
a1
13
a2
• Low thermal resistance I
k
2
= 300 V/ 400 V/ 500 V
R
1.12 V
F
= 30 A
O(AV)
trr 60 ns

GENERAL DESCRIPTION PINNING SOT78 (TO220AB)

Dual, common cathode, ultra-fast, PIN DESCRIPTION epitaxial rectifier diodes intended for use as output rectifiers in high 1 anode 1 frequency switched mode power supplies. 2 cathode
TheBYV44series issupplied in the 3 anode 2 conventional leaded SOT78 (TO220AB) package. tab cathode
tab
123

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

V V V
I
O(AV)
I
FRM
I
FSM
T T
RRM RWM R
stg j
Peak repetitive reverse voltage - 300 400 500 V Crest working reverse voltage - 300 400 500 V Continuous reverse voltage Tmb 136˚C - 300 400 500 V
Average rectified output current square wave; δ = 0.5; - 30 A (both diodes conducting)
1
Tmb 94 ˚C Repetitive peak forward current t = 25 µs; δ = 0.5; - 30 A per diode Tmb 94 ˚C Non-repetitive peak forward t = 10 ms - 150 A current per diode. t = 8.3 ms - 160 A
sinusoidal; with reapplied
V
RRM(max)
Storage temperature -40 150 ˚C Operating junction temperature - 150 ˚C
BYV44 -300 -400 -500

THERMAL RESISTANCES

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
R
th j-hs
R
th j-a
1 Neglecting switching and reverse current losses. For output currents in excess of 20 A, the cathode connection should be made to the metal mounting tab.
October 1998 1 Rev 1.400
Thermal resistance junction to per diode - - 2.4 K/W heatsink both diodes conducting - - 1.4 K/W Thermal resistance junction to in free air. - 60 - K/W ambient
Philips Semiconductors Product specification
Dual rectifier diodes BYV44 series ultrafast

ELECTRICAL CHARACTERISTICS

characteristics are per diode at Tj = 25 ˚C unless otherwise stated
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
F
I
R
Q
s
t
rr
I
rrm
V
fr
Forward voltage IF = 15 A; Tj = 150˚C - 0.95 1.12 V
IF = 15 A - 1.08 1.25 V
IF = 30 A - 1.15 1.36 V Reverse current VR = V
Reverse recovery charge IF = 2 A to VR 30 V; - 40 60 nC
VR = V
RRM
; Tj = 100 ˚C - 0.3 0.8 mA
RRM
-1050µA
dIF/dt = 20 A/µs Reverse recovery time IF = 1 A to VR 30 V; - 50 60 ns
dIF/dt = 100 A/µs Peak reverse recovery current IF = 10 A to VR 30 V; - 4.2 5.2 A
dIF/dt = 50 A/µs; Tj = 100˚C Forward recovery voltage IF = 10 A; dIF/dt = 10 A/µs - 2.5 - V
I
F(AV)
F(AV)
Tmb(max) / C
D = 1.0
p
t
T
=I
F(RMS)
Tmb(max) / C
a = 1.57
1.9
.
p
t
D =
T
t
F(AV)
x √D.
F(AV)
88
90
102
114
126
138
150
) per
102
114
126
138
150
) per
0.2
IF(AV) / A
4
IF(AV) / A
BYV44
BYV44
2.8
F(RMS)
0.5
2.2
/ I
PF / W
30
Vo = 0.8900 V Rs = 0.0137 Ohms
25
20
15
10
5
0
0 5 10 15 20 25
0.1
Fig.3. Maximum forward dissipation PF = f(I
diode; square wave where I
PF / W
20
Vo = 0.89 Rs = 0.0137
15
10
5
0
0 5 10 15
Fig.4. Maximum forward dissipation PF = f(I
diode; sinusoidal current waveform where a = form
I
rrm
dI
F
dt
t
rr
time
Q
s
10%
100%
rrm
I
F
I
R
Fig.1. Definition of trr, Qs and I
I
F
time
V
F
V
fr
V
F
time
Fig.2. Definition of V
fr
factor = I
October 1998 2 Rev 1.400
Loading...
+ 3 hidden pages