Philips 74LVC574APW, 74LVC574ADB, 74LVC574AD Datasheet

0 (0)
Philips 74LVC574APW, 74LVC574ADB, 74LVC574AD Datasheet

INTEGRATED CIRCUITS

74LVC574A

Octal D-type flip-flop with 5-volt tolerant inputs/outputs; positive edge-trigger (3-State)

Product specification

1998 Jul 29

m n r

Philips Semiconductors

Product specification

 

 

 

 

 

 

Octal D-type flip-flop with 5-volt tolerant

74LVC574A

inputs/outputs; positive edge-trigger (3-State)

 

 

 

 

 

 

 

 

FEATURES

5-volt tolerant inputs/outputs, for interfacing with 5-volt logic

Supply voltage range of 2.7V to 3.6V

Complies with JEDEC standard no. 8-1A

Inputs accept voltages up to 5.5V

CMOS low power consumption

Direct interface with TTL levels

High impedance when VCC = 0V

8-bit positive edge-triggered register

Independent register and 3-State buffer operation

Flow-through pin-out architecture

DESCRIPTION

The 74LVC574A is a high-performance, low-power, low-voltage,

Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

QUICK REFERENCE DATA

GND = 0V; Tamb =25°C; tr = tf 2.5ns

Inputs can be driven from either 3.3V or 5V devices. In 3-State operation, outputs can handle 5V. This feature allows the use of these devices as translators in a mixed 3.3V/5V environment.

The 74LVC574A is an octal D-type flip-flop featuring separate

D-type inputs for each flip-flop and 3-State outputs for bus-oriented

applications. A clock (CP) and an output enable (OE) input are common to all flip-flops.

The eight flip-flops will store the state of their individual D-inputs that meet the setup and hold times requirements on the LOW-to-HIGH CP transition.

When OE is LOW, the contents of the eight flip-flops is available at the outputs. When OE is HIGH, the outputs go to the high impedance OFF-state. Operation of the OE input does not affect the state of the flip-flops.

The '574A' is functionally identical to the '374A', but the '374A' has a different pin arrangement.

SYMBOL

PARAMETER

CONDITIONS

TYPICAL

UNIT

 

 

 

 

 

tPHL/tPLH

Propagation delay

CL = 50pF

 

ns

CP to Qn

VCC = 3.3V

4.8

 

 

fmax

maximum clock frequency

 

150

MHz

CI

Input capacitance

 

5.0

pF

CPD

Power dissipation capacitance per

Notes 1 and 2

20

pF

flip-flop

NOTE:

1.CPD is used to determine the dynamic power dissipation (PD in W): PD = CPD x VCC2 x fi + (CL x VCC2 x fo) where:

fi = input frequency in MHz; CL = output load capacity in pF;

fo = output frequency in MHz; VCC = supply voltage in V;

(CL x VCC2 x fo) = sum of outputs.

2.The condition is VI = GND to VCC

ORDERING INFORMATION

PACKAGES

TEMPERATURE

OUTSIDE

NORTH AMERICA

PKG. DWG. #

RANGE

NORTH AMERICA

 

 

 

 

 

 

 

 

20-Pin Plastic Shrink Small Outline (SO)

±40°C to +85°C

74LVC574A D

74LVC574A D

SOT163-1

 

 

 

 

 

20-Pin Plastic Shrink Small Outline (SSOP) Type II

±40°C to +85°C

74LVC574A DB

74LVC574A DB

SOT339-1

 

 

 

 

 

20-Pin Plastic Thin Shrink Small Outline (TSSOP) Type I

±40°C to +85°C

74LVC574A PW

7LVC574APW DH

SOT360-1

 

 

 

 

 

1998 Jul 29

2

853-1863 19804

Philips Semiconductors

Product specification

 

 

 

Octal D-type flip-flop with 5-volt tolerant

74LVC574A

inputs/outputs; positive edge-trigger (3-State)

 

 

 

 

 

PIN DESCRIPTION

PIN NUMBER

SYMBOL

FUNCTION

 

 

 

 

 

1

 

 

 

Output enable input (active-Low)

 

OE

2, 3, 4, 5,

D0-D7

Data inputs

6, 7, 8, 9

 

 

 

 

 

 

 

 

 

19, 18, 17, 16,

Q0-Q7

Data outputs

15, 14, 13, 12

 

 

 

 

10

GND

Ground (0V)

 

 

 

 

 

11

 

CP

Clock input (LOW-to-HIGH,

 

edge-triggered)

 

 

 

 

 

 

 

20

VCC

Positive supply voltage

PIN CONFIGURATION

 

 

 

 

 

 

 

 

 

 

OE

1

 

 

 

20

VCC

 

 

 

 

 

 

 

 

 

 

D0

2

 

 

 

19

Q0

 

 

 

 

 

 

 

 

 

 

D1

3

 

 

 

18

Q1

 

 

 

 

 

 

 

 

 

 

D2

4

 

 

 

17

Q2

 

D3

 

 

 

 

 

 

 

5

 

 

 

16

Q3

 

D4

 

 

 

 

 

 

6

 

 

 

15

Q4

 

D5

 

 

 

 

 

 

7

 

 

 

14

Q5

 

D6

 

 

 

 

 

 

8

 

 

 

13

Q6

 

D7

 

 

 

 

 

 

9

 

 

 

12

Q7

GND

 

 

 

 

 

 

10

 

 

 

11

CP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SA00400

 

LOGIC SYMBOL

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

D0

CP

Q0

 

19

 

 

3

 

D1

 

 

Q1

 

18

 

 

 

 

4

 

D2

 

 

Q2

 

17

 

 

 

 

5

 

D3

 

 

Q3

 

16

 

 

 

 

6

 

D4

 

 

Q4

 

15

 

 

 

 

7

 

D5

 

 

Q5

 

14

 

 

 

 

8

 

D6

 

 

Q6

 

13

 

 

 

 

9

 

D7

OE

Q7

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

LOGIC SYMBOL (IEEE/IEC)

1

C1

 

11

EN

 

2

19

 

1D

3

18

4

17

5

16

6

15

7

14

8

13

9

12

 

SA00402

FUNCTIONAL DIAGRAM

 

 

 

 

 

 

 

 

 

 

 

 

 

2

D0

 

 

 

 

 

 

Q0

19

 

 

 

 

 

 

 

 

 

3

D1

 

 

 

 

 

 

Q1

18

 

 

4

D2

 

 

 

 

 

 

Q2

17

 

5

D3

 

FF!

 

 

 

Q3

16

 

 

 

 

 

 

 

3-State

 

 

 

 

6

D4

 

to

 

Q4

15

 

 

 

OUTPUTS

 

 

FF8

 

 

 

7

D5

 

 

 

 

 

 

Q5

14

 

 

8

D6

 

 

 

 

 

 

Q6

13

 

 

9

D7

 

 

 

 

 

 

Q7

12

 

 

11

CP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

OE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SA00403

 

 

 

 

 

 

 

 

 

 

 

 

 

SA00401

1998 Jul 29

3

Loading...
+ 7 hidden pages