DISCRETE SEMICONDUCTORS
DATA SH EET
k, halfpage
M3D088
BCX71 series
PNP general purpose transistors
Product specification
Supersedes data of 1997 Apr 18
1999 Apr 20
Philips Semiconductors Product specification
PNP general purpose transistors BCX71 series
FEATURES
• Low current (max. 100 mA)
• Low voltage (max. 45 V)
• Low noise.
APPLICATIONS
• Low level, low noise, low frequency applications in
hybrid circuits
• General purpose switching and amplification.
DESCRIPTION
PNP transistor in a plastic SOT23 package.
NPN complements: BCX70 series.
MARKING
TYPE
NUMBER
MARKING
(1)
CODE
TYPE
NUMBER
MARKING
CODE
BCX71G BG∗ BCX71J BJ∗
BCX71H BH∗ BCX71K BK∗
(1)
PINNING
PIN DESCRIPTION
1 base
2 emitter
3 collector
handbook, halfpage
Top view
3
21
3
1
2
MAM256
Note
1. ∗ = p : Made in Hong Kong.
Fig.1 Simplified outline (SOT23) and symbol.
∗ = t : Made in Malaysia.
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
CBO
V
CEO
V
EBO
I
C
I
CM
I
BM
P
tot
T
stg
T
j
T
amb
collector-base voltage open emitter −−45 V
collector-emitter voltage open base −−45 V
emitter-base voltage open collector −−5V
collector current (DC) −−100 mA
peak collector current −−200 mA
peak base current −−200 mA
total power dissipation T
≤ 25 °C − 250 mW
amb
storage temperature −65 +150 °C
junction temperature − 150 °C
operating ambient temperature −65 +150 °C
1999 Apr 20 2
Philips Semiconductors Product specification
PNP general purpose transistors BCX71 series
THERMAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS VALUE UNIT
R
th j-a
Note
1. Transistor mounted on an FR4 printed-circuit board.
CHARACTERISTICS
=25°C unless otherwise specified.
T
amb
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
I
CBO
I
EBO
h
FE
V
CEsat
V
BEsat
V
BE
C
c
C
e
f
T
F noise figure I
thermal resistance from junction to ambient note 1 500 K/W
collector cut-off current IE= 0; VCB= −45 V −−−20 nA
I
= 0; VCB= −45 V; T
E
= 150 °C −−−20 µA
amb
emitter cut-off current IC= 0; VEB= −4V −−−20 nA
DC current gain IC= −10 µA; VCE= −5V
BCX71G −−−
BCX71H 30 −−
BCX71J 40 −−
BCX71K 100 −−
DC current gain I
= −2 mA; VCE= −5V
C
BCX71G 120 − 220
BCX71H 180 − 310
BCX71J 250 − 460
BCX71K 380 − 630
DC current gain I
= −50 mA; VCE= −1 V; note 1
C
BCX71G 60 −−
BCX71H 80 −−
BCX71J 100 −−
BCX71K 110 −−
collector-emitter saturation
voltage
base-emitter saturation
voltage
IC= −10 mA; IB= −0.25 mA −60 −−250 mV
I
= −50 mA; IB= −1.25 mA; note 1 −120 −−550 mV
C
IC= −10 mA; IB= −0.25 mA −600 −−850 mV
I
= −50 mA; IB= −1.25 mA; note 1 −680 −−1050 mV
C
base-emitter voltage IC= −2 mA; VCE= −5V −600 −650 −750 mV
I
= −10 µA; VCE= −5V −−550 − mV
C
I
= −50 mA; VCE= −1 V; note 1 −−720 − mV
C
collector capacitance IE=Ie= 0; VCB= −10 V; f = 1 MHz − 4.5 − pF
emitter capacitance IC=Ic= 0; VEB= −0.5 V; f = 1 MHz − 11 − pF
transition frequency IC= −10 mA; VCE= −5 V; f = 100 MHz 100 −−MHz
= −200 µA; VCE= −5 V; RS=2kΩ;
C
− 26dB
f = 1 kHz; B = 200 Hz
Note
1. Pulse test: t
≤ 300 µs; δ≤0.02.
p
1999 Apr 20 3