Philips 74LV377PW, 74LV377N, 74LV377DB, 74LV377D Datasheet

0 (0)

INTEGRATED CIRCUITS

74LV377

Octal D-type flip-flop with data enable; positive edge-trigger

Product specification

1998 Jun 10

Supersedes data of 1997 Mar 04

IC24 Data Handbook

m n r

Philips Semiconductors

Product specification

 

 

 

 

 

 

Octal D-type flip-flop with data enable;

74LV377

positive edge-trigger

 

 

 

 

 

 

 

 

FEATURES

Optimized for Low Voltage applications: 1.0 to 3.6V

Accepts TTL input levels between VCC = 2.7V and VCC = 3.6V

Typical VOLP (output ground bounce) 0.8V @ VCC = 3.3V,

Tamb = 25°C

Typical VOHV (output VOH undershoot) 2V @ VCC = 3.3V, Tamb = 25°C

Ideal for addressable register applications

Data enable for address and data synchronization applications

Eight positive-edge triggered D-type flip-flops

Output capability: standard

ICC category: MSI

DESCRIPTION

The 74LV377 is a low±voltage CMOS device and is pin and function compatible with 74HC/HCT377.

The 74LV377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. A common clock (CP) input loads

all flip-flops simultaneously when the data enable (E) is LOW. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output (Qn) of

the flip-flop. The E input must be stable only one set-up time prior to the LOW-to-HIGH transition for predictable operation.

QUICK REFERENCE DATA

GND = 0V; Tamb = 25°C; tr = tf 2.5 ns

SYMBOL

PARAMETER

CONDITIONS

TYPICAL

UNIT

 

 

 

 

 

tPHL/tPLH

Propagation delay

 

13

ns

CP to Qn

CL = 15pF

 

 

VCC = 3.3V

 

 

fmax

Maximum clock frequency

77

MHz

 

CI

Input capacitance

 

3.5

pF

CPD

Power dissipation capacitance per flip-flop

Notes 1 and 2

20

pF

NOTES:

1.CPD is used to determine the dynamic power dissipation (PD in mW)

PD = CPD VCC2 fi (CL VCC2 fo) where:

fi = input frequency in MHz; CL = output load capacity in pF;

fo = output frequency in MHz; VCC = supply voltage in V;

(CL VCC2 fo) = sum of the outputs.

2.The condition is VI = GND to VCC

ORDERING INFORMATION

PACKAGES

TEMPERATURE RANGE

OUTSIDE NORTH AMERICA

NORTH AMERICA

PKG. DWG. #

 

 

 

 

 

20-Pin Plastic DIL

±40°C to +125°C

74LV377 N

74LV377 N

SOT146-1

 

 

 

 

 

20-Pin Plastic SO

±40°C to +125°C

74LV377 D

74LV377 D

SOT163-1

 

 

 

 

 

20-Pin Plastic SSOP Type II

±40°C to +125°C

74LV377 DB

74LV377 DB

SOT339-1

 

 

 

 

 

20-Pin Plastic TSSOP Type I

±40°C to +125°C

74LV377 PW

74LV377PW DH

SOT360-1

PIN DESCRIPTION

PIN

SYMBOL

FUNCTION

NUMBER

 

 

 

 

 

 

 

 

 

1

 

 

 

Data enable input (active-LOW)

 

E

2, 5, 6, 9, 12,

Q0 to Q7

flip-flop outputs

15, 16, 19

 

 

 

 

 

3, 4, 7, 8, 13,

D0 to D7

Data inputs

14, 17, 18

 

 

 

10

GND

Ground (0V)

 

 

 

 

 

11

CP

Clock input

(LOW-to-HIGH, edge-triggered)

 

 

 

 

 

 

 

20

VCC

Positive supply voltage

FUNCTION TABLE

 

OPERATING MODES

 

 

INPUTS

 

OUTPUTS

 

 

 

 

 

 

 

 

 

 

 

 

CP

 

 

E

 

Dn

Qn

 

Load ``1''

 

 

 

l

h

H

 

 

 

 

 

 

 

 

 

 

Load ``0''

 

 

 

l

l

L

 

 

 

 

 

 

 

 

 

 

Hold (do nothing)

 

 

 

h

X

No change

 

 

X

 

H

X

No change

 

 

 

 

H

= HIGH voltage level

 

 

 

 

 

 

 

h= HIGH voltage level one set-up time prior to the

LOW-to-HIGH CP transition

L

=

LOW voltage level

l

= LOW voltage level one set-up time prior to the

 

LOW-to-HIGH CP transition

=

LOW±to±HIGH CP transition

X

=

Don't care

1998 Jun 10

2

853±1935 19545

Philips 74LV377PW, 74LV377N, 74LV377DB, 74LV377D Datasheet

Philips Semiconductors

Product specification

 

 

 

Octal D-type flip-flop with data enable;

74LV377

positive edge-trigger

PIN CONFIGURATION

 

 

 

LOGIC SYMBOL (IEEE/IEC)

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

1C2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

1

 

20

VCC

 

 

G1

 

 

 

 

 

 

 

 

Q7

 

 

 

 

 

 

Q0

2

 

19

 

3

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D0

3

 

18

D7

2D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D1

4

 

17

D6

 

4

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1

5

 

16

Q6

 

7

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q2

6

 

15

Q5

 

8

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D2

7

 

14

D5

 

13

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D3

8

 

13

D4

 

14

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q3

9

 

12

Q4

 

17

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

10

 

11

CP

 

18

 

 

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SV00667

 

 

 

 

 

 

 

 

 

 

 

 

SV00669

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOGIC SYMBOL

 

 

 

 

 

FUNCTIONAL DIAGRAM

 

 

 

 

 

 

11

 

 

 

 

 

 

 

 

 

3

 

D0

CP

 

2

 

 

Q0

 

 

 

4

 

D1

 

Q1

 

5

 

 

 

7

 

D2

 

Q2

 

6

 

 

 

8

 

D3

 

Q3

 

9

 

 

 

13

 

D4

 

Q4

 

12

 

 

 

14

 

D5

 

Q5

 

15

 

 

 

17

 

D6

 

Q6

 

16

 

 

 

18

 

D7

 

Q7

 

19

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

D0

 

 

Q0

2

3

 

 

 

D1

 

 

Q1

5

4

 

 

 

D2

 

 

Q2

6

7

 

 

 

D3

 

 

Q3

9

8

FF1

 

 

 

 

 

 

D4

to

OUTPUTS

Q4

12

13

FF8

 

 

D5

 

 

Q5

15

14

 

 

 

D6

 

 

Q6

16

17

 

 

 

D7

 

 

Q7

19

18

 

 

 

E

 

 

 

 

1

 

 

 

 

CP

 

 

 

 

11

 

 

 

 

SV00668

SV00670

1998 Jun 10

3

Philips Semiconductors

Product specification

 

 

 

Octal D-type flip-flop with data enable;

74LV377

positive edge-trigger

RECOMMENDED OPERATING CONDITIONS

SYMBOL

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNIT

 

 

 

 

 

 

 

VCC

DC supply voltage

See Note 1

1.0

3.3

3.6

V

VI

Input voltage

 

0

±

VCC

V

VO

Output voltage

 

0

±

VCC

V

Tamb

Operating ambient temperature range in free air

See DC and AC

±40

 

+85

°C

characteristics

±40

 

+125

 

 

VCC = 1.0V to 2.0V

±

±

500

 

 

 

±

 

tr, tf

Input rise and fall times

VCC = 2.0V to 2.7V

±

±

200

ns/V

 

 

VCC = 2.7V to 3.6V

±

±

100

 

NOTE:

1. The LV is guaranteed to function down to VCC = 1.0V (input levels GND or VCC); DC characteristics are guaranteed from VCC = 1.2V to VCC = 3.6V.

ABSOLUTE MAXIMUM RATINGS1, 2

In accordance with the Absolute Maximum Rating System (IEC 134).

Voltages are referenced to GND (ground = 0V).

SYMBOL

PARAMETER

CONDITIONS

RATING

UNIT

 

 

 

 

 

VCC

DC supply voltage

 

±0.5 to +4.6

V

±IIK

DC input diode current

VI < ±0.5 or VI > VCC + 0.5V

20

mA

±IOK

DC output diode current

VO < ±0.5 or VO > VCC + 0.5V

50

mA

±IO

DC output source or sink current

±0.5V < VO < VCC + 0.5V

25

mA

± standard outputs

 

 

 

 

 

±IGND,

DC VCC or GND current for types with

 

50

mA

±standard outputs

 

±ICC

 

 

 

 

Tstg

Storage temperature range

 

±65 to +150

°C

 

Power dissipation per package

for temperature range: ±40 to +125°C

 

 

Ptot

±plastic DIL

above +70°C derate linearly with 12mW/K

750

mW

±plastic mini-pack (SO)

above +70°C derate linearly with 8 mW/K

500

 

±plastic shrink mini-pack (SSOP and TSSOP)

above +60°C derate linearly with 5.5 mW/K

400

 

 

 

 

 

 

NOTES:

1.Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under ªrecommended operating conditionsº is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2.The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

1998 Jun 10

4

Loading...
+ 8 hidden pages