Philips 74LV374N, 74LV374DB, 74LV374D, 74LV374PW Datasheet

0 (0)

INTEGRATED CIRCUITS

74LV374

Octal D-type flip-flop;

positive edge-trigger (3-State)

Product specification

1997 Mar 20

Supersedes data of 1996 Feb

IC24 Data Handbook

m n r

Philips Semiconductors

Product specification

 

 

 

 

 

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

 

 

 

 

 

 

FEATURES

Wide operating voltage: 1.0 to 5.5V

Optimized for Low Voltage applications: 1.0 to 3.6V

Accepts TTL input levels between VCC = 2.7V and VCC = 3.6V

Typical VOLP (output ground bounce) 0.8V @ VCC = 3.3V, Tamb = 25°C

Typical VOHV (output VOH undershoot) 2V @ VCC = 3.3V, Tamb = 25°C

Common 3-State output enable input

Output capability: bus driver

ICC category: MSI

DESCRIPTION

The 74LV374 is a low-voltage Si-gate CMOS device and is pin and function compatible with 74HC/HCT374.

The 74LV374 is an octal D-type flip±flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented

applications. A clock (CP) and an output enable (OE) input are common to all flip-flops.

The eight flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition.

When OE is LOW, the contents of the eight flip-flops is available at the outputs. When OE is HIGH, the outputs go to the high impedance OFF-state. Operation of the OE input does not affect the state of the flip-flops.

QUICK REFERENCE DATA

GND = 0V; Tamb = 25°C; tr =tf 2.5 ns

SYMBOL

PARAMETER

CONDITIONS

TYPICAL

UNIT

 

 

 

 

 

tPHL/tPLH

Propagation delay

CL = 15pF

14

ns

CP to Qn

VCC = 3.3V

 

 

 

 

 

 

 

 

 

fmax

Maximum clock frequency

 

77

MHz

CI

Input capacitance

 

3.5

pF

CPD

Power dissipation capacitance per flip-flop

Notes 1 and 2

25

pF

NOTES:

1.CPD is used to determine the dynamic power dissipation (PD in mW) PD = CPD VCC2 x fi (CL VCC2 fo) where:

fi = input frequency in MHz; CL = output load capacity in pF;

fo = output frequency in MHz; VCC = supply voltage in V;(CL VCC2 fo) = sum of the outputs.

2.The condition is VI = GND to VCC

ORDERING INFORMATION

PACKAGES

TEMPERATURE RANGE

OUTSIDE NORTH AMERICA

NORTH AMERICA

PKG. DWG. #

 

 

 

 

 

20-Pin Plastic DIL

±40°C to +125°C

74LV374 N

74LV374 N

SOT146-1

 

 

 

 

 

20-Pin Plastic SO

±40°C to +125°C

74LV374 D

74LV374 D

SOT163-1

 

 

 

 

 

20-Pin Plastic SSOP Type II

±40°C to +125°C

74LV374 DB

74LV374 DB

SOT339-1

 

 

 

 

 

PIN DESCRIPTION

PIN

SYMBOL

FUNCTION

NUMBER

 

 

 

 

 

 

 

 

 

1

 

 

 

Output enable input (active-LOW)

 

OE

 

 

 

 

 

2, 5, 6, 9, 12,

Q0 to Q7

3-State flip-flop outputs

15, 16, 19

 

 

 

 

 

 

 

 

 

3, 4, 7, 8, 13,

D0 to D7

Data inputs

14, 17, 18

 

 

 

 

 

 

 

10

GND

Ground (0V)

 

 

 

 

 

11

 

CP

Clock input (LOW-to-HIGH, edge-

 

triggered)

 

 

 

 

 

 

 

20

VCC

Positive supply voltage

FUNCTION TABLE

 

OPERATING

 

INPUTS

 

INTERNAL

 

OUTPUTS

 

 

 

 

 

 

 

 

 

 

MODES

 

 

 

CP

 

Dn

FLIP-FLOPS

 

Q0 to Q7

 

 

OE

 

 

 

 

 

 

 

 

 

 

 

 

 

Load and read

 

L

 

 

l

L

 

L

 

register

 

L

 

 

h

H

 

H

 

 

 

 

 

 

 

 

 

 

 

 

Load register and

 

H

 

 

l

L

 

Z

 

disable outputs

 

H

 

 

h

H

 

Z

 

 

 

 

 

 

 

 

 

 

H

= HIGH voltage level

 

 

 

 

h

= HIGH voltage level one set-up time prior to the

 

 

LOW-to-HIGH CP transition

 

 

 

L

= LOW voltage level

 

 

 

 

l

= LOW voltage level one set-up time prior to the

 

 

LOW-to-HIGH CP transition

 

 

 

Z

= High impedance OFF-state

 

 

 

= LOW±to±HIGH clock transition

1997 Mar 20

2

Philips 74LV374N, 74LV374DB, 74LV374D, 74LV374PW Datasheet

Philips Semiconductors

Product specification

 

 

 

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

 

 

 

PIN CONFIGURATION

 

 

 

 

 

VCC

 

OE

1

20

 

Q0

2

19

Q7

 

D0

3

18

D7

 

D1

4

17

D6

 

Q1

5

16

Q6

 

Q2

6

15

Q5

 

D2

7

14

D5

 

D3

8

13

D4

 

Q3

9

12

Q4

GND

10

11

CP

 

 

 

 

SV00338

 

 

 

 

 

 

LOGIC SYMBOL (IEEE/IEC)

11

 

C1

 

 

 

 

1

EN1

 

 

 

 

 

 

 

 

 

 

 

 

 

3

2

 

 

1D

4

 

 

5

7

6

8

9

13

12

14

15

17

16

18

19

 

 

 

SV00340

 

 

 

LOGIC SYMBOL

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

D0

CP

 

 

 

 

Q0

 

2

 

 

 

4

 

D1

 

 

 

 

Q1

 

 

 

 

 

 

 

 

 

 

5

7

 

D2

 

Q2

 

6

 

 

 

 

 

8

 

D3

 

Q3

 

9

 

 

 

 

 

13

 

D4

 

Q4

 

12

 

 

 

14

 

D5

 

 

 

 

Q5

 

15

 

 

 

17

 

D6

 

 

 

 

Q6

 

16

 

 

 

18

 

D7

 

 

 

 

Q7

 

19

 

 

 

 

 

 

 

 

 

 

 

OE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

SV00339

 

 

 

 

 

FUNCTIONAL DIAGRAM

3

D0

 

 

 

Q0

2

 

 

 

 

 

 

 

 

 

4

D1

 

 

 

Q1

5

 

 

 

 

 

 

 

 

 

7

D2

 

 

 

Q2

6

 

 

 

 

 

 

 

 

 

8

D3

FF1

 

 

Q3

9

 

 

 

 

3-STATE

 

 

 

 

 

 

to

 

 

 

 

13

D4

 

OUTPUTS

Q4

12

FF8

 

 

 

 

 

 

 

 

 

14

D5

 

 

 

Q5

15

 

 

 

 

 

 

 

 

 

17

D6

 

 

 

Q6

16

 

 

 

 

 

 

 

 

 

18

D7

 

 

 

Q7

19

 

 

 

 

 

 

 

 

 

11

CP

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

OE

 

 

 

 

 

 

SV00341

LOGIC DIAGRAM

D0

D1

D2

D3

D4

D5

 

D6

D7

D Q

D Q

D Q

D Q

 

D Q

D Q

D Q

D Q

CP

CP

CP

CP

 

CP

CP

CP

CP

FF1

FF2

FF3

FF4

 

FF5

FF6

FF7

FF8

CP

 

 

 

 

 

 

 

 

OE

 

 

 

 

 

 

 

 

Q0

Q1

Q2

Q3

 

Q4

Q5

Q6

Q7

 

 

 

 

 

 

 

 

SV00342

1997 Mar 20

 

 

3

 

 

 

 

 

Philips Semiconductors

Product specification

 

 

 

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

 

 

 

ABSOLUTE MAXIMUM RATINGS1, 2

In accordance with the Absolute Maximum Rating System (IEC 134)

Voltages are referenced to GND (ground = 0V)

SYMBOL

PARAMETER

CONDITIONS

RATING

UNIT

 

 

 

 

 

VCC

DC supply voltage

 

±0.5 to +7.0

V

±IIK

DC input diode current

VI < ±0.5 or VI > VCC + 0.5V

20

mA

±IOK

DC output diode current

VO < ±0.5 or VO > VCC + 0.5V

50

mA

±IO

DC output source or sink current

 

 

 

± standard outputs

±0.5V < VO < VCC + 0.5V

25

mA

 

± bus driver outputs

 

35

 

 

 

 

 

 

±IGND,

DC VCC or GND current for types with

 

 

 

±standard outputs

 

50

mA

±ICC

±bus driver outputs

 

70

 

Tstg

Storage temperature range

 

±65 to +150

°C

 

Power dissipation per package

for temperature range: ±40 to +125°C

 

 

PTOT

±plastic DIL

above +70°C derate linearly with 12mW/K

750

mW

±plastic mini-pack (SO)

above +70°C derate linearly with 8 mW/K

500

 

±plastic shrink mini-pack (SSOP and TSSOP)

above +60°C derate linearly with 5.5 mW/K

400

 

 

 

 

 

 

NOTES:

1.Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under ªrecommended operating conditionsº is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2.The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL

PARAMETER

CONDITIONS

MIN

TYP.

MAX

UNIT

 

 

 

 

 

 

 

VCC

DC supply voltage

See Note1

1.0

3.3

5.5

V

VI

Input voltage

 

0

±

VCC

V

VO

Output voltage

 

0

±

VCC

V

Tamb

Operating ambient temperature range in free

See DC and AC

±40

 

+85

°C

air

characteristics per device

±40

 

+125

 

Input rise and fall times except for

VCC = 1.0V to 2.0V

±

±

500

 

tr, tf

VCC = 2.0V to 2.7V

±

±

200

ns/V

Schmitt-trigger inputs

VCC = 2.7V to 3.6V

±

100

 

±

 

 

 

VCC = 3.6V to 5.5V

 

±

50

 

NOTES:

1. The LV is guaranteed to function down to VCC = 1.0V (input levels GND or VCC); DC characteristics are guaranteed from VCC = 1.2V to VCC = 5.5V.

1997 Mar 20

4

Loading...
+ 8 hidden pages