INTEGRATED CIRCUITS
74LV153
Dual 4-input multiplexer
Product specification
Supersedes data of 1997 Feb 12
IC24 Data Handbook
1998 Apr 28
Philips Semiconductors Product specification
74L V153Dual 4-input multiplexer
FEA TURES
•Optimized for low voltage applications: 1.0 to 3.6 V
•Accepts TTL input levels between V
•Typical V
T
amb
•Typical V
T
amb
(output ground bounce) < 0.8 V at V
OLP
= 25°C
(output VOH undershoot) > 2 V at V
OHV
= 25°C
= 2.7 V and V
CC
CC
CC
CC
= 3.3 V,
= 3.3 V,
•Non-inverting outputs
•Separate enable for each output
•Common select inputs
•Permits multiplexing from n lines to 1 line
•Enable line provided for cascading (n lines to 1 line)
•Output capability: standard
•I
category: MSI
CC
QUICK REFERENCE DATA
GND = 0 V; T
SYMBOL
t
NOTE:
1. C
is used to determine the dynamic power dissipation (PD in µW)
PD
= CPD × V
P
D
f
= input frequency in MHz; CL = output load capacitance in pF;
i
= output frequency in MHz; VCC = supply voltage in V;
f
o
(C
L
= 25°C; tr = t
amb
PHL/tPLH
C
I
C
PD
2
× fi (CL × V
CC
2
× V
× fo) = sum of the outputs.
CC
≤ 2.5 ns
f
PARAMETER CONDITIONS TYPICAL UNIT
Propagation delay
1ln, 2ln to nY
Sn to nY
nE to nY
Input capacitance 3.5 pF
Power dissipation capacitance per gate VI = GND to V
2
× fo) where:
CC
= 3.6 V
DESCRIPTION
The 74LV153 is a low-voltage CMOS device that is pin and function
compatible with 74HC/HCT153.
The 74LV153 is a dual 4-input multiplexer which selects 2 bits of
data from up to four sources selected by common data select inputs
, S1). The two 4-input multiplexer circuits have individual active
(S
0
LOW output enable inputs (1E
outputs independently. The outputs (1Y, 2Y) are forced LOW when
the corresponding output enable inputs are HIGH. The 74LV153 is
the logic implementation of a 2-pole, 4-position switch, where the
position of the switch, is determined by the logic levels applied to S
and S1. The logic equations for the outputs are:
1Y=1E
.(1l0.S1.S0+1l1.S1.S0+1l2.S1.S0+1l3.S1.S0)
.(2l0.S1.S0+2l1.S1.S0+2l2.S1.S0+2l3.S1.S0)
2Y=2E
The 74LV153 can be used to move data to a common output bus
from a group of registers. The state of the select inputs would
determine the particular register from which the data came. An
alternative application is a function generator. The device can
generate two functions or three variables. This is useful for
implementing highly irregular random logic.
CL = 15 pF;
VCC = 3.3 V
1
CC
, 2E) which can be used to strobe the
14
14
10
30 pF
0
ns
ORDERING INFORMATION
PACKAGES TEMPERATURE RANGE OUTSIDE NORTH AMERICA NORTH AMERICA PKG. DWG. #
16-Pin Plastic DIL –40°C to +125°C 74LV153 N 74LV153 N SOT38-4
16-Pin Plastic SO –40°C to +125°C 74LV153 D 74LV153 D SOT109-1
16-Pin Plastic SSOP Type II –40°C to +125°C 74LV153 DB 74LV153 DB SOT338-1
16-Pin Plastic TSSOP Type I –40°C to +125°C 74LV153 PW 74LV153PW DH SOT403-1
1998 Apr 28 853–1921 19309
2
Philips Semiconductors Product specification
Dual 4-input multiplexer
PIN CONFIGURATION
1
1E
2
S
1
3
1I
3
4
1I
2
5
1I
1
6
1I
0
7
1Y
GND
8
PIN DESCRIPTION
PIN
NUMBER
1, 15 1E, 2E Output enable inputs (active LOW)
14, 2 S0, S
6, 5, 4, 3 1l0 to 1l
7 1Y Multiplexer output from source 1
8 GND Ground (0 V)
9 2Y Multiplexer output from source 2
10, 11, 12, 13 2l0 to 2l
16 V
SYMBOL FUNCTION
1
CC
Common data select inputs
Data inputs from source 1
3
Data inputs from source 2
3
Positive supply voltage
LOGIC SYMBOL
65 43
1l01l11l21302l02l12l22l
14
2
1
15
S
0
S
1
1E
2E
1Y 2Y
16
V
CC
15
2E
14
S
0
13
2I
3
12
2I
2
11
2I
1
10
2I
0
2Y
9
SV00538
10 11 12 13
3
LOGIC SYMBOL (IEEE/IEC)
14
2
1
6
5
4
3
15
10
11
12
13
0
1
EN4
0
1
2
3
G
0
3
MUX
FUNCTIONAL DIAGRAM
6
1I
0
5
1I
1
4
1I
3
1I
14
S
2
S
10
2I
11
2I
12
2I
13
2I
MUX
2
3
0
1
0
1
MUX
2
3
4
1
1E
2E
15
74LV153
7
9
SV00539
1Y
2Y
SV00540
7
9
1998 Apr 28
79
SV00537
3
Philips Semiconductors Product specification
Dual 4-input multiplexer
LOGIC DIAGRAM
1E
1I
1I
3
2
1I
1Y 2Y
1I
1
0
S
0
S
2I
1
2I
3
2
74LV153
2I
2I
1
0
2E
SV00541
FUNCTION TABLE
SELECT INPUTS DATA INPUTS OUTPUT ENABLE OUTPUT
S
0
X X X X X X H L
L L L X X X L L
L L H X X X L H
H L X L X X L L
H L X H X X L H
L H X X L X L L
L H X X H X L H
H H X X X L L L
H H X X X H L H
NOTES:
H = HIGH voltage level
L = LOW voltage level
X = don’t care
S
1
nl
0
nl
1
nl
2
nl
3
nE nY
1998 Apr 28
4
Philips Semiconductors Product specification
Dual 4-input multiplexer
74LV153
RECOMMENDED OPERATING CONDITIONS
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNIT
V
V
V
T
amb
tr, t
NOTE:
1. The LV is guaranteed to function down to V
ABSOLUTE MAXIMUM RATINGS
In accordance with the Absolute Maximum Rating System (IEC 134).
Voltages are referenced to GND (ground = 0 V).
SYMBOL
V
I
I
I
DC supply voltage See Note 1 1.0 3.3 3.6 V
CC
Input voltage 0 – V
I
Output voltage 0 – V
O
Operating ambient temperature range in free air
Input rise and fall times
f
CC
See DC and AC
characteristics
VCC = 1.0V to 2.0V
VCC = 2.0V to 2.7V
VCC = 2.7V to 3.6V
= 1.0V (input levels GND or VCC); DC characteristics are guaranteed from VCC = 1.2V to VCC = 3.6V.
–40
–40
–
–
–
–
–
–
1, 2
PARAMETER CONDITIONS RATING UNIT
CC
DC supply voltage –0.5 to +4.6 V
DC input diode current VI < –0.5 or VI > VCC + 0.5V 20 mA
IK
DC output diode current VO < –0.5 or VO > VCC + 0.5V 50 mA
OK
DC output source or sink current
O
– standard outputs
–0.5V < VO < VCC + 0.5V
25
CC
CC
+85
+125
500
200
100
ns/V
V
V
°C
mA
I
I
P
GND
T
TOT
stg
DC VCC or GND current for types with
,
– standard outputs 50
CC
Storage temperature range –65 to +150 °C
Power dissipation per package
– plastic DIL
– plastic mini-pack (SO)
– plastic shrink mini-pack (SSOP and TSSOP)
for temperature range: –40 to +125°C
above +70°C derate linearly with 12 mW/K
above +70°C derate linearly with 8 mW/K
above +60°C derate linearly with 5.5 mW/K
750
500
400
mA
mW
NOTES:
1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability .
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
1998 Apr 28
5