DISCRETE SEMICONDUCTORS
DATA SH EET
ook, halfpage
M3D423
BYD52 series
Fast soft-recovery controlled
avalanche rectifiers
Preliminary specification
1998 Dec 03
Philips Semiconductors Preliminary specification
Fast soft-recovery controlled
BYD52 series
avalanche rectifiers
FEATURES
• Glass passivated
• High maximum operating
temperature
DESCRIPTION
Cavity free cylindrical glass SOD120
package through Implotec
(1)
technology. This package is
• Low leakage current
• Excellent stability
• Guaranteed avalanche energy
absorption capability
handbook, halfpage
ka
• Available in ammo-pack.
Fig.1 Simplified outline (SOD120) and symbol.
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
RRM
repetitive peak reverse voltage
BYD52D − 200 V
BYD52G − 400 V
BYD52J − 600 V
V
R
continuous reverse voltage
BYD52D − 200 V
BYD52G − 400 V
BYD52J − 600 V
I
F(AV)
average forward current T
=25°C; printed-circuit board
amb
mounting, pitch 5 mm, see Fig.6;
averaged over any 20 ms period;
see Fig.2
I
FSM
T
stg
T
j
non-repetitive peak forward current t = 10 ms half sine wave;
Tj=25°C; VR=V
RRMmax
storage temperature −65 +175 °C
junction temperature see fig.3 −65 +175 °C
hermetically sealed and fatigue free
as coefficients of expansion of all
used parts are matched.
(1) Implotec is a trademark of Philips.
MGL571
− 0.47 A
− 5A
ELECTRICAL CHARACTERISTICS
=25°C unless otherwise specified.
T
j
SYMBOL PARAMETER CONDITIONS MAX. UNIT
V
F
I
R
t
rr
forward voltage IF= 1 A; see Fig.4 3.6 V
reverse current VR=V
RRMmax
V
R=VRRMmax
; Tj= 165 °C; see Fig.5 100 µA
reverse recovery time when switched from IF= 0.5 A to IR=1A;
1 µA
30 ns
measured at IR= 0.25 A; see Fig.7
1998 Dec 03 2
Philips Semiconductors Preliminary specification
Fast soft-recovery controlled
BYD52 series
avalanche rectifiers
THERMAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS VALUE UNIT
R
th j-a
Note
1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of copper layer ≥40 µm,
pitch 5 mm; see Fig.6.
thermal resistance from junction to ambient note 1 150 K/W
1998 Dec 03 3